Shishir Dhawade, Devyani Dhawade, Yogesh Thorat

Abstract— This research paper focuses on eliminating torsion in columns and displacements due to torsion in reinforced concrete (RCC) and steel buildings while resisting lateral forces (earthquake and wind) through introduction of an innovative structural element defined as anti-torsion column (ATC). While existing popular software tools analyze torsion in buildings, they do not provide design solutions specifically targeting torsion effects. Even there are codal provisions to substantially reduce torsion in a building .In this study, efforts are made to address this gap by proposing ATC in the form of a steel tube positioned near the center of mass (C.G.) of the building. To study torsion the research utilizes E Tab, a widely used software to analyze displacements at terrace corners of irregular buildings. The objective is to evaluate the effectiveness of the ATC in eliminating torsional effects. Results of the study demonstrates that introduction of the ATC successfully eliminates torsion effects in columns and torsion related displacements in RCC buildings. Buildings with very irregular shapes can be planned without affecting architectural planning by introducing ATC.

Index Terms— Anti-Torsion, Column, Torsion, Seismic

1. INTRODUCTION

Now a days irregular buildings are inevitable. Structural engineer's role becomes more challenging if these building are located in seismic zone. It is noticed that irregular buildings undergo larger torsional deformation as compared to regular buildings when subjected to lateral loads. Reports from various sources, including the most recent earthquake in Turkey demonstrate that failure in some structures was due to torsional irregularity. To eliminate torsional irregularity structural engineer and architect has to work on many alternatives of structural systems of frames and shear walls and sometimes sacrificing utility aspect. The process is really tedious and time consuming. Today various popular software and codes lack ability to design members for torsion

Manuscript received July 28, 2023

Shishir Dhawade, (B.E. Civil, M.E. Structure)Charted Engineer.,Pune, India

Devyani Dhawade, Devyani Dhawade (B.E. Civil) College of engineering, Pune., India

Yogesh Thorat, Yogesh Thorat (M.E. Structures), Pune, India

torsion .Here torsion is allowed but it is resisted by the ATC to eliminate all ill effects of torsion. This study suggests a simple alternative to previous approaches by providing a separate torsion resisting column (ATC) which would be safe as well as economical. A high strength circular steel tube is introduced near the center of rigidity of vertical members. The study utilizes E Tab, a widely used software tool to analyze torsion by studying displacements at terrace corners of buildings with different shapes. The primary objective is to assess the effectiveness of the proposed ATC in eliminating torsion related unwanted effects. Instead of a traditional concrete column, a circular steel tube is suggested as an alternative due to its superior torsion resistance properties. Also it is very easy to analyze and design a steel tube for torsion and even combination of torsion with bending and direct compression. To simulate the torsion resistance provided by the ATC, a torsion modifier of 100 is applied in E Tab, effectively attracting all torsion forces within the building. Furthermore, the torsion stiffness of all other columns is set to one, ensuring that only the ATC attracts all torsion effects. Torsion at base of the ATC is observed, which is determined by multiplying the base shear of building by the eccentricity (Distance between center of rigidity and center of mass).Study reveals that introduction of ATC successfully removes torsion from all other columns and also torsion related displacements from the structure by transferring all torsional forces through beams and slabs to the ATC. The ATC acts as a centralized element for torsion resistance.

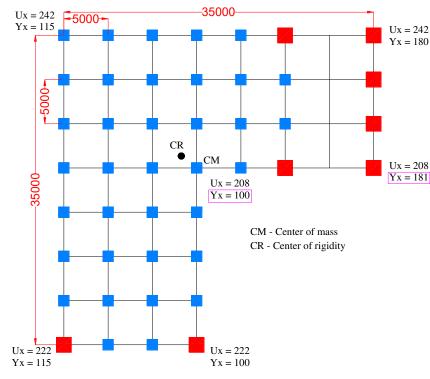
More than one ATC with reduced diameter and thickness were tried and found effective. The ATC is also found effective in stepped multistory buildings with loading as well as mass and stiffness irregularity. ATC can be placed in utility ducts to avoid any interference with serviceability of the building. A lift shaft can be modified into a circular steel tube. At door opening stress concentration will occur and shall be studied. It was noted that Introduction of ATC makes other column sections economical.

2. FURTHER STUDY :

However, a major concern arises regarding applicability of the torsion modifier in E Tab. The paper questions whether the modifier for torsion can exceed a value of one, and whether a value of 10 or even 100 is a valid assumption.

Here torsion of entire building is transferred to the ATC through slabs and beams. E-Tab has limitations in studying behavior of slabs.

The paper should be supported by experiments and further Design of footing for ATC will be a challenging job. study using software like ANSYS.


3. RCC STRUCTURE : MATERIAL METHODS AND PRELIMINARY DATA

For this research paper a L-Shape building, P+20 of dimension 35m x 35 m is considered with 66 m height . Concrete grade M40, Rebar Fe500 and for ATC Fe345.ATC is provided near center of rigidity of building. Slab Thickness – 150 mm modelled as thin shell Column size 1200 mm x 1200 mm and 1700mm x 1700 mm Beam size 350 mm x 900 mm and 350 mm x 1000 mm ATC column size Dia. 2000mm of 40 mm thickness Seismic Zone IV Importance Factor -1.2 Response reduction factor – 5

Basic wind speed 39 m/s

Column to column distance 5 m

Deflection check for load combination – 1.5DL+ 1.5 SPEC X and 1.5DL+ 1.5 SPEC Y

RCC BUILDING : Load combination : 1.5DL+ 1.5 SPEC X

Fig-1. P+20 Building without ATC Showing displacements (mm) at corner

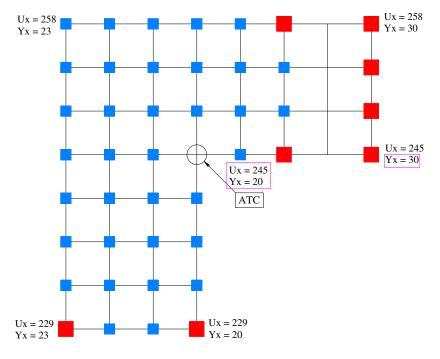
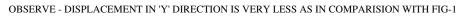
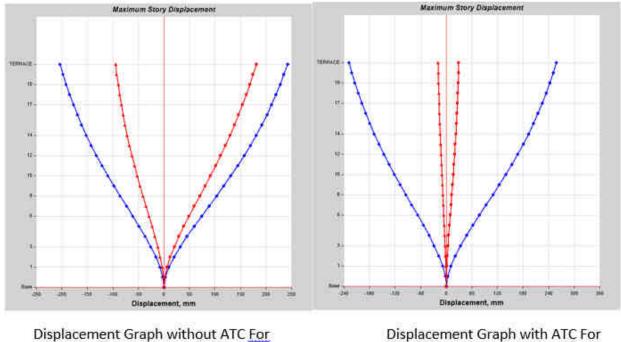
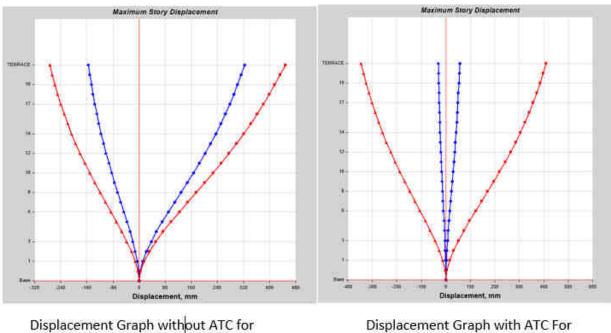




Fig-2. P+20 Building with ATC Showing displacements (mm) at corner

RCC BUILDING



1.5 DL+ Spec X

RCC BUILDING

l

Displacement Graph with ATC For 1.5 DL+ Spec X

1.5 DL+ Spec Y

Displacement Graph with ATC For 1.5 DL+ Spec Y

Above two graphs show that displacement due to torsion are reduced at all floors.

Results and Tables (RCC BUILDING)

Story Response Values –displacement in mm for Combination 1.5 DL + 1.5 Spec X Without ATC and With ATC

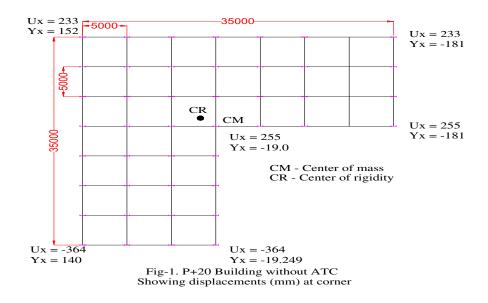
			Without A	ATC			With ATC	2		
Story	Elevation	Location	X-Dir	X-Dir	Y-Dir	Y-Dir	X-Dir	X-Dir	Y-Dir	Y-Dir
Story	Elevation	Location	Max	Min	Max	Min	Max	Min	Max	Min
	m		mm	mm	mm	mm	mm	mm	mm	mm
TERRACE	66	Тор	242.069	-203.409	180.977	-94.862	257.8	-227.965	29.571	-18.963
20	63	Тор	234.879	-197.491	174.606	-92.372	250.251	-221.049	28.761	-18.468
19	60	Тор	227.364	-191.267	168.035	-89.711	242.323	-213.809	27.907	-17.939
18	57	Тор	219.359	-184.593	161.157	-86.804	233.836	-206.093	26.987	-17.362
17	54	Тор	210.756	-177.377	153.901	-83.608	224.676	-197.795	25.989	-16.726
16	51	Тор	201.483	-169.561	146.224	-80.099	214.772	-188.852	24.904	-16.028
15	48	Тор	191.493	-161.112	138.102	-76.268	204.086	-179.228	23.727	-15.265
14	45	Тор	180.763	-152.02	129.529	-72.115	192.6	-168.911	22.455	-14.437
13	42	Тор	169.295	-142.293	120.513	-67.648	180.326	-157.911	21.087	-13.543
12	39	Тор	157.116	-131.961	111.08	-62.878	167.294	-146.26	19.626	-12.576
11	36	Тор	144.281	-121.069	101.272	-57.825	153.562	-134.01	18.078	-11.538
10	33	Тор	130.863	-109.682	91.146	-52.513	139.206	-121.232	16.45	-10.449
9	30	Тор	116.957	-97.881	80.773	-46.975	124.327	-108.017	14.753	-9.317
8	27	Тор	102.675	-85.696	70.245	-41.252	109.044	-94.478	13	-8.154
7	24	Тор	88.148	-73.311	59.673	-35.399	93.504	-80.75	11.208	-6.97
6	21	Тор	73.536	-60.9	49.193	-29.461	77.89	-67.003	9.397	-5.782
5	18	Тор	59.04	-48.655	38.975	-23.478	62.43	-53.452	7.592	-4.61
4	15	Тор	44.935	-36.829	29.233	-17.716	47.43	-40.382	5.826	-3.481
3	12	Тор	31.605	-25.753	20.24	-12.346	33.307	-28.167	4.143	-2.427

International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-10, Issue-07, July 2023

2	9	Тор	19.594	-15.871	12.34	-7.581	20.625	-17.302	2.607	-1.492
1	6	Тор	9.636	-7.759	5.963	-3.694	10.141	-8.424	1.308	-0.728
PARKING	3	Тор	2.697	-2.158	1.639	-1.024	2.843	-2.33	0.378	-0.202
Base	0	Тор	0	0	0	0	0	0	0	0

Story Response Values- displacement in mm	for Combination 1.5 DL + 1.5 Spec	Y without ATC and With ATC

			Without A	ATC			With AT	C		
Story	Elevation	Location	X-Dir	X-Dir	Y-Dir	Y-Dir	X-Dir	X-Dir	Y-Dir	Y-Dir
Story	Elevation	Location	Max	Min	Max	Min	Max	Min	Max	Min
	m		mm	mm	mm	mm	mm	mm	mm	mm
TERRACE	66	Тор	323.133	-154.924	447.968	-273.721	56.569	-30.4	409.865	-345.879
20	63	Тор	312.574	-150.564	432.224	-266.092	54.727	-29.555	397.507	-336.058
19	60	Тор	301.576	-145.943	416	-258.062	52.857	-28.66	384.622	-325.657
18	57	Тор	289.924	-140.945	399.04	-249.436	50.9	-27.693	370.901	-314.453
17	54	Тор	277.475	-135.497	381.17	-240.093	48.814	-26.638	356.147	-302.304
16	51	Тор	264.15	-129.56	362.283	-229.953	46.575	-25.487	340.233	-289.124
15	48	Тор	249.914	-123.118	342.31	-218.962	44.171	-24.235	323.086	-274.865
14	45	Тор	234.767	-116.171	321.229	-207.093	41.598	-22.882	304.681	-259.509
13	42	Тор	218.736	-108.731	299.055	-194.346	38.857	-21.429	285.029	-243.072
12	39	Тор	201.873	-100.822	275.847	-180.753	35.956	-19.88	264.184	-225.6
11	36	Тор	184.254	-92.476	251.705	-166.37	32.909	-18.243	242.236	-207.169
10	33	Тор	165.981	-83.736	226.772	-151.279	29.731	-16.526	219.311	-187.883
9	30	Тор	147.187	-74.659	201.225	-135.581	26.446	-14.742	195.57	-167.875
8	27	Тор	128.039	-65.322	175.284	-119.397	23.081	-12.906	171.213	-147.308
7	24	Тор	108.752	-55.821	149.208	-102.866	19.674	-11.038	146.486	-126.377
6	21	Тор	89.594	-46.284	123.314	-86.154	16.271	-9.162	121.692	-105.327
5	18	Тор	70.904	-36.879	97.994	-69.478	12.931	-7.31	97.217	-84.467
4	15	Тор	53.101	-27.818	73.755	-53.138	9.729	-5.523	73.569	-64.209
3	12	Тор	36.703	-19.372	51.26	-37.575	6.761	-3.854	51.422	-45.116
2	9	Тор	22.341	-11.885	31.38	-23.427	4.142	-2.37	31.669	-27.953
1	6	Тор	10.783	-5.784	15.229	-11.591	2.018	-1.154	15.473	-13.749
PARKING	3	Тор	2.96	-1.601	4.203	-3.256	0.564	-0.32	4.307	-3.851
Base	0	Тор	0	0	0	0	0	0	0	0


Model Mass Participation ratios (RCC BUILDING)

		Without A	TC			With ATC	1		
Case	Mode	Period	UX	UY	RZ	Period	UX	UY	RZ
		sec	Unitless	Unitless	Unitless	sec	Unitless	Unitless	Unitless
Modal	1	2.864	0.1757	0.2637	0.2765	3.161	0.6412	0.0805	0.0043
Modal	2	2.812	0.4738	0.2508	0.0025	2.853	0.0826	0.6423	0.0016
Modal	3	1.503	0.0777	0.2131	0.4396	2.494	0.0016	0.0042	0.7584
Modal	4	0.817	0.0479	0.0341	0.0399	0.877	0.1054	0.0112	0.0004
Modal	5	0.804	0.0508	0.0645	0.0009	0.816	0.0114	0.1045	0.0006
Modal	6	0.47	0.0173	0.0174	0.0804	0.719	0.0002	0.0006	0.0979
Modal	7	0.388	0.0373	0.0042	0.0114	0.407	0.0492	0.0026	0.0001
Modal	8	0.382	0.0053	0.046	0.0002	0.389	0.0026	0.0489	0.0004
Modal	9	0.253	0.009	0.0012	0.0421	0.342	0.0002	0.0002	0.0419
Modal	10	0.222	0.0247	0.0001	0.0049	0.231	0.0292	0.0001	0.0001
Modal	11	0.218	4.73E-05	0.0293	2.762E-05	0.223	0.0001	0.0293	0.0001
Modal	12	0.158	0.0047	2.75E-06	0.0253	0.194	0.0003	2.754E-05	0.0246
Total			0.924	0.9245	0.9304		0.9243	0.9245	0.9237

4. STEEL STRUCTURE MATERIAL METHODS AND PRELIMINARY DATA

Exactly same building with all same loadings but with steel columns and beams is considered.

Column size ISMB600 mm and ISMB mm Beam size ISMB300 mm and ISMB600 mm ATC column size Dia. 2000mm of 20 mm thickness Seismic Zone IV Importance Factor -1.2 Response reduction factor – 5 Basic wind speed 39 m/s Column to column distance 5 m Deflection check for load combination – 1.5DL+ 1.5 SPEC X, And 1.5DL+ 1.5 SPEC Y

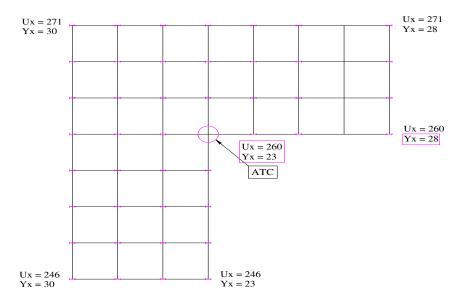
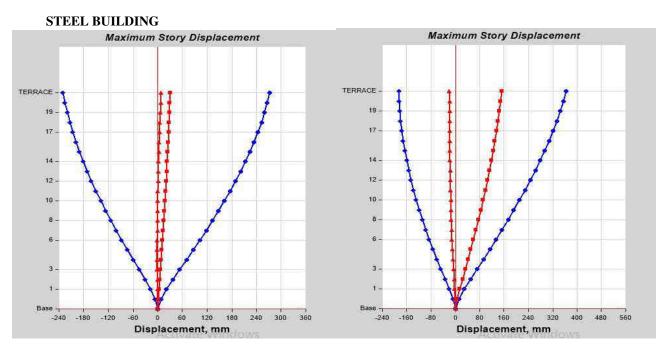
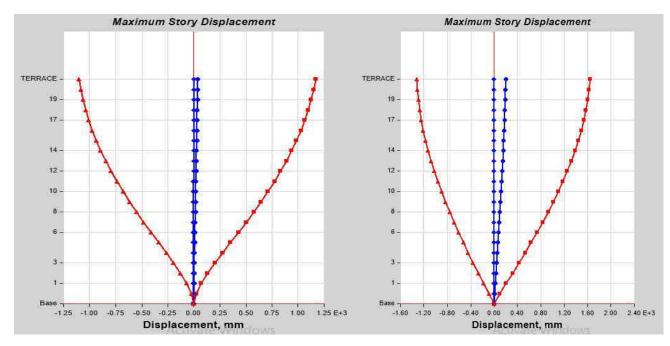




Fig-2. P+20 Building with ATC Showing displacements (mm) at corner OBSERVE - DISPLACEMENT IN 'Y' DIRECTION IS VERY LESS AS IN COMPARISION WITH FIG-1

Displacement Graph with ATC for Displacement Graph without ATC for 1.5DL+Spec X 1.5DL+Spec X

Displacement Graph with ATC forDisplacement Graph without ATC for 1.5DL+Spec Y 1.5DL+Spec Y

Above two graphs show that displacement due to torsion are reduced at all floors.

Results and Tables (STEEL BUILDING)

Story Response Values –displacement in mm for Combination 1.5 DL + 1.5 Spec XWithout ATC and With ATC

			WITH AT				WITHOUT						
	ELEVATI	LOCATI	X DIR	X DIR	Y DIR	Y DIR	X DIR	X DIR	Y DIR	Y DIR			
STORY	ON	ON	MASS	.Max	MAX	MIN	MASS	.Max	MAX	MIN			
	m		mm	mm	mm	mm	mm	mm	mm	mm			
TERRA CE	66	Тор	271.621	30.433	-229.611	8.402	363.188	152.009	-184.672	-19.249			
20	63	Тор	266.067	29.526	-224.943	7.376	354.729	148.578	-183.855	-19.173			
19	60	Тор	259.544	28.552	-219.667	6.387	344.963	144.659	-182.099	-19.016			
18	57	Тор	252.022	27.52	-213.568	5.434	333.859	140.235	-179.365	-18.789			
17	54	Тор	243.529	26.435	-206.639	4.514	321.543	135.359	-175.706	-18.501			
16	51	Тор	234.127	25.301	-198.915	3.627	308.161	130.09	-171.186	-18.161			
15	48	Тор	223.876	24.125	-190.439	2.933	293.831	124.463	-165.857	-17.774			
14	45	Тор	212.837	22.908	-181.256	2.303	278.637	118.494	-159.759	-17.334			
13	42	Тор	201.072	21.65	-171.413	1.703	262.64	112.18	-152.918	-16.829			
12	39	Тор	188.64	20.349	-160.955	1.141	245.892	105.513	-145.357	-16.242			
11	36	Тор	175.592	18.997	-149.926	0.626	228.458	98.493	-137.102	-15.562			
10	33	Тор	161.967	17.588	-138.356	0.167	210.415	91.136	-128.186	-14.785			
9	30	Тор	147.795	16.114	-126.272	-0.226	191.849	83.482	-118.399	-13.908			
8	27	Тор	133.114	14.575	-113.703	-0.545	172.833	75.572	-108.016	-12.937			
7	24	Тор	117.969	12.976	-100.679	-0.78	153.415	67.435	-97.09	-11.874			
6	21	Тор	102.403	11.325	-87.233	-0.925	133.607	59.079	-85.613	-10.717			
5	18	Тор	86.451	9.631	-73.395	-0.977	113.396	50.501	-73.561	-9.293			
4	15	Тор	70.147	7.902	-59.212	-0.937	92.776	41.705	-60.924	-7.48			
3	12	Тор	53.582	6.152	-44.8	-0.814	71.794	32.722	-47.722	-5.675			
2	9	Тор	37.036	4.408	-30.46	-0.627	50.632	23.616	-34.066	-3.894			
1	6	Тор	21.198	2.715	-16.893	-0.409	29.81	14.538	-20.297	-2.252			
PARKI NG	3	Тор	7.587	1.143	-5.626	-0.191	10.941	5.966	-7.533	-1.032			
Base	0	Тор	0	0	0	0	0	0	0	0			

International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-10, Issue-07, July 2023

							WITHOUT ATC				
			WITH ATC X DIR	X DIR	Y DIR	Y DIR	X DIR		Y DIR	Y DIR	
STORY	ELEVATION	LOCATION	A DIK MASS	.Max	Y DIK MAX	Y DIK MIN	MASS	X DIR .Max		Y DIK MIN	
STOKT		LOCATION			-						
	m		mm	mm	mm	mm -1105.42	mm	mm	mm	mm	
TERRACE	66	Тор	38.259	1170.876	3.891	-1103.42 5	198.081	1639.124	2.693	-1319.996	
20	63	Тор	36.629	1149.153	3.42	-1086.40 4	194.438	1624.777	1.99	-1310.959	
19	60	Тор	34.958	1124.883	2.902	-1064.88 2	190.061	1602.736	1.307	-1295.432	
18	57	Тор	33.224	1096.905	2.375	-1039.71 1	184.921	1573.139	0.668	-1273.63	
17	54	Тор	31.43	1064.547	1.852	-1010.24 6	179.035	1536.244	0.077	-1245.785	
16	51	Тор	29.581	1027.503	1.344	-976.187	172.433	1492.315	-0.464	-1212.11	
15	48	Тор	27.681	985.7	0.859	-937.465	165.149	1441.639	-0.952	-1172.836	
14	45	Тор	25.739	939.205	0.517	-894.14	157.222	1384.513	-1.385	-1128.198	
13	42	Тор	23.762	888.167	0.29	-846.352	148.688	1321.227	-1.759	-1078.428	
12	39	Тор	21.759	832.796	0.077	-794.298	139.587	1252.085	-2.072	-1023.774	
11	36	Тор	19.741	773.35	-0.118	-738.222	129.955	1177.414	-2.321	-964.507	
10	33	Тор	17.716	710.129	-0.294	-678.406	119.836	1097.543	-2.505	-900.895	
9	30	Тор	15.697	643.475	-0.449	-615.176	109.273	1012.81	-2.624	-833.201	
8	27	Тор	13.695	573.789	-0.577	-548.916	98.322	923.584	-2.675	-761.708	
7	24	Тор	11.724	501.549	-0.675	-480.087	87.041	830.265	-2.658	-686.719	
6	21	Тор	9.797	427.353	-0.735	-409.263	75.492	733.235	-2.568	-608.518	
5	18	Тор	7.934	352.011	-0.753	-337.227	63.738	632.869	-2.401	-527.379	
4	15	Тор	6.156	276.666	-0.725	-265.08	51.855	529.603	-2.151	-443.62	
3	12	Тор	4.492	202.927	-0.644	-194.383	39.933	423.918	-1.814	-357.573	
2	9	Тор	2.975	133.173	-0.512	-127.45	28.092	316.211	-1.389	-269.441	
1	6	Тор	1.652	71.202	-0.334	-67.988	16.564	206.884	-0.883	-179.243	
PARKING	3	Тор	0.597	23.329	-0.138	-22.159	6.121	97.205	-0.346	-86.964	
Base	0	Тор	0	0	0	0	0	0	0	0	

Story Response Values- displacement in mm for Combination 1.5 DL + 1.5 Spec YWith ATC and without ATC

Model Mass Participation ratios (STEEL BUILDING)

		WITHOU	T ATC	-		WITH ATC				
Case	Mode	Period	UX	UY	RZ	Period	UX	UY	RZ	
		sec	Unitless	Unitless	Unitless	sec	Unitless	Unitless	Unitless	
Modal	1	6.912	0.0002	0.8125	0.0055	5.981	0.0001	0.7663	0.0001	
Modal	2	3.629	0.1073	0.0066	0.6781	3.014	0.773	0.0001	0.0014	
Modal	3	3.012	0.6785	0.0004	0.0993	1.882	0.0001	0.1026	0.0001	
Modal	4	2.299	2.44E-06	0.0956	0.0021	1.507	0.0005	0.0002	0.8153	
Modal	5	1.363	0	0.0335	1.54E-06	1.022	3.95E-05	0.0419	4.20E-06	
Modal	6	1.185	0.0143	0.0003	0.0905	0.964	0.1116	8.25E-06	0.0003	
Modal	7	0.973	3.64E-06	0.0166	0.0001	0.655	0	0.0246	4.14E-06	
Modal	8	0.969	0.0959	4.48E-05	0.0211	0.537	0.0353	1.47E-06	0.004	
Modal	9	0.758	1.24E-06	0.0099	2.90E-05	0.5	0.0025	4.61E-06	0.0911	
Modal	10	0.681	0.0068	0.0002	0.0281	0.456	6.89E-07	0.0164	8.07E-06	
Modal	11	0.622	2.64E-05	0.0064	0.0001	0.363	0.0204	0	0.0003	
Modal	12	0.541	0.0287	1.27E-05	0.0077	0.337	0	0.0117	1.17E-05	
			0.93173	0.98205	0.93263		0.94354	0.96381	0.91262	

	4	8	1			4	8	
--	---	---	---	--	--	---	---	--

CONCLUSION

By introducing the ATC undesirable displacements due to torsion in a building can be removed easily without compromising utility of building. But more precise study is required using software like ANSYS. Also ATC should be backed by experiments. Special studies are required for stresses in slabs at each floor as these slabs transfer torsion to the ATC

REFERENCE.

[1]IS 1893- 2016, IS 456-2000, IS 800-2007, IS 6700-2017, IS 13920-2016

- [2]Zheng-Bo Pia, Meni Sub, Yuan-Yuan Pengc, Yu-Hang Wanga,d,*, Wei Luoe, Yong-Sen Lan Seismic Behavior Of Concrete Filled Steel Tubular Columns With Internal H section Steel Under Pure Torsion And Compression Torsion Loads
- [3]Zhe Qu, Feijian Wang, Xiangzhao Chen, Xiaoting Wang, Zhiguang Zhou Rapid report of seismic damage to hospitals in the 2023 Turkey earthquake sequences.
- [4]Effect Of The Torsional Moment On The Shear Strength Of Reinforced Concrete Columns Due To Eccentric Jointing Of Beam To Column Jiandong ZHOU , Masaya HIROSAWA , Tatsuya KONDO And Yasushi SHIMIZU
- [5] Study of torsional behavior of reinforced concrete beams strengthened with aramid fiber strips- S. B. Kandekar · R. S. Talikoti
- [6]Study of Torsion Effects on Building Structures Having Mass and Stiffness Irregularities Rajalakshmi K R & Harinarayanan S Sree Narayana Gurukulam College of Engineering, Ernakulam, Kerala, INDIA, Jiji Anna Varughese & Girija K Government Engineering College, Barton Hill, Trivandrum, Kerala, INDIA