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Abstract— Industrial and urban development has resulted in 

significant dust emissions in dry bulk cargo yards at ports, 

leading to environmental and health concerns. Timely and 

accurate detection of dust generation is essential for pollution 

prevention and control. However, current video-based dust 

detection methods encounter challenges with false alarms in 

complex environments. This study introduces a novel method 

that combines dynamic and static features to address this issue. 

The proposed method uses object detection techniques and 

introduces a new classifier based on Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm, 

augmented with an Adaptive Epsilon neighborhood 

(AE-DBSCAN), for extracting both static and dynamic dust 

features. Experimental results show that the proposed method 

high accuracy and real-time performance, making it suitable for 

complex open-air cargo yards. 

 
Index Terms— Dry Bulk Cargo Yards; Fugitive Dust; Fusion 

of Dynamic and Static Features; Video Dust Detection 

 

I. INTRODUCTION 

The operation of dry bulk cargo yards can emit a large amount 

of fugitive dust with an aerodynamic diameter ≤10μm 
(PM10), including emissions during loading, wind erosion, 

equipment transportation, and unloading processes[1]-[2]. 

Fugitive dust not only causes significant loss of coal materials 

but also may lead to serious air pollution problems in 

surrounding and other areas through long-distance 

dispersion[3]. Therefore, continuous and real-time 

monitoring of fugitive dust in dry bulk cargo yards are 

essential. Equipment such as oscillating microbalances, beta 

attenuation analyzers, and light scattering monitors are used 

to measure fugitive dust concentration and particle counts in 

open environments[4]. However, they are inevitably affected 

by distance, wind direction, and obstacles. Notably, visible 

dust plays a crucial role as an indicator of fugitive dust 

presence and some studies also suggest visual inspection of 

dust[5]-[6].Thus, practical dust visual detection can 

complement traditional concentration detection and to some 

extent improve the aforementioned problems.  

Much progress has been made in the field of dust detection in 

open environments based on video. Albatayneh et al.[7] 

developed a pre-trained Inception-v3 model to classify and 

evaluate road dust with a predictive accuracy of 72%. 

However, its applicability is limited as it can only categorize 

specific images as road dust. Li et al. [8]proposed a 
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four-category dust detection method based on the improved 

YOLOv4-tiny network for hopper unloading, but images of 

visible dust in dry bulk cargo yards are more complex than 

hopper coal dust images, leading to higher false alarm rates. 

Wang et al. [9] proposed a multi-object detection method for 

construction dust using DCN and Wise-IoU, which improves 

performance based on visible dust's non-rigid characteristics. 

However, there still exists a problem of false detection of 

targets with common features like water mist. In the field of 

video smoke detection similar to video dust detection, 

researchers have proposed methods that incorporate visual 

features like smoke motion, color, and texture to improve 

accuracy by reducing background interference. For instance, 

Zhang et al. [10] introduced a method based on changes in the 

smoke target area across multiple frames. However, this 

method does not account for changing dust shapes or 

simultaneous dust changes in multiple locations. Existing 

video dust detection methods suffer from frequent false 

alarms in practical applications due to diverse dust states in 

different environments and the difficulty in extracting dust 

visual features.  

In this regard, we developed a dataset of visible dust images 

with multi-angle information and proposed a method that 

fuses dynamic and static features to more comprehensively 

extract dust features from video, thereby improving the 

detection performance of visible dust. 

 

 
Fig. 1 Overall framework of the proposed method 

II. METHODS 

The proposed visible dust detection model in dry bulk cargo 

yards consists of two cascaded parts: a dust detector and a 

classifier based on the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) [11] algorithm, 
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enhanced with an adaptive epsilon neighborhood 

(AE-DBSCAN), as illustrated in Fig. 1. The dust detector 

initially processes the video input to extract static features for 

the first step of dust detection. However, false alarms may 

occur due to interference from dust-like objects such as  

clouds, sprays and shadows. Therefore, if a dust target is 

detected in the current frame (y1 = Yes), the output from the 

dust detector is utilized as input for the second-level 

classifier. The classifier analyzes the spatiotemporal dynamic 

characteristics of the current frame to reduce false alarms. If 

y2 = Yes, dust is detected, otherwise it is a false alarm. 

 

A. Dust Detector 

The YOLOv8[12] model is a state-of-the-art object detection 

algorithm that utilizes a deep neural network to efficiently 

identify and classify objects in images. We specifically 

adapted this model for the detection and localization of dust in 

dry bulk cargo yards. Among the five versions available 

(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x), we selected YOLOv8s considering factors such 

as computational speed, real-time performance, and accuracy. 

The YOLO algorithm is a single-stage object detection 

method consisting of three main components: a feature 

extraction network (Backbone), a feature fusion network 

(Neck), and an output detection head (Head). The Backbone 

employs convolution operations to extract features of various 

scales from RGB images in a bottom-up manner. The Neck 

incorporates feature fusion techniques like PAN (bottom-up 

path aggregation) and FPN (Feature pyramid networks) to 

enable effective fusion and utilization of feature layer 

information at different scales. The Head separates the 

classification and detection processes, generating 

classification and regression branches to obtain bounding box 

size and category confidence information. 

For each video frame Vt, YOLOv8s generates a set of 

detection results, including bounding box information 

denoted as: . Here, t represents the video 

frame Vt, i represents the i-th bounding box in the current 

frame, and x, y, w, and h represent the normalized coordinates 

of the bounding box's center point, representing the horizontal 

coordinate, vertical coordinate, width, and height 

respectively. 

 

B. Classifier based on the AE-DBSCAN Clustering 

Algorithm  

 

Fig. 2 Analysis of clustering of bounding box center points in 

consecutive frames using the AE-DBSCAN Clustering 

Algorithm. (a) illustrates the "weighted sum" results of 

consecutive frames with misclassified objects, while (b) 

displays the same results with dust. The clustering results of 

the centroids corresponding to the bounding boxes in (a) and 

(b) are visually represented in (c) and (d), respectively. 

Different colored dots in (c) and (d) indicate distinct classes. 

Fugitive dust, a continuous and dynamic phenomenon, 

exhibits significant distributional disparities between dust 

bounding boxes and false alarm bounding boxes obtained 

from successive frames using the dust detector. We address 

this issue by utilizing a "weighted sum" operation that 

combines N images while preserving pixel proportionality, as 

shown in Fig. 2(a) and Fig. 2(b). The intra-class distance of 

clustering serves as a reliable estimator for this distributional 

difference. Thus, we propose a classifier based on the 

AE-DBSCAN Clustering Algorithm. It clusters the center 

coordinates of bounding boxes in consecutive frames with an 

adaptive neighborhood threshold and computes the intra-class 

distance. 

The DBSCAN clustering algorithm is a density-based spatial 

clustering algorithm that partitions data points into clusters 

and identifies noise points (points not belonging to any 

cluster). It operates on the principle that each point in a cluster 

must have a minimum number of points within a specified 

neighborhood radius. Points are classified as core, boundary, 

or noise based on predefined epsilon neighborhood threshold 

(Eps) and minimum point requirements (MinPts). Given the 

distribution of dust bounding boxes is influenced by camera 

distance in 2D images, we propose an adaptive neighborhood 

threshold for the DBSCAN algorithm by using the width of 

the bounding box in the current frame. We set the value of 

MinPts to equal the number of neighboring frames. In Fig. 

2(c) and Fig. 2(d), MinPts was set to 5 and 20, respectively. 

Additionally, calculate intra-class distances using the 

Euclidean method to evaluate class density.  

Experimental findings indicate that the intra-class distance of 

dust center points typically exceeds 0.2. Therefore, the flow 

of the classifier as follows: (1) Derive the Eps from the width 

of the bounding box in the current frame. (2) Apply 

AE-DBSCAN clustering to the center coordinates of 

bounding boxes in the current and neighboring frames. (3) 

Calculate the intra-class distance. Dust is detected if it 

exceeds the 0.2 threshold; otherwise, it is classified as a false 

alarm. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

a) Datasets and Training Results 

The experimental data in this study were collected from the 

camera system at Tianjin Coking Wharf Limited. The dust 

detector dataset comprises diverse dust images with a 

resolution of 2560×1920. A total of 2311 images were 

collected, with 60% randomly selected for the training set and  

http://www.ijerm.com/


                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-11, Issue-01, January 2024 

                                                                                              13                                                                                    www.ijerm.com  

 

 
Fig. 3 Training Results of YOLOv8s 

 

 
Fig. 4 Confusion Matrix Figure 

 

the remaining 40% used as the test set. The video sequence 

dataset for the overall model consists of 24 clips with dust and 

53 clips without dust. Each clip lasts for 20 seconds at a frame 

rate of 1.25 fps, and each clip with dust contains at least one 

dust event. For training, 80% of the dataset was randomly 

selected for training, while 20% was used for testing. During 

the training process, YOLOv8s was trained with an input size 

of 640×640, a batch size of 16, a learning rate of 0.01, weight 

decay of 0.0005, and 140 epochs. Fig. 3 illustrates the training 

results of YOLOv8s, presenting the training and validation 

loss curves, as well as the accuracy, mAP, and recall curves. 

Additionally, Fig. 4 showcases the confusion matrix, 

summarizing the classification prediction results. The matrix 

indicates that 87% of the dust targets in the test set, 

accounting for 896 dust bounding boxes, were correctly 

detected. 

 

b) Evaluation Metrics 

The evaluation metrics used in the experiment are Accuracy 

(ACC), True Negative Rate (TNR), and True Positive Rate 

(TPR). We count the number of incorrectly identified video 

clips with dust (TP) and without dust (TN), as well as the 

number of video clips with dust (FP) and without dust (FN). N 

is the total number of video clips. The formulas for these 

metrics are: 

A ( ) /CC TP TN N   (1) 

TNR / ( )TN TN FP     (2) 

TPR / ( )TP TP FN      (3) 

ACC measures the proportion of correctly identified video 

clips out of the total number of video clips, providing an 

overall measure of the algorithm's performance. TPR 

measures the algorithm's effectiveness in accurately 

identifying video clips with dust, while TNR evaluates its 

ability to accurately identify video clips without dust. These 

metrics are widely recognized and enable precise evaluation 

of the algorithm's performance, facilitating meaningful 

comparisons with other state-of-the-art approaches in the field 

of Computer Vision. 

 

c) Experimental Results  

The experimental results based on the video sequence dataset 

are shown in Table 1. Compared to the recognition method 

using the general object detector YOLOv8s, our proposed 

dust detection method based on the fusion of dynamic and 

static features achieved a significant improvement in 

accuracy, reaching 93.5%. The true positive rate increased 

from 62.5% to 91.3%. This indicates that the dynamic 

features of dust can effectively complement the static features 

and solve the problem of high false detection rate in complex 

backgrounds. 

For a detailed comparison of the experimental results, refer to 

Fig. 5. The first and third rows represent the detection results 

of the dust detector, while the second and fourth rows 

represent the detection results of the proposed detection 

framework. It can be observed that in frame 20, 27, and 33 of 

control group 1, and frame 5, 7, 8, 9, and 14 of control group 

2, the dust detector mistakenly identified rain stains and 

shadows as dust. However, the proposed framework can 

timely correct these false detections using dynamic features, 

resulting in effective detection results. From a subjective 

visual perspective, the accuracy of video-based detection has 

been significantly improved. 

 

Table 1 Comparison of the evaluation metric results 

Method T

P 

FP T

N 

FN ACC TNR TP

R 

YOLOv8s 20 4 41 12 79.2 91.1 62.5 

Our 21 3 51 2 93.5 94.4 91.3 

 

 
Fig. 5 Comparison of two sets of experimental results 

 

IV. CONCLUSION 

Fugitive dust emissions from bulk cargo yards at port 

terminals pose serious environmental and health risks to 

residents. Accurate real-time detection of dust is essential for 

effective control of such emissions. However, existing 

vision-based dust detection methods are prone to false alarms 

in practical applications. To address this issue, we propose a 

video-based dust detection method that combines dynamic 

and static features. Our model uses the YOLOv8 network, 

which delivers fast detection speed and high accuracy, while 
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incorporating a classifier and DBSCAN clustering with an 

adaptive neighborhood threshold to verify detection results 

using multi-frame information. Experimental results 

demonstrate that the proposed method effectively 

complements static features with dynamic features of dust. It 

ensures real-time dust detection, reduces false detections in 

non-dust videos, and maintains a high detection rate for dust 

events in videos containing dust. This method presents new 

ideas and approaches for developing dust detection 

technology and contributes to the scientific prevention and 

control of dust pollution. 
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