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Abstract— In recent years, with the continuous development 

and progress of machine learning, the field of deep learning 

has achieved a series of unprecedented successes, and deep 

learning algorithms have also been applied to all walks of life. 

But as the scale of the network becomes huge, there is a huge 

demand for computing power. Most deep learning frameworks, 

such as Tensorflow, MXNet, Pytorch, etc., only provide some 

server-level optimization. As a result, it is difficult to deploy 

deep neural network effectively on some devices with 

insufficient resources. Therefore, in the embedded  field, 

relevant researches have been carried out one after another. As 

an important branch of deep learning, deep neural network 

has become more and more difficult to deploy because of its 

increasing computation. Based on the open source framework 

of TVM, this paper proposes a method to optimize the network 

computation diagram to accelerate the execution of neural 

network computation. This article uses YOLOV4-tTiny 

deployed on Jeston Nano, which is 13 times faster with ansor 

technology. 

 
Index Terms—Machine Learning, TVM, YOLOV4-Tiny, 

Jeston Nano. 

 

I. INTRODUCTION 

Deep learning is an algorithm that learns data 

representations at multiple levels of abstraction through a 

multi-layer network. It is a branch of machine learning and 

one of the most popular branches at the moment. Over the 

past decade, we have seen significant gains in deep learning 

in computer vision, speech  recognition, natural language 

processing, and more. Deep learning has pushed many AI 

technologies to the point of application. Among them, face 

recognition [1] and recommendation system have done well 

in the implementation of the business. Medical care [2], 

agriculture, security and finance are also important 

application scenarios of deep learning. Although deep 

learning technology shows strong advantages and scalability 

in many fields, in recent years, the speed of theoretical 

research on deep learning tends to slow down, and reliability 

problems in some application fields such as automatic 

driving [3] have not been solved. Whether deep learning can 

maintain its current popularity and achieve rapid 

development in the future is closely related to whether more 

deep learning applications can be implemented. Different 

from traditional software and hardware algorithms that solve 

specific tasks, deep learning algorithms based on deep 

neural networks rely on learning knowledge from a large 

amount of training data. This kind of learning mode  to 

match a certain pattern from a large amount of data has a 
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very high demand on the computing power and storage of 

hardware. Moreover, the improvement of the accuracy of 

the deep learning model is often accompanied by the 

expansion of the network scale. With the expansion of the 

network scale, the corresponding demand for computing 

power and storage will be greater. The research shows that 

the computing required for training of the largest deep 

neural network model since 2012 has increased 

exponentially, doubling every 3.4 months. 

However, with the popularization of deep learning 

applications, most of the current computing needs are model 

reasoning rather than model training. The computing needs 

of model reasoning will expand rapidly with the increase of 

business scenarios and the number of users. The reasoning 

environment of deep learning is more complex than that of 

training. At present, deep learning applications are widely 

deployed in various computing platforms including mobile 

devices, embedded devices, robot systems, drones, 

autonomous vehicles, and even single-chip computers. Most 

embedded computing platforms have limited computing 

power, storage, and power compared to PCS and servers, so 

many models are difficult to deploy directly on these 

platforms. 

In order to cope with the storage and low-power 

computing problems of deep learning model on embedded 

devices, one approach is to modify the model so that it can 

adapt to resource-constrained computing platforms. 

Specifically, it includes designing lightweight models more 

suitable for mobile and embedded devices, with smaller 

model size and acceptable accuracy, which can be easily 

deployed on existing mobile devices. The model 

compression methods include quantization, pruning and 

knowledge distillation.To sum up, with the wide application 

of deep learning, the efficient and simplified deployment of 

neural networks has become a key issue. This paper takes 

the optimization deployment of deep learning model as the 

starting point, designs and implements compilers for 

deployment of different deep learning frameworks, and 

realizes the function of efficiently mapping each computing 

task in the neural network model to each execution unit of 

hardware. 

 

II. RELATED WORK 
 

A.  AI Compiler 

In order to better adapt to the deep learning framework 

and new deep learning hardware, academia and industry 

have proposed different deep learning compilers. At present, 

the mainstream deep learning compiler TVM can help 

developers compute more efficiently on different hardware. 

Tensor   machine   learning   provides   frame-independent 
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abstraction for high performance machine learning, Halide 

aims to make writing high performance graphics and array 

processing code much easier on modern machines, TVM [4]. 

and Tensor sions were both developed based on Halide, 

MLIR [5] is a new compiler infrastructure that dramatically 

reduces definition and entry costs, introduces a new level of 

abstraction for building dome-specific compilers, and is part 

of the LLVM [6] project. 

Deep learning compilers typically include a front end and 

a middle end and a back end. The front end can be a new 

DSL (domain-specific language) that expresses optimization 

information available to the middle and back ends, such as 

Halide's separation of scheduling from algorithm, TVM's 

separation of schdule from compute, and Halide's separation 

of Scheduling from Algorithm. The Einstein expression in 

the Tensor Comprehension [7]; The middle end can be 

operator fusion, such as conv and add, conv and batchnorm 

fusion, removal of common subexpression, dead code 

elimination, and calculation graph or IR (intermediate 

representation) deformation, as long as the semantic is 

unchanged, other can change; The backend is related to the 

architecture. We can tiling or tensorizing the on-chip cache, 

using polyhedron or TVM ideas. For the optimization of 

parallel operation, there are various scheduling; For storage 

access optimization, there can be data arrangement changes, 

various hardware-specific optimizations, autotuning 

techniques, and optimized kernel libraries. Hardware- 

specific optimizations can efficiently generate code for 

different hardware goals. 

In order to break down a problem into multiple steps to 

solve it, and break down a complex problem into multiple 

sub-problems, the current deep learning compilers all adopt 

multi-level IR processing. Taking TVM as an example, a 

high-level IR(Relay IR [8]) is designed, which is responsible 

for abstracting hardware-independent graph structure. In 

order to overcome the limitations of the expression of 

complex calculations used in the IR constrained deep 

learning model adopted by traditional compilers, existing 

deep learning compilers utilize advanced IR with a special 

design (called graphical IR) for efficient code optimization. 

Low-level IR(TIR) Hardware-related IR representation, 

implementation of low-level IR. The low-level IR describes 

the calculations of the deep learning model in a more 

granular representation  than the  high-level  IR, which 

provides interfaces to fine-tune the calculations and memory 

access for goal-specific optimizations, and the compiler 

front end is responsible for hardware-independent 

optimizations based on the high-level IR. The compiler back 

end is responsible for hardware-specific optimization, code 

generation, and compilation based on low-level IR. 

 

III. RELATED RESEARCH PROGRESS 
 

A. ANSOR [9] 

Ansor automatic tuning process, as shown in Figure 3-1, 

generates sketch extraction of high-level characteristics of 

the subgraph operator, performs coarse-grained optimization 

of the operator, determines the rough structure of the code, 

and randomly determines some split strategies and 

optimization strategies for the for cycle. Finally, we use the 

evolutionary search method to evaluate the performance 

using the cost function to get the optimal configuration for 

the hardware and then generate the corresponding code for 

the device. Each of these steps is described below: 

Program sampling: 

Ansor automatically expands the search space by 

recursively applying a flexible set of derivation rules and 

randomly sampling complete programs in the search space. 

Since random sampling provides an equal chance for each 

point to be sampled, the search algorithm can potentially 

explore every program in the space under consideration. 

You don't rely on random sampling to find the best program, 

because fine-tuning is done after each sampling program. 

Sketch generation: 

In sketch generation, the calculated graph is first sorted 

topologically and converted into a calculated queue, which 

is convenient for subsequent static analysis and scheduling 

strategy selection. Static analysis is used to extract operator 

features, which is a crucial step and also an innovation of 

Ansor. Ansor does not focus on processing a certain 

operator type, but extracts operator characteristics. 

Random comment: 

The resulting sketches are incomplete programs because 

they only have tile structures without specific tile  

dimensions and loop comments. The sketches need to be 

annotated so that they become complete programs for fine- 

tuning and evaluation. From the generated sketch list, 

randomly select a sketch, fill the size of the split, parallelize 

some outer loops, vectorize some inner loops, and expand 

some inner loops. In addition, the calculation position of 

some nodes in the program is changed randomly, and the 

split structure is fine-tuned. All "random" represents a 

uniform distribution of all valid values. If some particular 

algorithm requires custom annotations to take effect (for 

example, special expansion), allow the user to give a simple 

prompt in the calculation definition to adjust the annotation 

policy. Finally, because changing the layout of constant 

tensors can be done at compile time with no runtime 

overhead, rewrite the layout of constant tensors according to 

a multilevel split structure to make it as cache-friendly as 

possible. This optimization is very efficient because the 

weight tensor of the convolution or fully connected layer is  

a static tensor. Annotations are only responsible for 

randomly generating code, regardless of performance, which 

is guaranteed by performance fine-tuning. 

Performance tuning: 

The program sampled by the program sampler has good 

coverage of the search space, but the quality is not 

guaranteed. This is because the optimization selects random 

sampling. The performance debugger fine-tunes the 

sampler's performance through evolutionary search and a 

learnable cost model. 

Fine-tuning is performed iteratively. In each iteration, 

evolutionary search is first used to find a small set of better- 

performing programs based on the learned cost model. The 

actual execution time of these programs is then measured on 

the hardware. Finally, the analytical data obtained from the 

measurements were used to retrain the cost model to make it 

more accurate. 

The calculation to be optimized may be very complex, 

and it is not practical to walk through all the comments to 

obtain the optimal implementation. Ansor trains an 
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XGBoost tree (XGBoost is an optimized distributed gradient 

enhancement library) to evaluate the code performance, 

compared with the results obtained by running directly at 

runtime. The trained XGBoost [10] can determine roughly 

how good the code is, and it takes less time. To evaluate the 

performance of code generated by annotations, evolutionary 

search uses a random sample of programs as well as high- 

quality programs from the previous evaluation as the initial 

population, and applies variation and crossover to generate 

the next generation. The learnable cost model is used to 

predict the performance of each program, such as 

throughput. Run the evolution of fixed algebra and select the 

best program in the search process. Because the cost model 

can give relatively accurate estimates of program 

performance while being several orders of magnitude faster 

than actual measurements, it enables us to compare tens of 

thousands of programs in the search space in a matter of 

seconds and pick out good performance programs for 

evaluation. 

 

IV. EXPERIMENT 

 
 

A. Experimental Process 

In the first step, we conducted training for YOLOv4- 

Tiny and YOLOX-s network with image size of 416 on 

the server, using masic data enhancement, label 

smoothing, and training skills of learning rate cosine 

annealing attenuation. Network after 100 rounds of 

training, confidence set to 0.5, nms_iou set to 0.3, 

Batch_size equal to 32, learning rate 0.001, loading pre- 

training weight, after 50 rounds of freezing training and 

50 rounds of thawing training, the second part for training 

good floating point weight after static quantization, We fed 

5000 images to determine the scaling factor and bias of each 

layer. In the third step, the weight was loaded into TVM for 

further graph optimization, and the optimized calculated 

graph was used for inference. 

B. Dataset 

Dataset adopted PASCAL VOC2007[62] data set, VOC 

data set included: 5011 training sets, 4952 test sets, a total of 

9963 sets, including 20 categories, the category mainly 

includes 8 kinds of Vehicle, 5 kinds of Household, 6 kinds 

of Animal, Person as a separate category, a total of 20 

categories. The class information of PSSCAL VOC2007[64] 

is shown in Table 5-1. The ratio of (training set + 

verification set) to test set in PASCAL VO2007C is 9:1, and 

the ratio of training set to verification set in (training set + 

verification set) is 9:1. Dataset category shows in TAB.1. 

  TAB.1 Datasets category   

Vehicles Household Animals Person 

 

motorbike bottle horse -- 

boat Potted plant sheep -- 

train -- bird -- 

aeroplane -- -- -- 

boat -- -- -- 

 
C. Experimental Result 

Experimental results show that the yolov4-tiny network is 

deployed on jetson nano after ansor selection with 

optimization level equal to 3 acceleration. After the Trial of 

200 tuning, the speed increased by 5.55 times . After the 

Trial of 2000 tuning, the speed increased by 9.96 times . 

After the Trial of 10000 tuning, the speed increased by 13 

times . The acceleration effect is shown in TAB.2. 

TAB.2 acceleration effect 

 

 
 FPS mAP(%) Speed up 

Baseline 13.5 83.8% 
 

Trial=200 74.925 83.6% 5.55 

Trial=2000 134.5 83.5% 9.96 

Trial=10000 175.5 83.3% 13 

 

V. CONCLUSION 

In this paper, to solve the problem of slow reasoning 

speed of the model, TVM is used for graph optimization, 

ansor's optimization search strategy is adopted for space 

exploration, and the configuration found is used for 

deployment, which is deployed on Jeston Nano. After the 

optimization of automatic tuning technology, the speed can 

be increased by 13 times after 10,000 trials. 
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