
29 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-12, December 2022

Research on Deployment and Acceleration

Optimization based on tvm

Yilin An

Abstract— In recent years, with the continuous development

and progress of machine learning, the field of deep learning

has achieved a series of unprecedented successes, and deep

learning algorithms have also been applied to all walks of life.

But as the scale of the network becomes huge, there is a huge

demand for computing power. Most deep learning frameworks,

such as Tensorflow, MXNet, Pytorch, etc., only provide some

server-level optimization. As a result, it is difficult to deploy

deep neural network effectively on some devices with

insufficient resources. Therefore, in the embedded field,

relevant researches have been carried out one after another. As

an important branch of deep learning, deep neural network

has become more and more difficult to deploy because of its

increasing computation. Based on the open source framework

of TVM, this paper proposes a method to optimize the network

computation diagram to accelerate the execution of neural

network computation. This article uses YOLOV4-tTiny

deployed on Jeston Nano, which is 13 times faster with ansor

technology.

Index Terms—Machine Learning, TVM, YOLOV4-Tiny,

Jeston Nano.

I. INTRODUCTION

Deep learning is an algorithm that learns data

representations at multiple levels of abstraction through a

multi-layer network. It is a branch of machine learning and

one of the most popular branches at the moment. Over the

past decade, we have seen significant gains in deep learning

in computer vision, speech recognition, natural language

processing, and more. Deep learning has pushed many AI

technologies to the point of application. Among them, face

recognition [1] and recommendation system have done well

in the implementation of the business. Medical care [2],

agriculture, security and finance are also important

application scenarios of deep learning. Although deep

learning technology shows strong advantages and scalability

in many fields, in recent years, the speed of theoretical

research on deep learning tends to slow down, and reliability

problems in some application fields such as automatic

driving [3] have not been solved. Whether deep learning can

maintain its current popularity and achieve rapid

development in the future is closely related to whether more

deep learning applications can be implemented. Different

from traditional software and hardware algorithms that solve

specific tasks, deep learning algorithms based on deep

neural networks rely on learning knowledge from a large

amount of training data. This kind of learning mode to

match a certain pattern from a large amount of data has a

 Manuscript received Dec 28, 2022

Yilin An, School of Computer Science and Technology, Tiangong

University, Tianjin, China.

very high demand on the computing power and storage of

hardware. Moreover, the improvement of the accuracy of

the deep learning model is often accompanied by the

expansion of the network scale. With the expansion of the

network scale, the corresponding demand for computing

power and storage will be greater. The research shows that

the computing required for training of the largest deep

neural network model since 2012 has increased

exponentially, doubling every 3.4 months.

However, with the popularization of deep learning

applications, most of the current computing needs are model

reasoning rather than model training. The computing needs

of model reasoning will expand rapidly with the increase of

business scenarios and the number of users. The reasoning

environment of deep learning is more complex than that of

training. At present, deep learning applications are widely

deployed in various computing platforms including mobile

devices, embedded devices, robot systems, drones,

autonomous vehicles, and even single-chip computers. Most

embedded computing platforms have limited computing

power, storage, and power compared to PCS and servers, so

many models are difficult to deploy directly on these

platforms.

In order to cope with the storage and low-power

computing problems of deep learning model on embedded

devices, one approach is to modify the model so that it can

adapt to resource-constrained computing platforms.

Specifically, it includes designing lightweight models more

suitable for mobile and embedded devices, with smaller

model size and acceptable accuracy, which can be easily

deployed on existing mobile devices. The model

compression methods include quantization, pruning and

knowledge distillation.To sum up, with the wide application

of deep learning, the efficient and simplified deployment of

neural networks has become a key issue. This paper takes

the optimization deployment of deep learning model as the

starting point, designs and implements compilers for

deployment of different deep learning frameworks, and

realizes the function of efficiently mapping each computing

task in the neural network model to each execution unit of

hardware.

II. RELATED WORK

A. AI Compiler

In order to better adapt to the deep learning framework

and new deep learning hardware, academia and industry

have proposed different deep learning compilers. At present,

the mainstream deep learning compiler TVM can help

developers compute more efficiently on different hardware.

Tensor machine learning provides frame-independent

http://www.ijerm.com/

30 www.ijerm.com

Research on Deployment and Acceleration Optimization based on tvm

abstraction for high performance machine learning, Halide

aims to make writing high performance graphics and array

processing code much easier on modern machines, TVM [4].

and Tensor sions were both developed based on Halide,

MLIR [5] is a new compiler infrastructure that dramatically

reduces definition and entry costs, introduces a new level of

abstraction for building dome-specific compilers, and is part

of the LLVM [6] project.

Deep learning compilers typically include a front end and

a middle end and a back end. The front end can be a new

DSL (domain-specific language) that expresses optimization

information available to the middle and back ends, such as

Halide's separation of scheduling from algorithm, TVM's

separation of schdule from compute, and Halide's separation

of Scheduling from Algorithm. The Einstein expression in

the Tensor Comprehension [7]; The middle end can be

operator fusion, such as conv and add, conv and batchnorm

fusion, removal of common subexpression, dead code

elimination, and calculation graph or IR (intermediate

representation) deformation, as long as the semantic is

unchanged, other can change; The backend is related to the

architecture. We can tiling or tensorizing the on-chip cache,

using polyhedron or TVM ideas. For the optimization of

parallel operation, there are various scheduling; For storage

access optimization, there can be data arrangement changes,

various hardware-specific optimizations, autotuning

techniques, and optimized kernel libraries. Hardware-

specific optimizations can efficiently generate code for

different hardware goals.

In order to break down a problem into multiple steps to

solve it, and break down a complex problem into multiple

sub-problems, the current deep learning compilers all adopt

multi-level IR processing. Taking TVM as an example, a

high-level IR(Relay IR [8]) is designed, which is responsible

for abstracting hardware-independent graph structure. In

order to overcome the limitations of the expression of

complex calculations used in the IR constrained deep

learning model adopted by traditional compilers, existing

deep learning compilers utilize advanced IR with a special

design (called graphical IR) for efficient code optimization.

Low-level IR(TIR) Hardware-related IR representation,

implementation of low-level IR. The low-level IR describes

the calculations of the deep learning model in a more

granular representation than the high-level IR, which

provides interfaces to fine-tune the calculations and memory

access for goal-specific optimizations, and the compiler

front end is responsible for hardware-independent

optimizations based on the high-level IR. The compiler back

end is responsible for hardware-specific optimization, code

generation, and compilation based on low-level IR.

III. RELATED RESEARCH PROGRESS

A. ANSOR [9]

Ansor automatic tuning process, as shown in Figure 3-1,

generates sketch extraction of high-level characteristics of

the subgraph operator, performs coarse-grained optimization

of the operator, determines the rough structure of the code,

and randomly determines some split strategies and

optimization strategies for the for cycle. Finally, we use the

evolutionary search method to evaluate the performance

using the cost function to get the optimal configuration for

the hardware and then generate the corresponding code for

the device. Each of these steps is described below:

Program sampling:

Ansor automatically expands the search space by

recursively applying a flexible set of derivation rules and

randomly sampling complete programs in the search space.

Since random sampling provides an equal chance for each

point to be sampled, the search algorithm can potentially

explore every program in the space under consideration.

You don't rely on random sampling to find the best program,

because fine-tuning is done after each sampling program.

Sketch generation:

In sketch generation, the calculated graph is first sorted

topologically and converted into a calculated queue, which

is convenient for subsequent static analysis and scheduling

strategy selection. Static analysis is used to extract operator

features, which is a crucial step and also an innovation of

Ansor. Ansor does not focus on processing a certain

operator type, but extracts operator characteristics.

Random comment:

The resulting sketches are incomplete programs because

they only have tile structures without specific tile

dimensions and loop comments. The sketches need to be

annotated so that they become complete programs for fine-

tuning and evaluation. From the generated sketch list,

randomly select a sketch, fill the size of the split, parallelize

some outer loops, vectorize some inner loops, and expand

some inner loops. In addition, the calculation position of

some nodes in the program is changed randomly, and the

split structure is fine-tuned. All "random" represents a

uniform distribution of all valid values. If some particular

algorithm requires custom annotations to take effect (for

example, special expansion), allow the user to give a simple

prompt in the calculation definition to adjust the annotation

policy. Finally, because changing the layout of constant

tensors can be done at compile time with no runtime

overhead, rewrite the layout of constant tensors according to

a multilevel split structure to make it as cache-friendly as

possible. This optimization is very efficient because the

weight tensor of the convolution or fully connected layer is

a static tensor. Annotations are only responsible for

randomly generating code, regardless of performance, which

is guaranteed by performance fine-tuning.

Performance tuning:

The program sampled by the program sampler has good

coverage of the search space, but the quality is not

guaranteed. This is because the optimization selects random

sampling. The performance debugger fine-tunes the

sampler's performance through evolutionary search and a

learnable cost model.

Fine-tuning is performed iteratively. In each iteration,

evolutionary search is first used to find a small set of better-

performing programs based on the learned cost model. The

actual execution time of these programs is then measured on

the hardware. Finally, the analytical data obtained from the

measurements were used to retrain the cost model to make it

more accurate.

The calculation to be optimized may be very complex,

and it is not practical to walk through all the comments to

obtain the optimal implementation. Ansor trains an

http://www.ijerm.com/

31 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-12, December 2022

XGBoost tree (XGBoost is an optimized distributed gradient

enhancement library) to evaluate the code performance,

compared with the results obtained by running directly at

runtime. The trained XGBoost [10] can determine roughly

how good the code is, and it takes less time. To evaluate the

performance of code generated by annotations, evolutionary

search uses a random sample of programs as well as high-

quality programs from the previous evaluation as the initial

population, and applies variation and crossover to generate

the next generation. The learnable cost model is used to

predict the performance of each program, such as

throughput. Run the evolution of fixed algebra and select the

best program in the search process. Because the cost model

can give relatively accurate estimates of program

performance while being several orders of magnitude faster

than actual measurements, it enables us to compare tens of

thousands of programs in the search space in a matter of

seconds and pick out good performance programs for

evaluation.

IV. EXPERIMENT

A. Experimental Process

In the first step, we conducted training for YOLOv4-

Tiny and YOLOX-s network with image size of 416 on

the server, using masic data enhancement, label

smoothing, and training skills of learning rate cosine

annealing attenuation. Network after 100 rounds of

training, confidence set to 0.5, nms_iou set to 0.3,

Batch_size equal to 32, learning rate 0.001, loading pre-

training weight, after 50 rounds of freezing training and

50 rounds of thawing training, the second part for training

good floating point weight after static quantization, We fed

5000 images to determine the scaling factor and bias of each

layer. In the third step, the weight was loaded into TVM for

further graph optimization, and the optimized calculated

graph was used for inference.

B. Dataset

Dataset adopted PASCAL VOC2007[62] data set, VOC

data set included: 5011 training sets, 4952 test sets, a total of

9963 sets, including 20 categories, the category mainly

includes 8 kinds of Vehicle, 5 kinds of Household, 6 kinds

of Animal, Person as a separate category, a total of 20

categories. The class information of PSSCAL VOC2007[64]

is shown in Table 5-1. The ratio of (training set +

verification set) to test set in PASCAL VO2007C is 9:1, and

the ratio of training set to verification set in (training set +

verification set) is 9:1. Dataset category shows in TAB.1.

 TAB.1 Datasets category

Vehicles Household Animals Person

motorbike bottle horse --

boat Potted plant sheep --

train -- bird --

aeroplane -- -- --

boat -- -- --

C. Experimental Result

Experimental results show that the yolov4-tiny network is

deployed on jetson nano after ansor selection with

optimization level equal to 3 acceleration. After the Trial of

200 tuning, the speed increased by 5.55 times . After the

Trial of 2000 tuning, the speed increased by 9.96 times .

After the Trial of 10000 tuning, the speed increased by 13

times . The acceleration effect is shown in TAB.2.

TAB.2 acceleration effect

 FPS mAP(%) Speed up

Baseline 13.5 83.8%

Trial=200 74.925 83.6% 5.55

Trial=2000 134.5 83.5% 9.96

Trial=10000 175.5 83.3% 13

V. CONCLUSION

In this paper, to solve the problem of slow reasoning

speed of the model, TVM is used for graph optimization,

ansor's optimization search strategy is adopted for space

exploration, and the configuration found is used for

deployment, which is deployed on Jeston Nano. After the

optimization of automatic tuning technology, the speed can

be increased by 13 times after 10,000 trials.

REFERENCES

[1] Deng J, Guo J, An X, et al. Masked face recognition challenge: The

insightface track report[C]//Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2021: 1437-1444.

[2] Shaheen M Y. Applications of Artificial Intelligence (AI) in

healthcare: A review[J]. ScienceOpen Preprints, 2021.

[3] Zhang C, Lu Y. Study on artificial intelligence: The state of the art

and future prospects[J]. Journal of Industrial Information Integration,

2021, 23: 100224.

[4] Chen T, Moreau T, Jiang Z, et al. {TVM}: An automated {End-to-

End} optimizing compiler for deep learning[C]//13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18). 2018: 578-594.

 [5] Lattner C, Amini M, Bondhugula U, et al. MLIR: A compiler
infrastructure for the end of Moore's law[J]. arXiv preprint

car chair cat --

bus sofa dog --

bicycle tv/monitor cow --

arXiv:2002.11054, 2020.

[6] Zakowski Y, Beck C, Yoon I, et al. Modular, compositional, and

executable formal semantics for LLVM IR[J]. Proceedings of the

ACM on Programming Languages, 2021, 5(ICFP): 1-30.

[7] Vasilache N, Zinenko O, Theodoridis T, et al. Tensor comprehensions:

Framework-agnostic high-performance machine learning

abstractions[J]. arXiv preprint arXiv:1802.04730, 2018.

[8] Roesch J, Lyubomirsky S, Weber L, et al. Relay: A new ir for

machine learning frameworks[C]//Proceedings of the 2nd ACM

http://www.ijerm.com/

32 www.ijerm.com

Research on Deployment and Acceleration Optimization based on tvm

SIGPLAN international workshop on machine learning and

programming languages. 2018: 58-68.

[9] Zheng L, Jia C, Sun M, et al. Ansor: Generating {High-Performance}

Tensor Programs for Deep Learning[C]//14th USENIX symposium on

operating systems design and implementation (OSDI 20). 2020: 863-

879.

[10] Chen T, Guestrin C. Xgboost: A scalable tree boosting

system[C]//Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. 2016: 785-794.

http://www.ijerm.com/

	Yilin An
	Program sampling:
	Sketch generation:
	Random comment:
	Performance tuning:
	car chair cat --

