
International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-12, December 2022

 20 www.ijerm.com

Abstract— In recent years, with the continuous development of

deep learning, the depth of network models becomes deeper and

deeper, which brings the number of parameters and

computation of network models becomes more and more huge.

Unlike cloud devices, edge devices or embedded devices often

have power and computational limitations, which pose a

significant challenge to deploy neural network models on edge

devices. How to deploy neural network models to edge devices

with little loss of accuracy? The problem of how to smoothly

deploy the network models to edge devices and perform fast

inference with little loss of accuracy becomes a non-negligible

problem. In this paper, based on the YOLOv4-tiny network, we

replace the backbone feature extraction network of

YOLOv4-tiny with mobilenet to build a new lightweight

network mobile-yolo, and the experimental results show that

our mobile-yolo has good results.

Index Terms—Deep learning, edge devices , YOLOv4-tiny,

mobile-yolo.

I. INTRODUCTION

 Currently, artificial intelligence (AI) algorithms have been

successful in many fields such as computer vision, natural

language processing, speech recognition, and semantic

segmentation[1], while computer vision is mainly applied to

target detection[2,3], and image classification. With the

continuous development of technology in the field of deep

learning, the layers of deep neural network models are

becoming deeper and deeper. For example, the LeNet[4]

network started with only 2 convolutional layers, to VGG16[5]

with 16 convolutional layers, ResNet50[6] with 49

convolutional layers, and later YOLOv4[7] with 107

convolutional layers. Although increasing the depth of the

neural network can improve the detection effect of the

network model to a certain extent, it also brings a problem.

The number of neural network parameters and the

computational effort become larger as the number of layers

increases.

 Currently, the development of AI technology faces a major

problem in that the algorithms it uses are too complex and rely

heavily on the high computing power of the cloud and data

centers. Compared to cloud devices, edge devices like ARMs,

FPGAs, and ASICs have extremely tight memory and

compute resource constraints, making it less easy to deploy

AI applications on edge devices[8]. In recent years, AI

applications are gradually moving to the edge, such as smart

Manuscript received Dec 17, 2022

 Minhao Gu, School of Computer Science and Technology, Tiangong

University, Tianjin, China

robots[9], smart homes[10], self-driving cars[11], and

wearables[12], which can have a huge impact on our lives.

The implementation of these applications usually relies on

algorithms. As the core of the algorithm, how to effectively

reduce the amount of computation, number of parameters, and

number of visits to the network model without affecting the

performance of the network, and enhance the neural network

on the edge-end devices It is still a great challenge to improve

the operational efficiency of neural networks on edge devices.

 Reducing the parameters and computation of network

models while ensuring the accuracy of the models is gradually

becoming an important direction in the field of computer

vision. The design of lightweight networks can be divided

into two categories: network structure design and model

compression, which can be subdivided into four subcategories:

knowledge distillation, pruning[13], quantization[14] and

low-rank decomposition. When performing network structure

We generally adopt a lightweight mindset when designing the

network structure, for example, using lightweight convolution

methods such as depth-separable convolution, grouped

convolution We generally adopt a lightweight mindset when

designing network structures, such as using deep separable

convolution, grouped convolution, and other lightweight

convolution methods. In addition, we can use global pooling

instead of fully-connected layers, 1× 1 convolution to

achieve a more efficient and more accurate decomposition of

features. 1×1 convolution can reduce the computational

effort of the network model. These methods can effectively

reduce the computational effort of the network model.

II. RELATED WORK

Since the birth of AlexNet[15], convolutional neural

networks have been widely used in image classification,

image segmentation, target detection, etc. The number of

layers of neural networks has been increasing due to the

demand for network performance, which has improved the

performance of the network but also brought about efficiency

problems.

The earliest lightweight network model can be traced back

to SqueezeNet[16] proposed by Berkeley and Stanford

researchers, which proposed a fire module consisting of two

parts, the first part is the squeeze layer and the second part is

the expand layer. squeeze layer is 1×1 convolution, the

number of convolution kernels is smaller than the number of

feature maps in the previous layer, while expand layer uses 1

×1 and 3×3 convolution respectively, and then concat

operation. SqueezeNet also adopts a similar idea to VGGNet

in the design of network structure., using a stacking of fire

Mobile-Yolo, A Lightweight Neural Network Based

On YOLOv4-tiny

Minhao Gu

http://www.ijerm.com/

Mobile-Yolo, A Lightweight Neural Network Based On YOLOv4-tiny

 21 www.ijerm.com

modules. One of its core points is to use depth-wise separable

convolution to replace the traditional convolutional model in

order to reduce the network weight parameters. The

depth-wise separable convolution can be divided into

depth-wise convolution and??point-wise convolution.

When the number of weights is the same, the

depth-separable convolution can reduce the computational

effort of the network exponentially compared with the

traditional convolution operation, which can effectively

improve the operation efficiency of the network. However, if

only depth-wise convolution is used, there is a problem of

poor information flow, i.e., the output feature map contains

only part of the input feature map instead of all the

information. Therefore, MobileNet[17] uses point-wise

convolution to propose a good solution to this problem of

poor information flow, and in ShuffleNet[18], the point-wise

convolution is replaced by channel shuffle to improve the

network model.

ShuffleNet was proposed by the Face++ team in 2017. The

network is characterized by using group convolution and

channel shuffle operations to reduce the number of

parameters of the network model. The group convolution has

been implemented since AlexNet, but the group convolution

is used due to the hardware limitation, while the channel

shuffle operation is used to improve the problem of poor

information flow between groups. In terms of network

topology, ShuffleNet uses the classical residual structure.

YOLOv4-tiny[19], proposed by AlexeyAB, is a lightweight

version of YOLOv4 with only one-tenth of the number of

parameters. In terms of network structure, it borrows three

residual modules from ResNet, uses LeakyRelu as the

activation function, and uses a feature pyramid structure when

merging the effective feature layers, which gives

YOLOv4-tiny a significant performance advantage over other

lightweight network models.

III. FRAMEWORK

In this chapter, a new network model mobile-yolo is

constructed based on the design idea of lightweight network,

which can improve the inference speed with little loss of

accuracy. The following table shows the parameters of each

layer of mobile-yolo

Table1.Parameters of mobile-yolo layers

layers In_c Out_c S P Group

CBH_3×3 3 32 2 1 -

CBH_3×3 32 32 1 1 32

CBH_1×1 32 64 1 1 -

CBH_3×3 64 64 2 1 64

CBH_1×1 64 128 1 0 -

CBH_3×3 128 128 1 1 128

CBH_1×1 128 128 1 0 -

CBH_3×3 128 128 2 1 128

CBH_1×1 128 256 1 0 -

CBH_3×3 256 256 1 1 256

CBH_1×1 256 256 1 0 -

CBH_3×3 256 256 2 1 256

CBH_1×1 256 512 1 0 -

CBH_3×3 512 512 1 1 512

CBH_1×1 512 512 1 0 -

CBH_3×3 512 512 1 1 512

CBH_1×1 512 512 1 0 -

CBH_3×3 512 512 1 1 512

CBH_1×1 512 512 1 0 -

CBH_3×3 512 512 1 1 512

CBH_1×1 512 512 1 0 -

CBH_3×3 512 512 1 1 512

CBH_1×1 512 512 1 0 -

CBH_3×3 512 512 2 1 512

CBH_1×1 512 1024 1 0 -

CBH_3×3 1024 1024 1 1 1024

CBH_1×1 1024 1024 1 0 -

CBH_1×1 1024 256 1 0 -

CBH_3×3 256 512 1 1 -

Conv2D_3×3 512 75 1 0 -

CBH_3×3 256 128 1 0 -

Upsample 128 128 - - -

CBH_3×3 640 256 1 1 -

Conv2D_3×3 256 75 1 0 -

Where CBH indicates our base convolution block

(Conv2D+BatchNormal+Hard-Swish), CBH_3 × 3 and

CBH_1×1 indicate the size of the convolution kernel as 3×3

and 1×1 convolution blocks, respectively. In_c and Out_c

correspond to the number of input channels and output

channels of each layer, respectively; S indicates the step

length of the convolution kernel sliding on the feature map

during convolution. When S equals to 1, it will not change the

length and width of the feature map, and when S equals to 2,

the length and width of the output feature map will be

compressed to one-half of the input; Padding indicates

whether to padding the feature map, 0 means no padding, 1

means a circle of zeros around the input feature map before

doing the operation; Group indicates whether to group

convolution, mostly used in depth separable Convolution, '-'

means no grouping, and the number of group is consistent

with the number of input channels.

IV. EXPERIMENT

A. Experiment preparation

The training device we use is Tesla V100, the CUDA

version we use is 11.4, the torch version is 1.7.0, the

torchvision version is 0.8.0, before we start training, we will

fix the size of the input image at 416×416, the number of

rounds for each training is 100, because no pre-training

weights are added, so 100 The initial learning rate is set to

1e-3, the weight decay is 5e-4, the batch_size is 32, and the

optimizer we use is the Adam optimization algorithm. Adam

is a first-order optimization algorithm that can replace the

traditional stochastic gradient descent process and can

iteratively update the weights in the neural network based on

the training data, with the characteristics of fast convergence.

B. Dataset

The experimental dataset used in this paper is the VOC

dataset, which includes the data of VOC2007 and VOC2012

versions. As one of the most commonly used standard datasets

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-12, December 2022

 22 www.ijerm.com

in the field of target detection and image segmentation, it

contains 4 major categories and 20 minor categories of

objects, with a total of 18,000 images.

Before the experiment starts, we divide the 18,000 images

into a training validation set and a test set in a random ratio of

9:1, i.e., the training validation set has 16,200 images and the

test set has 1,800 images. After dividing the 16,200 images in

the training validation set, we will again divide them into

training and validation sets according to the ratio of 9:1. That

is, there are 14580 images for training, 1620 images for

validation, and 1800 images for testing.

Table2.VOC data set segmentation

 Total Train_

set

Valid_

set

Test_s

et

ratio 1 0.81 0.09 0.1

number 18000 14580 1620 1800

C. Results and Analysis

In order to verify the performance of our designed

lightweight network, we compared mobile-yolo with the

original YOLOv4-tiny network in terms of the number of

parameters, computation, map, and inference speed of the

network, respectively, and the results are shown in the

following table.

Table3.comparison between mobile-yolo and YOLOv4-tiny

Model Acti Map(%) Infer_tim

e

YOLOv4-tiny LeakyRelu 56.58 0.1068s

YOLOv4-tiny Hard-Swish 57.20 0.1047s

mobile-yolo(our) Relu 61.95 0.0827s

mobile-yolo(our) Hard-Swish 62.98 0.0788s

Where Acti represents the different activation functions, it

can be found that no matter which activation function is used,

the accuracy and inference speed of our mobile-yolo on the

VOC dataset is also slightly better than the original

YOLOv4-tiny network.

D. Results and Analysis

The following figure shows the prediction effect of

mobile-yolo network on VOC dataset.

Figure 1. Prediction effect on VOC dataset

V. CONCLUSION

In this paper, we design a lightweight network mobile-yolo

based on YOLOv-tiny from the problem that deep neural

networks are not easy to deploy in memory and

arithmetic-limited edge-end devices, aiming to reduce the

computation and number of parameters of deep neural

networks while accelerating the inference speed of the model

on hardware. Experimental results show that our lightweight

network model mobile-yolo has a 1.3 times improvement in

inference speed with higher accuracy than YOLOv4-tiny, so

that we can prove that our lightweight network mobile-yolo

has good practical application effect.

REFERENCES

[1] Kurnikov P A, Sholomov D L. DNNs for multi-map semantic

segmentation[C]//Thirteenth International Conference on Machine

Vision. SPIE, 2021, 11605: 342-349.

[2] Teplyakov L, Kaymakov K, Shvets E, et al. Line detection via a

lightweight CNN with a Hough layer[C]//Thirteenth International

Conference on Machine Vision. SPIE, 2021, 11605: 376-385.

[3] Ye S P, Chen C X, Nedzved A, et al. Building detection by local region

features in SAR images[J]., 2020, 44(6): 944-950.

[4] El-Sawy A, El-Bakry H, Loey M. CNN for handwritten arabic digits

recognition based on LeNet-5[C]//International conference on

advanced intelligent systems and informatics. Springer, Cham, 2016:

566-575.

[5] Guan Q, Wang Y, Ping B, et al. Deep convolutional neural network

VGG-16 model for differential diagnosing of papillary thyroid

carcinomas in cytological images: a pilot study[J]. Journal of Cancer,

2019, 10(20): 4876.

[6] He K, Zhang X, Ren S, et al. Deep residual learning for image

recognition[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016: 770-778.

[7] Gai R, Chen N, Yuan H. A detection algorithm for cherry fruits based

on the improved YOLO-v4 model[J]. Neural Computing and

Applications, 2021: 1-12. yolov4.

[8] Liu R, Li Y, Tao L, et al. Are we ready for a new paradigm shift? a

survey on visual deep mlp[J]. Patterns, 2022, 3(7): 100520.

[9] Johnson S D, Blythe J M, Manning M, et al. The impact of IoT security

labelling on consumer product choice and willingness to pay[J]. PloS

one, 2020, 15(1): e0227800.

[10] Evans G. Solving home automation problems using artificial

intelligence techniques[J]. IEEE transactions on consumer electronics,

1991, 37(3): 395-400.

[11] Gill T. Blame it on the self-driving car: how autonomous vehicles can

alter consumer morality[J]. Journal of Consumer Research, 2020,

47(2): 272-291.

[12] Katzschmann R K, Araki B, Rus D. Safe local navigation for visually

impaired users with a time-of-flight and haptic feedback device[J].

IEEE Transactions on Neural Systems and Rehabilitation Engineering,

2018, 26(3): 583-593.

http://www.ijerm.com/

Mobile-Yolo, A Lightweight Neural Network Based On YOLOv4-tiny

 23 www.ijerm.com

[13] Reed R. Pruning algorithms-a survey[J]. IEEE transactions on Neural

Networks, 1993, 4(5): 740-747.

[14] Gray R M, Neuhoff D L. Quantization[J]. IEEE transactions on

information theory, 1998, 44(6): 2325-2383.

[????] Aliyu H A, Razak M A A, Sudirman R, et al. A deep learning AlexNet

model for classification of red blood cells in sickle cell anemia[J]. Int J

Artif Intell, 2020, 9(2): 221-228.

[16] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv

preprint arXiv:1602.07360, 2016.

[17] Sinha D, El-Sharkawy M. Thin mobilenet: An enhanced mobilenet

architecture[C]//2019 IEEE 10th annual ubiquitous computing,

electronics & mobile communication conference (UEMCON). IEEE,

2019: 0280-0285.

[????] Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient

convolutional neural network for mobile devices[C]//Proceedings of

the IEEE conference on computer vision and pattern recognition. 2018:

6848-6856.

[19] Jiang Z, Zhao L, Li S, et al. Real-time object detection method based on

improved YOLOv4-tiny[J]. arXiv preprint arXiv:2011.04244, 2020.

http://www.ijerm.com/

	I. INTRODUCTION
	II. RELATED WORK
	III. Framework
	IV. Experiment
	A. Experiment preparation
	B. Dataset
	C. Results and Analysis
	D. Results and Analysis

	V. Conclusion
	References

