
                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-10, Issue-12, December 2023 

                                                                                              13                                                                                    www.ijerm.com  

 

 
Abstract—The Eclat algorithm is one of the most widely used 

methods for mining frequent itemsets. In the ordinary Eclat 

algorithm and its variants, calculating the intersection size of 

project sets through sequential comparison of elements is 

inefficient, especially for large-scale transactions. We propose a 

DF Eclat algorithm based on deep pruning optimization and 

Flink distributed computing framework. This algorithm 

overcomes the problems of poor adaptability to big data, weak 

parallel computing ability, and the generation of a large number 

of invalid candidate itemsets during the iteration process when 

calculating frequent itemsets, wasting time and memory. This 

article introduces the idea of DF Eclat algorithm and studies its 

performance. The experimental results show that this algorithm 

effectively solves the problems existing in Eclat algorithm and 

has good acceleration performance. 

 
Index Terms—Deep pruning optimization, Flink framework, 

Frequent itemsets, Eclat algorithm 

 

I. INTRODUCTION 

The mining of frequent itemsets is a fundamental problem 
in many data mining applications [1]. 

Algorithms for mining frequent itemsets can be basically 
divided into two categories: one is algorithms based on 
horizontally arranged datasets,For example, the Apriori [2] 
algorithm and the FP Growth [3] algorithm;Another 
algorithm is based on vertical layout of datasets, such as Eclat 
[4]. Eclat has more advantages than algorithms based on 
horizontal layout databases. It saves a lot of time because it 
does not require scanning the entire database [4-6]. 

With the exponential growth of data volume, traditional 
serial Eclat algorithms are no longer sustainable, with 
problems such as low execution efficiency, high resource 
consumption, low scalability, and poor fault tolerance [6]. 
The emergence of distributed parallel computing has 
effectively solved the above problems and become the best 
choice for processing massive data. 

Faced with the problem of 'big data' [7], it is feasible and 
practical to use parallel or distributed algorithms to mine 
frequent itemsets from massive data. The current proposed 
parallel algorithms include CD (Count Distribution), CaD 
(Candidate Distribution), and DD (Data Distribution) [8]. 
These algorithms are all based on Apriori and have significant 
limitations in communication and synchronization [9]. 
However, these algorithms have certain guiding significance 
for parallel frequent itemset mining. Zaki [10] proposed four 

 
Manuscript received December 13, 2023 
 Peng Xiao, School of Computer Science and Technology, TianGong 

University, TianJin, China) 
 

parallel algorithms based on DEC memory channel 
technology, but due to the inability to put a large amount of 
data into shared memory, they are not suitable for mining 
massive datasets. Based on this, this article proposes the DF 
Eclat algorithm, and experimental results show that this 
algorithm effectively solves the aforementioned problems and 
has good acceleration performance. 
The rest of this article is organized as follows: Section 2 
introduces background knowledge. Section 3 discusses the 
design concept of the DF Eclat algorithm. We presented our 
experimental results in Section 4. The fifth part summarizes 
this article. 
 

II. BACKGROUND KNOWLEDGE 

A. Dataset Style 

The traditional horizontal data format consists of 
transactions consisting of transaction identifiers (Tid) and 
items (items). Transactions are uniquely identified by Tid and 
can contain one or more items. The Eclat algorithm 
incorporates the idea of inversion, using a vertical data format 
to represent data, where a record consists of a list of one item 
and all transaction records (Tidset table) [11]. The specific 
data format types are shown in Table 1, with horizontal data 
structures used by algorithms such as Apriori and FP-Growth 
on the left and vertical data structures used by Eclat on the 
right. 

Table 1 Two Dataset Distribution Formats 

Horizontal  

dataset 

Vertically  

dataset 

Tid Item Item Tid 

T1 A;B;D A T1 

T2 B;C;E B T1;T2;T3 

T3 B C T2;T4;T5 

T4 C;D;E D T1;T4 

T5 C;E E T2;T4;T5 

 

B. Frequent Itemsets 

Let I={i1, i2,..., im} it is a set. Let D={t1, t2... tm} be a 
transaction database, where each transaction has a unique 

DF Eclat: An Eclat Algorithm Based On Deep Pruning 
Optimization 

Peng Xiao 

http://www.ijerm.com/


 

DF Eclat: An Eclat Algorithm Based On Deep Pruning Optimization 

                                                                                              14                                                                                  www.ijerm.com  

identifier (TID) and contains a set of collections. A set of k 
items is called a k-item set. Given a matter set X and a matter 

τ ， Make X ⊆  τ ， be τ  Contains X. We call the support 

level (X) | X |/| D | the support level of project set X; Here, | X 
| represents the number of items containing project set X, and 
| D | represents the total number of transactions. When and 
only when the support of itemset X is greater than the 
minimum support (minSup) values specified by the user [12], 
[13], itemset X is considered frequent. 

C. Eclat Algorithm 

The Eclat algorithm is based on a vertical data format. It 
only needs to scan the dataset once, and then it can enumerate 
all frequent itemsets through simple set intersections. 

Eclat utilizes the theory of equivalence classes and 
iteratively calculates the candidate (k+1) itemset by 
combining two frequent k-itemsets. The Tidset table of the 
candidate (k+1) itemset is obtained by intersecting the Tidset 
tables of the two frequent k-itemsets. By calculating the 
support of the candidate (k+1) itemset Tidset table, it is 
determined to generate frequent (k+1) itemsets, iterate until 
union or intersection is empty, and the algorithm ends [14]. 
The logical code is: 

Eclat (Fk) {  

for all xi∈ Fk 

Fk+1 = Ø  

for all xi∈ Fk i < j 

Ck+1 = xi ∩  xj 

if sup ( xi ∩  xj ) >min_sup  

Fk+1 =Fk+1∪ Ck+1 

end  
end  

if (Fk+1≠ Ø) 

Eclat(Fk+1)  
}  

III. IMPLEMENTATION OF DF ECLAT ALGORITHM 

A. Deep pruning optimization 

The Eclat algorithm does not require multiple scans of the 
database during the mining process, effectively reducing I/O 
consumption. However, unrelated operations can generate a 
large number of unrelated itemsets, increasing memory and 
time consumption. Therefore, through Pre-pruning 
optimization and Post-pruning optimization, the size of the 
candidate set is reduced and the calculation of irrelevant items 
is reduced. 

a. Deep pruning optimization 

The pre pruning idea utilizes the following characteristics: 
when generating a k-itemset from the union of two (k+1) 
itemsets, if the first k-2 terms of the two itemsets are different, 
the new itemset is the previously generated repeated or non 
frequency itemset [15]. 

Based on this property, frequent k-term sets are extracted 
during the algorithm implementation process, with the first 
k-1 term as the prefix, and the data is distributed to different 
computing nodes according to different prefixes. The mining 
process only requires each computing node to jointly generate 

a candidate (k+1) itemset internally, effectively reducing the 
size of the candidate set and reducing the network load of data 
exchange between nodes in big data environments. 

b. Post-pruning optimization 

In order to further reduce the size of the candidate set, post 
pruning optimization was performed on Ck. The pruning idea 
uses the downward closure attribute of frequent itemset prior 
constraints. It is a non frequent itemset, so any (k+1) term of x 
is also a non frequent itemset. 

Based on this property, in the algorithm implementation, 
we sort the dataset of each computing node in ascending 
support order, and then use a double-layer loop to traverse the 
dataset. Among them, the outer loop Lj traverses the dataset 
from low to high, using attributes to delete infrequent itemsets 
and compress the dataset size in real time. The inner loop Li 
(i>j, where i, j are loop variables) traverses the dataset from 
high to low, and the union of the outer loop results generates a 
high-order candidate set. The properties are used again to 
delete infrequent itemsets and further compress the dataset 
size. 

B. Flink framework 

The Flink platform regards batch processing as an extreme 
case of stream processing and uses the concept of stream 
processing to solve batch processing problems. In other 
words, the Flink platform treats all tasks as streams. The 
parallelism of stream processing is easy to implement, and the 
Flink platform has a concept of parallelism, which can 
achieve the goal of parallel execution of programs, tasks, and 
threads by setting the parallelism value to be greater than 1. 

A Flink program consists of multiple tasks, each of which is 
executed by multiple parallel threads. The number of threads 
executing a task in parallel is called the parallelism of the task. 
The parallelism setting on the Flink platform can be specified 
at multiple levels, including the operator, execution 
environment, client, and system. 

As shown in Figure 1, there are four operators in the current 
data stream: source, map, window, and sink. The parallelism 
of the sink operator is 1, while the parallelism of the other 
operators is 2. So the parallelism of this stream processing 
program is 2. 

 
Figure 1.Parallel Subtasks and Parallelism of Flink Framework 

 
 

 
 
 

IV. PERFORMANCE EVALUATION 

To verify the effectiveness and feasibility of the improved 

http://www.ijerm.com/


                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-10, Issue-12, December 2023 

                                                                                              15                                                                                    www.ijerm.com  

 

algorithm, experiments were conducted in a cluster 
environment consisting of four nodes (1 master node, 3 slave 
nodes) on a laptop computer with 8GB of memory, AMD 
Ryzen 7 5800H processor with Radeon Graphics 3.20 GHz, 
and 1T hard drive. The master node is configured with 2GB of 
memory and 100G of hard disk; The configuration of the three 
slave nodes is the same, with 1GB of memory and 50GB of 
hard disk. The operating system is Ubuntu 20.04, JDK 
version is JDK1.8, Hadoop version is Hadoop 2.6.4, and 
Flink version is Flink 1.17. All algorithms are implemented 
using the Scala language. The dataset used in the experiment 
is shown in Table 2: 

Table 2 Dataset Introduction 

 
By setting different minimum support thresholds, a line 

comparison chart of the running time between the original 
Eclat algorithm and the DF Eclat algorithm proposed in this 
article was obtained under the dataset in Table 2. The x-axis 
represents the minimum support threshold, and the y-axis 
represents the running consumption time. The results are 
shown in Figure 2. 

 
Figure 2.Time Statistics in Mushroom Datasets 

Figure 2 shows a comparison of the runtime of two 
algorithms on a dense dataset called Mushroom. It can be seen 
from the graph that when the minimum support threshold 
value is smaller, both algorithms require longer runtime. 
Among them, the Eclat algorithm may experience memory 
overflow when the minimum support threshold value is less 
than 0.3, resulting in the program not running properly. The 
improved algorithm proposed in this article has a smaller 
minimum support threshold and higher efficiency in terms of 
runtime when facing this dataset. 

By setting different minimum support thresholds, the 
memory consumption histogram of the original Eclat 
algorithm and DF Eclat algorithm under the dataset in Table 2 
is obtained, and the results are shown in Figure 3. 

 
Figure 3.RAM Statistics in Mushroom Datasets 

Figure 3 shows a comparison of memory consumption 
between two algorithms on the dense dataset Mushroom. It 
can be seen from the figure that for both algorithms, the 
smaller the minimum support threshold, the larger the 
required computer memory. As the minimum support 
threshold increases, the required computer memory decreases. 
The DF Eclat algorithm proposed in this article outperforms 
the original Eclat algorithm in memory consumption, and the 
smaller the minimum support threshold, the better the 
performance of the DF Eclat algorithm in memory 
consumption. 

V. CONCLUSION 

This article proposes a parallel algorithm DF Eclat based 
on deep optimization pruning and Flink framework. DF Eclat 
first transforms transactional datasets, dividing frequent 
1-item sets into balanced groups, and then reassigns the 
records of the transformed dataset based on their prefixes. 
Records with prefixes in the same group will be distributed to 
the same computing node. DF Eclat uses an improved Eclat to 
process data with the same prefix. The experimental results 
indicate that DF Eclat has high scalability and good acce 
leration ratio. 

REFERENCES 

[1] R. Agrawal, T. Imieliski,and A. Swami, “ Mining association rules 

between sets of items in large databases,”  Proceedings of the ACM 

SIGMOD International Conference on Management of Data, ACM, 
Vol. 22. No. 2, 1993, pp. 207-216.  

[2] R. Agrawal, R. Srikant, “ Fast algorithms for mining association rules,

”  Proceedings of the 20th International Conference on Very Large 

Data Bases, VLDB. Vol. 1215, 1994, pp. 487-499. 

[3] J. Han, J. Pei, and Y. Yin, “ Mining frequent patterns without 

candidate generation,”  ACM SIGMOD Record. ACM, Vol. 29, No. 

2, 2000, pp. 1-12. 

[4] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “ New algorithms 

for fast discovery of association rules, ”  Proceedings of the 3th 

International Conference Knowledge Discovery and Data 
Mining,vol.97, 1997, pp. 283-286. 

[5] Z. F. Li, X. F. Liu, andX. Cao. “ A study on improved Eclat data 

mining algorithm,”  Advanced Materials Research, vol. 328, 2011. 

pp. 1896-1899. 
[6] B. Kotiyal, A. Kumar, B. Pant, R. H. Goudar, S. Chauhan, and S. 

Junee, “ User behavior analysis in web log through comparative study 

of Eclat and Apriori,”  Proceedings of 7th International Conference on 

Intelligent Systems and Control (ISCO). IEEE, pp. 421-426, 2013. 

Dataset 

name 

Number of 

transactions/piece 

Average 

physical 

length/piece 

Dataset 

size/kb 

Mushroom 8124 23 558 

http://www.ijerm.com/


 

DF Eclat: An Eclat Algorithm Based On Deep Pruning Optimization 

                                                                                              16                                                                                  www.ijerm.com  

[7] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, and W. Hide, 

et al., “ Big data: The future of biocuration” , Nature, Vol. 455, No. 

7209, 2008, pp. 47-50.  

[8] M. Ashrafi, T. Zaman, S. David, and S. Kate, “ ODAM: an optimized 

distributed association rule mining algorithm,”  Distributed Systems 

Online 1541-4922, IEEE, Vol. 5, No. 3, 2004, pp. 1-18. 

[9] X. Y. Yang, Z. Liu, and Y. Fu, “ MapReduce as a programming model 

for association rules algorithm on Hadoop, ”  Proceedings of 3rd 

International Conference on Information Sciences and Interaction 
Sciences (ICIS). IEEE, pp. 99-102, 2010. 

[10] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “ Parallel 

algorithms for discovery of association rules,”  Data Mining and 

Knowledge Discovery, Vol. 1, No. 4, 1997, pp. 343-373.  

[11] J. Yang, Y. Zhang, Y. Wei, “ An Improved Vertical Algorithm 

forFrequent Itemset Mining from Uncertain Database, ”  

InternationalConference on Intelligent Human-Machine Systems and 
Cybernetics.IEEE, Aug.2017, pp.355-358, doi: 
10.1109/IHMSC.2017.87. 

[12] S. Aggarwal and V. Singal, “ A survey on frequent pattern mining 

algorithms,”  Int. J. Eng. Res. Technol., 2014, pp. 86– 89. 

[13] C. C. Aggarwal and J. Han, Frequent Pattern Mining. New York, NY, 

USA: Springer, 2014, pp. 1– 17. 

 

http://www.ijerm.com/

	I. INTRODUCTION
	II. Background Knowledge
	A. Dataset Style
	B. Frequent Itemsets
	C. Eclat Algorithm

	III. Implementation of DF Eclat algorithm
	A. Deep pruning optimization
	B. Flink framework

	IV. Performance Evaluation
	V. Conclusion
	References

