International Journal of Engineering Research And Management (IJJERM)
ISSN: 2349- 2058, Volume-11, Issue-02, February 2024

Stability Analysis for Discrete-Time Stochastic Neural
Networks with time-varying delays

Xinran Ding

Abstract— This article investigates the stability analysis of
discrete-time stochastic neural network systems with time-
varying delays. In this neural network model, delays are time-
varying. By establishing a new set of Lyapunov Krasovskii
functionals and applying relevant lemmas, a criterion for
robust global exponential stability related to delays in discrete-
time stochastic neural network systems with time-varying
delays is proposed, and presented in the form of linear matrix
inequalities (LMIs), Transform the stability analysis problem
to be solved into a feasibility problem for a set of linear matrix
inequalities, and finally perform numerical validation using
MATLAB to prove the effectiveness of the proposed method.

Index Terms—Discrete-time neural networks, Linear
matrix inequality, Lyapunov-Krasovskii functional, Robust
exponential stability, Stochastic neural networks.

I. INTRODUCTION

In recent years, research on the theory and application of
neural networks has attracted the attention of many scholars
at home and abroad. With the continuous deepening and
development of research on neural networks, neural
networks have been widely applied in many disciplines such
as natural language processing, computational optimization,
computer vision, biological signal detection, financial risk
assessment, etc. [1-6]. The successful application of neural
networks in various fields is inseparable from the study of
neural network  dynamics, including stability,
synchronization, periodicity, bifurcation, chaos, etc. The
stability of neural network systems plays a crucial
prerequisite in practical applications, so research on such
problems has received much attention [7-10].

It is worth noting that in the current research on neural
networks, the attention to continuous time systems is much
higher than that of discrete-time systems. However, in
practical engineering applications and production life,
compared to continuous time systems, discrete-time neural
network systems are more important [11]. Due to the
countable nature of discrete systems, precise mathematical
models can be used for modeling. In addition, when
simulating a continuous time neural network, it is necessary
to construct a discrete-time neural network similar to a
continuous time neural network [12-15]. Therefore, based
on the above reasons, the study of discrete neural network
systems has attracted increasing attention from researchers
and has achieved some theoretical results [16-19]. Tan et al.
[20] derived sufficient conditions for robust exponential
stability of discrete quaternion neural networks with time

Manuscript received February 24, 2024
Xinran Ding, School of Software Engineering, Tiangong University,
Tianjin, China,

17

delay and parameter uncertainty using methods such as the
compression mapping theorem; Chen et al. [21] proposed an
improved cross convex inequality and studied the stability
criteria for a time-varying time-delay discrete neural
network system; Liu et al. [22] studied the global
exponential stability problem of a class of discrete memory
recurrent neural networks with time-varying delays.
Although there has been an increase in research on discrete
neural network systems, there is still insufficient research on
continuous neural networks, and there is still a lot of
research space on how to obtain lower conservatism for
stability criteria of discrete-time neural network systems.

In real neural networks, synaptic transmission is a noisy
process caused by random fluctuations in neurotransmitter
release and other probabilistic factors. In practical
applications, neural network systems are often subject to
complex external random disturbances. It is necessary to add
a certain degree of randomness in modeling to more
accurately describe the system. We can consider it as a type
of random input. Random disturbances are also one of the
main reasons for the deterioration of system stability.
Therefore, the analysis and research on the stability of
stochastic neural network systems have important practical
significance. Currently, many related literature has been
published both domestically and internationally, as shown in
[23-26]. To the best of the author's knowledge, most of the
system models studied in existing literature are continuous
stochastic neural network systems, and there is relatively
little research on stability analysis of discrete stochastic
neural network systems. This type of problem still deserves
further investigation.

The phenomenon of time delay is widely present in various
practical systems such as computers, chemical engineering,
machinery, aerospace, etc. Any small changes in signal
transmission, operating environment, input conditions, etc.
in the system will cause the generation of time delay, so the
phenomenon of time delay is almost unavoidable. In order
to make the model closer to the actual system and better
apply the results to practical engineering, researchers have
proposed the concept of time-delay systems, which means
that the trend of system changes is related to both the current
state and the previous state. The existence of time delay is a
double-edged sword. On the one hand, in some systems,
time delay can be used to improve system stability; On the
other hand, in most cases, the existence of time delay is the
root cause of the deterioration of system dynamic
performance, so studying the stability of time-delay systems
has very important practical significance. There are already
many theories both domestically and internationally [27-29].
Sun et al. [30] used Brouwer's fixed point theorem,
quaternion numerical variation parameters, and other
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methods to study the existence and stability of equilibrium
points in quaternion numerical recurrent neural networks
with time-varying and distributed delays; Zhang et al. [31]
provided stability criteria for high-order neural networks
with unbounded time-varying proportional delays; Mahto et
al. [32] provided two delay related stability criteria for
neural networks with time-varying delays in the form of
linear matrix inequalities. The conclusions of time delay
stability can be divided into two types: time-delay related
and time-delay independent, with time-delay related having
relatively small conservatism. To the best of the author's
knowledge, there are few conclusions on the stability
analysis of discrete-time stochastic neural network systems
with time-varying delays in the existing literature, and it is
still an open problem worthy of attention.

Based on the consideration of the above reasons, this paper
investigates the stability analysis of discrete-time stochastic
neural network systems with time-varying delays. By
constructing a new set of Lyapunov Krasovskii functionals,
and in order to reduce the conservatism caused by the
introduction of Lyapunov Krasovskii functionals, a set of
free weighted matrices is also introduced. Through some
inequalities Schur's lemma and others derive robust global
exponential stability criteria for time-delay related discrete
stochastic neural network systems with time-varying delays.
The above criteria are given in the form of linear matrix
inequalities (LMI), so it is easy to obtain the relevant
parameters through the LMI toolbox in MATLAB. The
effectiveness of the proposed method is verified through
numerical examples.

Notation In this article, R™ represents an n-dimensional
Euclidean space; diag{...} represents a block diagonal
matrix; the superscript ‘T’ indicates transpose; the
superscript ‘-1’ represents the inverse operation of the
corresponding matrix; E[] representing mathematical
expectation operators; ||-|| representing the Euclidean vector
norm; [ representing the identity matrix of appropriate
dimensions; A4, (+) represents the maximum eigenvalue;
the symbol ‘*’ indicates an omitted term caused by
symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

In a complete probability space (€1, T, P), consider a time-
varying time-delay discrete stochastic neural network
system model with the following form:

x(k + 1) = Ax(k) + Bx(k — h(k)) + Cf (x(k))
+Df (x(k - h(k)))
+o(x(k), x(k - h(k)), Bw(k))
x(k) = ¢(k),k = [_hMIO]

Where  x(kK) = [x;(k), x,(k), x3(k), ..., x,(kK)]TeR™ ,
(k=1,2,...) represents the state vector of the neuron, and
¢ (k) is the initial function of the above state vector;
Matrices A, B, C, and D are some constant matrices with
appropriate dimensions, where A = diag(a,, a,,as, ...,a,)
is a real constant diagonal matrix with appropriate
dimensions, represent the state feedback coefficient matrix,
constant matrix C = [ci f]nxn represent the connection

)

weights matrix, constant matrix D = [d] represent the
Ylnxn
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delayed connection weights matrix;

f(x(k)) =
[ (), fo(22(0)), fs(x3(K)), s S (2 (R))]” and
g (x(k— 1)) = [g1 (1 (k ~ h())), g2 (2 (k -

T
h(K))), g5 (x3(k = h(KD)) ., Gu (2 (k = RCK)))|
represent the activation function of neurons; The time-
varying delay h(k) is a positive integer that satisfies the
following conditions:
0<h,<hk) <h, 2
where h,,,, h), are known normal number; w(Kk) is a scalar
Wiener process on (Q, ', P) with
Elw(®)] =0, E[w?*(K)] = 1, E[o(Dw()] = 0G # /)

We make following assumptions for the neuron network
(1.
Assumption 1. §:Z X R™XR"™ - R"
following assumption:
o (x(k), x(k — h(k)), k)a(x(k), x(k — h(k)), k) <
prxT(k)x(k) + poxT (k — h(k))x(k — h(k)) (3)
where p,, p, are two known normal scalar numbers.
Assumption 2. For any i=1, 2, 3, ..., n, and any &, §,, with
known constants cl-+ , ¢ , such that:

o< fi(ﬁ):fi(sz) < Ci+! fL(O) =0 4
§1-%2

where & #&,, ¢f¢f =20, §,& €ER
activation functions f;(*) is continuous
functions.

For the convenience of representation, the following
definitions are made in this article:

satisfying  the

The neuron
and bounded

— di +o— = = + -
L, = diag(c{cy,cfcy,cics,....chiey)
) i+l cF+c; cf +c5 o+,
L, = diag > , 5 > ) ey >

,Cn)

L, = diag(cit+ci,cf +c5,¢f +c3, 0 +¢c7) (B

Ly =diag(cy,c5,¢3, ..

The following lemmas and definitions are essential in
proving the main theorems.
Lemma 1. (Schur complement) For a given symmetric

matrix A,
_ A11 A12>
A= ( * Ay
The following three propositions are equivalent:
1)A <0;

2)A;; <0,4,, — AT,ATLA,, < 0;
3) Ay < 0,411 — A A7 AT, < 0;
Lemma 2. [33]. For any integers b = a, constant matrix

GERY , G=GT"=>0, vector function ¢:{a,a+
1,...,b} = R™, so that we can easy to get that

b b b
~B-a+ 1)) ¢TO6eM = - MG p(1)

Definition 1. [34] Consider system (1), if there are constants
a>0 and 1<b<0 such that each solution of system (1)
satisfies:

Ellx()|I? < ab® sup E|x@)|?, vk =0

i=[—hpm,0
The system (1) is said to be robust exponentially stable.
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III. MATH

In this section, we investigate the stability analysis of
discrete-time stochastic neural network systems with time-
varying delays (1) and give a criteria, guaranteeing the
robust exponential stability of system (1).

Firstly, we prove the asymptotical stability of system (1).
Theorem 1. Under the condition that Assumptions 1 and 2
hold, for given scalars h,, and hy, , satisfying (2) ,the neural
network systems (1) is asymptotical stability, if there exist
positive definite matrixs P, Q, S;,S,, Uy, Uy, Ky, K, any
matrices Xij (=1, 2, 3; j=1, 2, 3, 4) with appropriate
dimensions and scalar A* > 0, such that the following LMI
hold:

;:[*1 5§]<° (6)
P<AT (7)

where

In

* * O Oe7

H
Il
% % ¥ ¥ x %

*
* * 055 Os6 U5
*
*

=0T 6 of 6 0o o0 o0]"
&y = diag(—huS1, —n(51 + 52), —nS3)

0., =ATPA—P+(m+1)Q +Xpl —2(n+ VL' K,
+2M+ DL Ky + Xy + X, — Ly + U,
- U1T

012 = ATPB — X171+ X12 + X510 — X34

613 = X{3+X3; + Uy

614 = —Xp1 + XTI,

015 =(A—-DTP

016 = ATPC+ (n + DK] —2(n + DK + L,

61, = ATPD

0, = BTPB — Q + 2L;" K, — 2L,"K, — X1, — X1, + X5,
+ X35 + A pal — Ly — X35 — X3,

023 = —X13 + Xp3+X3; — X3T3

024 = X2z — X3T4 + X34 — X1,

6,5 = BTP

6,6 = BTPC

6,7, =BTPD — KT + K] + L,

033 = X33 + X33 — Uy

O34 = —X3 + X3T4

Bas = —Up — X34 — X34

Oss = —2P + hyS; + 1S, + h2,U;

Os¢ = PC

19

B¢ = CTPC — 1

8¢; = CTPD

6,, =DTPD — I

0, = [hyX11 1Xy1 1X3]

0, = [huX12 1Xz2 1X3]

05 = [AnX13 1X23 1X33]

04 = [hyX1a 1Xzs 1X34]

X = [Xﬂ sz XI3 X1T4 0 o0 o]f
Xy = [X;1 ng Xg3 ng; 0 0 o]f
X3 = [X§1 ng X§3 X§4 0 0 o]f

Proof. Construct the following Lyapunov Krasovskii
functional for discrete neural network systems with time-
varying delays (1):

{CEDWACEG

where
V,(k) = xT (k) Px (k)
k-1
B = D KT Hex®
i=k-h(k)
—hm k-1
Va0 = > T (ex()
i=—hp+1 j=k+i
- k-1
= Y D e (Siel)
i=—hp j=k+i
—hm-1 k-1

I = Y et (Se()

i=—hpy j=k+i

Vs(k) = hy Z kz eT (Dre()

i=—hpy j=k+i
k-1
V,(k) = xT (DU,x(D)
k-1
Vo(k) = 2 [f(x@) = Lsx ()] Kyx (D)
i=k—h(k)

i=—hp+1 j=k+i

— Lyx ()] Ky x ()
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k-1
Vo(k) =2 [Lex(@) = F(x )] Kox(0)
i=k—h(k)
—hm k-1
+2 [Lyx(D)
i:—%:,,u j:zk-H'
— ()] Kox (D)
We defined:

e(k) =x(k+1) —x(k) €))
= hy — hp (10)

By performing forward differentiation along the
solution of (1), we can obtain:

7
AV (k) = Z AV () (11)
AVi(k), (i=1,2,3,4,5,6,7), the calculation results are as
follows:
AV (k) = xT(k + 1)Px(k + 1) — x" (k) Px (k)
= [Ax(k) + Bx(k — h(k)) + Cf(x(k))
+ Df (x(k = h(k)) )I™P [Ax (k)
+ Bx(k — h(k)) + Cf(x(k))
+ Df (x(k — h(K)))]
+ [o(x(k), x(k
— h(k)), k)w(k)]"P[a(x(k), x(k
— h(k)), k)w(k)] — xT(k)Px (k)
From Assumption 1 and equation (7), it can be concluded
that

[o(x(k), x(k — h(k)), K)w (k)] TP[o(x(k), x(k
— h(k)), k)w (k)]
< Anax(P) [O'(X(k), x(k
— h(k)), )w (k)] [o(x(k), x(k
— h(k)), k)w (k)]
< 'pyxT(k)x(k) + 2" pxT(k — h(k))x(k — h(k)),
so that
AV, (k) < [Ax(k) + Bx(k — h(k)) + Cf(x(k))
+ Df (x(k = h(k)) )I"P [Ax ()
+ Bx(k — h(k)) + Cf(x(k))
+ Df (x(k = () )| + 22T ) x ()
+ 2poxT(k — h(k))x(k — h(k))

— xT(k)Px(k) (12)
k

k-1
AV, (k) = xT([DQx(@) — xT (DQx(®)

i=k—h(k+1)+1 i=k—h(k)
k-1

= xT(k)Qx(k) + xT () Qx (i)
i=k—h(k+1)+1

—xT(k — h(k))Qx(k — h(k))
k-1
- D A0

i=k—h(k)+1

< xT(k)Qx (k) — x"(k — h(k))Qx(k — h(k))
k—hm

+ Z T @D0x@  (13)

i=k—hp+1

20

—hm k
NAGEND YW ORI
i=—hp+1 j=k+i+1
—hm k-1

- ) ) A (ex)

i=—hp+1 j=k+i

—hm
= > [KT00x(0) — xT(k + DQx(k + D]
i=—hp+1 Kt
= (0 Qx () - DX (14)
i=k—hp+1

-1 k

W= )Y (S0

i=—hpy j=k+i+1
-1 k-1

DERRONT0

i=—hp j=k+i
-1 k k-1

= Z [ Z eT(NSe()) — Z e (NS e()]

i=—hpy j=k+i+1 j=k+i
k-1
= hye"0)Sie) = > eTDS,e() (15)
i=k—hp

—hm-1 k

AVs(k) = Z Z e"(NS.e()

i=—hpy j=k+i+1
—hm—-1 k-1

DAL

i=—hp j=k+i
—hm-1 k k-1

= Z [ Z eT(NS,e(j) — Z eT(NS,e ()]

i=—hp j=k+it+1 j=k+i
k—hpm—1

=" (5,600~ Y eTDS,e()  (16)
i=k—hpy

For the convenience of subsequent processing, organizing

the accumulated part of AV, (k) and AV(k) can obtain:
k-1

= D @Siel)

i=k—hpy
k—h(k)-1 k-1

=-[ ) FTOSe+ ) T@Sie(] (7)
i=k—hpy i=k—h(k)

k—hm—1

= ) TOS:e0)

i=k—hpm
k—h(k)-1 k—hm—1

=-[ ) OSe(D+ ) TWS,e()] (18)
i=k—hpy i=k—h(k)

Combine (17) and (18), we can obtain:
k-1 k=hm—1

= D TS~ Y T Se()

i=k—hpy i=k—hp
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k—h(k)-1
== ) TOG +5)e0)
i=k—hpy
k-1
= ) @Se))
i=k—h(k)
k—hm—1

= ) DSe() (19)

i=k—h(k)

-1 k
Vo) =h Y > €T (DUse()
i=—hp j=k+i+1
-1 k-1

LD IHOLIAT)

i=—hpy, j=k+i
-1

= hp, Z [eT(k)Use(k) — eT(k + i)Use(k + 0]

=y
k-1
= h, 2T (k) U,e(k) — hy, Z eT(DU,e(i)
i=k—hp
Combine with Lemma 2, we can get:
k-1
Y OV
i=k—hp
k-1 k-1
-1 ) @I ) e

i=k—hp i=k—hm
< —[x(e) = x(k — hp)] Uy [x (k) — x(k — hyp)]
so that:
AVi(k) < hy*eT (k) Uy e (k) —[x(k) — x(k — hy,)]"Uy [x (k)

—x(k — hy)] (20)
k k-1
AV, (k) = T (U, (i) — Z T (D) U,x ()
i=k—hp+1 i=k—hp
=xT(K)Uyx(k) — xT(k — hy)U,x(k — hy) (21)
k—1
AVy(k) = 2 [f(x(®) = Lsx(D] Kix (D)

i=k+1—h(k+1)

+2[f(x(k)) = Lyx(k)] Kyx (k)
k+1-hy K

+2 Z Z[f(x(j))

i=k—hp+2 j=i

— Lyx ()] Kx()
k-1

-2 Z [£ (x()) = Lyx ()] Kyx (D)

i=k+1—h(k)

—2[f(x(k)) = Lyx(k)] Kyx (k)

k=hm k-1

—2 ) YD)

i=k—hy+1 j=i
— Lix()]" Kyx()
< 2+ D[f (x(0) = Lox (k)] Kyx () — 2[f (x(k —
h(k))) — Lyx(k — h(k)] Ky x(k — h(k))  (22)

21

k-1
AV, (k) = 2 [Lox(D) — F(x®)] Kox (i)
i=k+1-h(k+1)

+ 2[Lyx (@) — £(x(D)] Kpx (k)

k+1-hym K
+2 Z Z[L4x(i)
i=k—hp+2 j=i

— F(x@®)] K2 ()
k-1
-2 Z [Lax(D) — F(x(@D)] Kox (i)

i=k+1—h(k)

— 2[Lyx (@) — £ (x(D)] Kpx (k)

k—hm k-1
-2 Z Z[L4x(i)
i=k—hp+1 j=i
— F(e)]" Kox ()
< 200 + D[Lyx(0) — F(x ()] Kpx (k) — 2[Lyx(k —
h(k)) = £ (x(k — h())] Kox(k — h(k))  (23)
Combine (12)-(23), we can easy to obtain:
AV (k) < [Ax(k) + Bx(k — h(k)) + Cf (x(k))
+ Df (x(k - h(k)))]TP [Ax(k)
+ Bx(k — h(k)) + Cf(x(k))
+ Df (x(k = h(k)) )| + xT (O (U, — P
+ A +(m+1Q —2(n+ LK,
+2(n + 1)LLK, ]x (k)
+xT(k — h(k))(X"p, — Q + 2LEK,
— 2L K)x(k — h(k))
—x"(k — hp)Upx(k — hyy)
+ eT(k) (hyS; + 1S,
+ hy*Up)e(k)—[x (k)
= x(k — hy)]"Uy [x (k) — x(k — hyp)]
+ f(x(R)[2(n + DK, — 2(n
+ DKy Jx(k) + f(x(k — h(k)))[-2K;
— 2K, ]x(k — h(k))
k-h(k)-1
= D DG +5)e0)

i=k—hp
k-1

= ) T@Sie)
i=k—h(k)
k—Ryp—1
SDIRHOR0
i=k—h(k)
(24)
We defined
a’(k) = [xT(k) xT(k—h,) xT(k—h(k) xT(k
—h) fT(0G0) fT(x(k = h(K)))]

According to the definition of e (k), it can be inferred that:

k-1
0 = x(k) — x(k — h(k)) - e (25)
i=k—h(k)
k—h(k)-1
0 = x(k — h(k)) — x(k — hyy) — Z e (26)
i=k—hy
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k=hp—-1
0 = x(k — hy) — x(k — h(k)) — e(i)
i=k—h(k)
0 = (A—Dx(k) + Bx(k — h(k)) + Cf(x(k))
+Df (x(k = h(k))) — e(k) (28)
Combine (25)-(28), for any matrix of appropriate
dimensions X;; (i=1, 2, 3 ; j=1, 2, 3, 4), the following
equation always holds:
2[xT )Xy + xT(k = hyp)Xqp + xT(k — h(k))X13
+ xT(k = hp)Xq4] X [x(k)

k-1

(27)

—x(k = h(k)) - e(]

i=k—h(k)
=0 (29)
2[xT(k)Xp1 + xT(k — hyp)Xpp + xT(k — R(k))X,3
+ xT(k — hy)Xz4] X [x(k — h(K))
k-h(k)-1

—x(k=h) = Y e

i=k—hpm
—0 (30)
2[xT(k)X31 + xT(k — hpy)X3, + xT(k — h(k))X33

+xT(k — hy)X34] X [x(k = hyp)
k=hm—1

—x(k = h(k)) - e(]

i=k—h(k)

=0 (31)
2eT(K)P[(A — Dx(k) + Bx(k — h(k)) + Cf(x(k))

+Df (x(k — h(k))) — e(k)] = 0 (32)

From Assumpution 2, we can easily obtain follows with

i=1,2,3,.,n:
(fiCai (k) — e % () (fi(xi(k)) — ¢ x; (k) < 0
So that:
Z (fitxi (k) — e x (k) (i (k) — i x; (k)

<0 (33)

Similarly, it can be inferred that:

Z (fiCxi(k — h(k))) = c;x;(k = R(K)DT (fi (i (k

— h(k))) — ¢ x;(k — h(k))) <0 (34)
Combining (33) and (34):

22

0= —Z (fiCxi (k) — ¢ (k)" (fi (xi (K)) — €7 %))

- Z (fiCei(k = h(k))) — c; x;(k

— ()" (fi (i (k = h(k)) — ¢ xi(k
= h(k)))
0 < =x"(k)Lyx (k) — fT (x(k))f (x (k)
+ 2xT (k)L f (x(k)) — xT (k
— h(k))Lyx(k — h(k)) — fT(k
— h(k)f(k — h(k)) + 2xT(k
— h(k))L,f (x(k — h(k)))
(35)
According to (24) - (32) and (35), the following inequality
holds:
AV (k) < aT(k)[E, + hy X STIXT + X, (S, + Sp) X7

+nX38; X3 Ja(k)
k-1
- Z X{a(k) + S;e(D))"STH(XT a(k) + S;e(i))
i=k—h(k)
k—-h(k)-1

- Z (XZa(k) + (S1 + S2)e()" (51 + S) M (X a(k)

i=k—hy
+ (81 + S2)e(d)
k—hpm—1

- Z (X3 a(k) + S,e(D)"S71 (XTa(k) + S;e(D)
i=k—h(k)
(36)

According to Lemma 1, equation (6) is equivalent to:

L+ hy X STXT + X, (Sy + S5)71XT +nX3S;1XT <0
(37

Therefore, there exists a sufficiently small scalar € < 0
that:

AV < —¢|lx(®)|I? <0 (38)

This means that the discrete-time stochastic neural
network system with time-varying delays (1) is
asymptotically stable.

Next, we will further proof the robust exponential
stability of system (1).

According to the definition of V(k) (8), it is easy to obtain:
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V(k) < Amax (PYIIx()|I?

k-1

ta )OI

j=k—hpm
k-1

+a Y IxG+ DI
j=k-hpm
(39)
where
q: = Amax(Ul) + (77 + 1)Amax(Q) + 2hM)'max(Sl + SZ)
+ 2hzrl)lrnax(UZ) + 2(77 + 1) [Amax(L3K1)
+ Amax(L4K2)]
q; = 2hMA-max(Sl + SZ) + Zhrznﬂ-max(UZ)
For any y > 1, combine equations (38) and (39), it can be
obtained that:
YRV @i+ 1) —y V@) = YAV Q) + i - DV ()
< [~er + (¥ = Dnax P)WY'IxOII* + (v
i-1
~Dlay' ) IO
j=i-hm
i-1
+art Y IxG + DIP]
Jj=i-hym
(40)
Existence of any integer T = hy, +1/, accumulate from 0
to T-1 on both sides of the above equation to obtain
T-1
YV(T) =V (0) < [—ey + (¥ — DAmax (P)] Z Yllx (@1
i=0
+(
i-1

- Dlg TZ . VIO

i=0 j=i—hpy
T-1 i-1
+0, ) D VIRG +DIP)
i=0 j=i—hy
(4D

According to [36]. , the two cumulative terms in equation

(41) can be calculated separately to obtain:
T-1 i-1
> ViEOI?
i=0 j=i—hy
-1 Jj+hm T—1+4hp j+hy

SPIDIEDNPIE

j=—hm i= j=0 i=j+1

Tzl Z VDI

j=T—-hp i=j+1
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<hjy™ sup [x()|?

j=[-hm.0]

* hMy"MZ PIRDIP  (42)

T-1 i-1
D VIRG+ DI? kit sup [x()I
i=0 j=i—hp J=[=hm.0]
T
+hyy™ Y Yl (43)
Jj=1

From equation (39), it can be concluded that

V(0) < [Amax(P) + hu (g1 + 2)] Supj=j-ny, 011X DI
(44)

By combining equations (39) - (43), it can be concluded
that

T
YV < 51(Y)zyj||x(i)||2 +B.(r) sup lIx(DII?
= Jj=[-hm.0]

(45)
where
Bi(¥) = (¥ = DAnax(P) —ve + (@1 + 4) (¥ — Dhyy™
B2(¥) = Amax(P) + hy(q1 + q2) + (41 + q2)(¥
— Dhjyy™™
In addtion, for f;(1) =-¢<0,

there must exist a

positive scalar y, > 1 that makes S, (y,) < 0, thus
V(D) < Bo(o) GO supj=iony ol IXODIP  (46)
From the definition of V (k), it can be obtained that
V(T) 2 Ayin (PYIx(DII* (47)
Combining (45) - (47), it can be concluded that:

(T2 < 200 T supj oy o IXDI? - @8)
This means that the discrete-time stochastic neural
network system with time-varying delays (1) is robust

exponentially stable.

IV. NUMERICAL EXAMPLE

In this section, two numerical examples are provided to
demonstrate the effectiveness of the proposed criterion for
discrete-time stochastic neural network systems with time-
varying delays (1).

Example 1. Consider a neural network system (1) with the
following parameters

04 O 0 0.02 0 0
A=[0 02 O le 0 0.03 0.1]

0 0 045 0 0.055 -01

04 025 0 0 0.2 0.01
C=| 0 -0.015 -0.02|D=|0.2 0.01 0.1]

0.1 0.02 0.01 0.2 -04 0.03
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100
I={o 1 ol py =001 p, =002
001

The activation function is described as:

fi1(s) = tanh(0.6s), f2(s) = tanh(—0.4s),
f3(s) = tanh(—0.25);

Based on the above parameters, it is easy to obtain:

0 0 0 03 0 0
Ly=[0o o olL,=|0 -02 o0

0 0 0 0 0 -01

0 0 0 06 0 0
L,={0 —04 o0 |[L,=|0 -04 0

0 0 -02 0 0 —02

By using the LMI toolbox in MATLAB, the following
feasible solutions can be obtained by solving (6) and (7), a
more details about hy, given in Table 1. :

2.1181 0.0844 0.2751
P =10.0844 2.2083 —0.2225
0.2751 -0.2225 1.2859
0.0237 0.0152 0.0178
Q =(0.0152 0.1476 —0.0516
0.0178 -0.0516 0.0953
0.0858 0.0040 0.0231
§; =10.0040 0.0525 0.0132
0.0231 0.0132 0.0516

0.1529 0.0013 0.0353
S5, =10.0013 0.0663 0.0177
0.0353 0.0177 0.0676

0.0961 —0.0050 0.0197
U; =1-0.0050 0.0253 0.0066
0.0197  0.0066 0.0261
Table 1. Calculated upper bound h,, for given h,,.
h,, 2 3 6 1 1
0 5
Theorem 1. 8 9 1 1 2
1 5 0
0.1441 —0.0076 0.0325
U, =1-0.0076 0.0496 0.0102
0.0325 0.0102  0.0408
0.1876 —0.0059 —0.0154
K, =1-0.0059 0.0418  0.0515
—0.0154 0.0515 0.0753
0.0950 —0.0029 -0.0075
K, =(-0.0029 0.0273 0.0228
—0.0075 0.0228  0.0345
A" =2.3026

Therefore, according to Theorem 1, a neural network system
(1) with given parameters is robust globally exponentially
stable.

V. CONCLUSION

This paper investigates the stability problem of discrete
stochastic neural network systems with time-varying delays.
By constructing a new set of Lyapunov Krasovskii
functionals, sufficient conditions for robust global
exponential stability related to delays in discrete stochastic
neural network systems with time-varying delays are
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proposed, and presented in the form of linear matrix
inequalities (LMlIs). Finally, the effectiveness of the
proposed method is verified through numerical examples.
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