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Abstract—  In recent years, with the continuous development of 

deep learning, the depth of network models becomes deeper and 

deeper, which brings the number of parameters and 

computation of network models becomes more and more huge. 

Unlike cloud devices, edge devices or embedded devices often 

have power and computational limitations, which pose a 

significant challenge to deploy neural network models on edge 

devices. How to deploy neural network models to edge devices 

with little loss of accuracy? The problem of how to smoothly 

deploy the network models to edge devices and perform fast 

inference with little loss of accuracy becomes a non-negligible 

problem. In this paper, based on the YOLOv4-tiny network, we 

replace the backbone feature extraction network of 

YOLOv4-tiny with mobilenet to build a new lightweight 

network mobile-yolo, and the experimental results show that 

our mobile-yolo has good results. 

 
Index Terms—Deep learning, edge devices , YOLOv4-tiny, 

mobile-yolo.  

 

I. INTRODUCTION 

  Currently, artificial intelligence (AI) algorithms have been 

successful in many fields such as computer vision, natural 

language processing, speech recognition, and semantic 

segmentation[1], while computer vision is mainly applied to 

target detection[2,3], and image classification. With the 

continuous development of technology in the field of deep 

learning, the layers of deep neural network models are 

becoming deeper and deeper. For example, the LeNet[4] 

network started with only 2 convolutional layers, to VGG16[5] 

with 16 convolutional layers, ResNet50[6] with 49 

convolutional layers, and later YOLOv4[7] with 107 

convolutional layers. Although increasing the depth of the 

neural network can improve the detection effect of the 

network model to a certain extent, it also brings a problem. 

The number of neural network parameters and the 

computational effort become larger as the number of layers 

increases. 

  Currently, the development of AI technology faces a major 

problem in that the algorithms it uses are too complex and rely 

heavily on the high computing power of the cloud and data 

centers. Compared to cloud devices, edge devices like ARMs, 

FPGAs, and ASICs have extremely tight memory and 

compute resource constraints, making it less easy to deploy 

AI applications on edge devices[8]. In recent years, AI 

applications are gradually moving to the edge, such as smart 
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robots[9], smart homes[10], self-driving cars[11], and 

wearables[12], which can have a huge impact on our lives. 

The implementation of these applications usually relies on 

algorithms. As the core of the algorithm, how to effectively 

reduce the amount of computation, number of parameters, and 

number of visits to the network model without affecting the 

performance of the network, and enhance the neural network 

on the edge-end devices It is still a great challenge to improve 

the operational efficiency of neural networks on edge devices. 

  Reducing the parameters and computation of network 

models while ensuring the accuracy of the models is gradually 

becoming an important direction in the field of computer 

vision. The design of lightweight networks can be divided 

into two categories: network structure design and model 

compression, which can be subdivided into four subcategories: 

knowledge distillation, pruning[13], quantization[14] and 

low-rank decomposition. When performing network structure 

We generally adopt a lightweight mindset when designing the 

network structure, for example, using lightweight convolution 

methods such as depth-separable convolution, grouped 

convolution We generally adopt a lightweight mindset when 

designing network structures, such as using deep separable 

convolution, grouped convolution, and other lightweight 

convolution methods. In addition, we can use global pooling 

instead of fully-connected layers, 1× 1 convolution to 

achieve a more efficient and more accurate decomposition of 

features. 1×1 convolution can reduce the computational 

effort of the network model. These methods can effectively 

reduce the computational effort of the network model. 

 

II. RELATED WORK 

Since the birth of AlexNet[15], convolutional neural 

networks have been widely used in image classification, 

image segmentation, target detection, etc. The number of 

layers of neural networks has been increasing due to the 

demand for network performance, which has improved the 

performance of the network but also brought about efficiency 

problems. 

The earliest lightweight network model can be traced back 

to SqueezeNet[16] proposed by Berkeley and Stanford 

researchers, which proposed a fire module consisting of two 

parts, the first part is the squeeze layer and the second part is 

the expand layer. squeeze layer is 1×1 convolution, the 

number of convolution kernels is smaller than the number of 

feature maps in the previous layer, while expand layer uses 1

×1 and 3×3 convolution respectively, and then concat 

operation. SqueezeNet also adopts a similar idea to VGGNet 

in the design of network structure., using a stacking of fire 
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modules. One of its core points is to use depth-wise separable 

convolution to replace the traditional convolutional model in 

order to reduce the network weight parameters. The 

depth-wise separable convolution can be divided into 

depth-wise convolution and??point-wise convolution. 

When the number of weights is the same, the 

depth-separable convolution can reduce the computational 

effort of the network exponentially compared with the 

traditional convolution operation, which can effectively 

improve the operation efficiency of the network. However, if 

only depth-wise convolution is used, there is a problem of 

poor information flow, i.e., the output feature map contains 

only part of the input feature map instead of all the 

information. Therefore, MobileNet[17] uses point-wise 

convolution to propose a good solution to this problem of 

poor information flow, and in ShuffleNet[18], the point-wise 

convolution is replaced by channel shuffle to improve the 

network model. 

ShuffleNet was proposed by the Face++ team in 2017. The 

network is characterized by using group convolution and 

channel shuffle operations to reduce the number of 

parameters of the network model. The group convolution has 

been implemented since AlexNet, but the group convolution 

is used due to the hardware limitation, while the channel 

shuffle operation is used to improve the problem of poor 

information flow between groups. In terms of network 

topology, ShuffleNet uses the classical residual structure. 

YOLOv4-tiny[19], proposed by AlexeyAB, is a lightweight 

version of YOLOv4 with only one-tenth of the number of 

parameters. In terms of network structure, it borrows three 

residual modules from ResNet, uses LeakyRelu as the 

activation function, and uses a feature pyramid structure when 

merging the effective feature layers, which gives 

YOLOv4-tiny a significant performance advantage over other 

lightweight network models. 

III. FRAMEWORK 

In this chapter, a new network model mobile-yolo is 

constructed based on the design idea of lightweight network, 

which can improve the inference speed with little loss of 

accuracy. The following table shows the parameters of each 

layer of mobile-yolo 

 

Table1.Parameters of mobile-yolo layers 

layers In_c Out_c S P Group 

CBH_3×3 3 32 2 1 - 

CBH_3×3 32 32 1 1 32 

CBH_1×1 32 64 1 1 - 

CBH_3×3 64 64 2 1 64 

CBH_1×1 64 128 1 0 - 

CBH_3×3 128 128 1 1 128 

CBH_1×1 128 128 1 0 - 

CBH_3×3 128 128 2 1 128 

CBH_1×1 128 256 1 0 - 

CBH_3×3 256 256 1 1 256 

CBH_1×1 256 256 1 0 - 

CBH_3×3 256 256 2 1 256 

CBH_1×1 256 512 1 0 - 

CBH_3×3 512 512 1 1 512 

CBH_1×1 512 512 1 0 - 

CBH_3×3 512 512 1 1 512 

CBH_1×1 512 512 1 0 - 

CBH_3×3 512 512 1 1 512 

CBH_1×1 512 512 1 0 - 

CBH_3×3 512 512 1 1 512 

CBH_1×1 512 512 1 0 - 

CBH_3×3 512 512 1 1 512 

CBH_1×1 512 512 1 0 - 

CBH_3×3 512 512 2 1 512 

CBH_1×1 512 1024 1 0 - 

CBH_3×3 1024 1024 1 1 1024 

CBH_1×1 1024 1024 1 0 - 

CBH_1×1 1024 256 1 0 - 

CBH_3×3 256 512 1 1 - 

Conv2D_3×3 512 75 1 0 - 

CBH_3×3 256 128 1 0 - 

Upsample 128 128 - - - 

CBH_3×3 640 256 1 1 - 

Conv2D_3×3 256 75 1 0 - 

 

Where CBH indicates our base convolution block 

(Conv2D+BatchNormal+Hard-Swish), CBH_3 × 3 and 

CBH_1×1 indicate the size of the convolution kernel as 3×3 

and 1×1 convolution blocks, respectively. In_c and Out_c 

correspond to the number of input channels and output 

channels of each layer, respectively; S indicates the step 

length of the convolution kernel sliding on the feature map 

during convolution. When S equals to 1, it will not change the 

length and width of the feature map, and when S equals to 2, 

the length and width of the output feature map will be 

compressed to one-half of the input; Padding indicates 

whether to padding the feature map, 0 means no padding, 1 

means a circle of zeros around the input feature map before 

doing the operation; Group indicates whether to group 

convolution, mostly used in depth separable Convolution, '-' 

means no grouping, and the number of group is consistent 

with the number of input channels. 

IV. EXPERIMENT 

A. Experiment preparation 

The training device we use is Tesla V100, the CUDA 

version we use is 11.4, the torch version is 1.7.0, the 

torchvision version is 0.8.0, before we start training, we will 

fix the size of the input image at 416×416, the number of 

rounds for each training is 100, because no pre-training 

weights are added, so 100 The initial learning rate is set to 

1e-3, the weight decay is 5e-4, the batch_size is 32, and the 

optimizer we use is the Adam optimization algorithm. Adam 

is a first-order optimization algorithm that can replace the 

traditional stochastic gradient descent process and can 

iteratively update the weights in the neural network based on 

the training data, with the characteristics of fast convergence. 

B. Dataset 

The experimental dataset used in this paper is the VOC 

dataset, which includes the data of VOC2007 and VOC2012 

versions. As one of the most commonly used standard datasets 
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in the field of target detection and image segmentation, it 

contains 4 major categories and 20 minor categories of 

objects, with a total of 18,000 images. 

Before the experiment starts, we divide the 18,000 images 

into a training validation set and a test set in a random ratio of 

9:1, i.e., the training validation set has 16,200 images and the 

test set has 1,800 images. After dividing the 16,200 images in 

the training validation set, we will again divide them into 

training and validation sets according to the ratio of 9:1. That 

is, there are 14580 images for training, 1620 images for 

validation, and 1800 images for testing. 

 

Table2.VOC data set segmentation 

 Total Train_

set 

Valid_

set 

Test_s

et 

ratio 1 0.81 0.09 0.1 

number 18000 14580 1620 1800 

 

C. Results and Analysis 

In order to verify the performance of our designed 

lightweight network, we compared mobile-yolo with the 

original YOLOv4-tiny network in terms of the number of 

parameters, computation, map, and inference speed of the 

network, respectively, and the results are shown in the 

following table. 

 

Table3.comparison between mobile-yolo and YOLOv4-tiny 

Model Acti Map(%) Infer_tim

e 

YOLOv4-tiny LeakyRelu 56.58 0.1068s 

YOLOv4-tiny Hard-Swish 57.20 0.1047s 

mobile-yolo(our) Relu 61.95 0.0827s 

mobile-yolo(our) Hard-Swish 62.98 0.0788s 

 

Where Acti represents the different activation functions, it 

can be found that no matter which activation function is used, 

the accuracy and inference speed of our mobile-yolo on the 

VOC dataset is also slightly better than the original 

YOLOv4-tiny network. 

D. Results and Analysis 

The following figure shows the prediction effect of 

mobile-yolo network on VOC dataset. 

 

Figure 1. Prediction effect on VOC dataset 

 
 

V. CONCLUSION 

In this paper, we design a lightweight network mobile-yolo 

based on YOLOv-tiny from the problem that deep neural 

networks are not easy to deploy in memory and 

arithmetic-limited edge-end devices, aiming to reduce the 

computation and number of parameters of deep neural 

networks while accelerating the inference speed of the model 

on hardware. Experimental results show that our lightweight 

network model mobile-yolo has a 1.3 times improvement in 

inference speed with higher accuracy than YOLOv4-tiny, so 

that we can prove that our lightweight network mobile-yolo 

has good practical application effect. 
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