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Abstract— This article investigates the stability analysis of 

discrete-time stochastic neural network systems with time-

varying delays. In this neural network model, delays are time-

varying. By establishing a new set of Lyapunov Krasovskii 

functionals and applying relevant lemmas, a criterion for 

robust global exponential stability related to delays in discrete-

time stochastic neural network systems with time-varying 

delays is proposed, and presented in the form of linear matrix 

inequalities (LMIs), Transform the stability analysis problem 

to be solved into a feasibility problem for a set of linear matrix 

inequalities, and finally perform numerical validation using 

MATLAB to prove the effectiveness of the proposed method. 

 
Index Terms—Discrete-time neural networks,  Linear 

matrix inequality, Lyapunov-Krasovskii functional, Robust 

exponential stability,  Stochastic neural networks.  

 

I. INTRODUCTION 

  In recent years, research on the theory and application of 

neural networks has attracted the attention of many scholars 

at home and abroad. With the continuous deepening and 

development of research on neural networks, neural 

networks have been widely applied in many disciplines such 

as natural language processing, computational optimization, 

computer vision, biological signal detection, financial risk 

assessment, etc. [1-6]. The successful application of neural 

networks in various fields is inseparable from the study of 

neural network dynamics, including stability, 

synchronization, periodicity, bifurcation, chaos, etc. The 

stability of neural network systems plays a crucial 

prerequisite in practical applications, so research on such 

problems has received much attention [7-10].  

It is worth noting that in the current research on neural 

networks, the attention to continuous time systems is much 

higher than that of discrete-time systems. However, in 

practical engineering applications and production life, 

compared to continuous time systems, discrete-time neural 

network systems are more important [11]. Due to the 

countable nature of discrete systems, precise mathematical 

models can be used for modeling. In addition, when 

simulating a continuous time neural network, it is necessary 

to construct a discrete-time neural network similar to a 

continuous time neural network [12-15]. Therefore, based 

on the above reasons, the study of discrete neural network 

systems has attracted increasing attention from researchers 

and has achieved some theoretical results [16-19]. Tan et al. 

[20] derived sufficient conditions for robust exponential 

stability of discrete quaternion neural networks with time 
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delay and parameter uncertainty using methods such as the 

compression mapping theorem; Chen et al. [21] proposed an 

improved cross convex inequality and studied the stability 

criteria for a time-varying time-delay discrete neural 

network system; Liu et al. [22] studied the global 

exponential stability problem of a class of discrete memory 

recurrent neural networks with time-varying delays. 

Although there has been an increase in research on discrete 

neural network systems, there is still insufficient research on 

continuous neural networks, and there is still a lot of 

research space on how to obtain lower conservatism for 

stability criteria of discrete-time neural network systems. 

In real neural networks, synaptic transmission is a noisy 

process caused by random fluctuations in neurotransmitter 

release and other probabilistic factors. In practical 

applications, neural network systems are often subject to 

complex external random disturbances. It is necessary to add 

a certain degree of randomness in modeling to more 

accurately describe the system. We can consider it as a type 

of random input. Random disturbances are also one of the 

main reasons for the deterioration of system stability. 

Therefore, the analysis and research on the stability of 

stochastic neural network systems have important practical 

significance. Currently, many related literature has been 

published both domestically and internationally, as shown in 

[23-26]. To the best of the author's knowledge, most of the 

system models studied in existing literature are continuous 

stochastic neural network systems, and there is relatively 

little research on stability analysis of discrete stochastic 

neural network systems. This type of problem still deserves 

further investigation. 

The phenomenon of time delay is widely present in various 

practical systems such as computers, chemical engineering, 

machinery, aerospace, etc. Any small changes in signal 

transmission, operating environment, input conditions, etc. 

in the system will cause the generation of time delay, so the 

phenomenon of time delay is almost unavoidable. In order 

to make the model closer to the actual system and better 

apply the results to practical engineering, researchers have 

proposed the concept of time-delay systems, which means 

that the trend of system changes is related to both the current 

state and the previous state. The existence of time delay is a 

double-edged sword. On the one hand, in some systems, 

time delay can be used to improve system stability; On the 

other hand, in most cases, the existence of time delay is the 

root cause of the deterioration of system dynamic 

performance, so studying the stability of time-delay systems 

has very important practical significance. There are already 

many theories both domestically and internationally [27-29]. 

Sun et al. [30] used Brouwer's fixed point theorem, 

quaternion numerical variation parameters, and other 
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methods to study the existence and stability of equilibrium 

points in quaternion numerical recurrent neural networks 

with time-varying and distributed delays; Zhang et al. [31] 

provided stability criteria for high-order neural networks 

with unbounded time-varying proportional delays; Mahto et 

al. [32] provided two delay related stability criteria for 

neural networks with time-varying delays in the form of 

linear matrix inequalities. The conclusions of time delay 

stability can be divided into two types: time-delay related 

and time-delay independent, with time-delay related having 

relatively small conservatism. To the best of the author's 

knowledge, there are few conclusions on the stability 

analysis of discrete-time stochastic neural network systems 

with time-varying delays in the existing literature, and it is 

still an open problem worthy of attention. 

Based on the consideration of the above reasons, this paper 

investigates the stability analysis of discrete-time stochastic 

neural network systems with time-varying delays. By 

constructing a new set of Lyapunov Krasovskii functionals, 

and in order to reduce the conservatism caused by the 

introduction of Lyapunov Krasovskii functionals, a set of 

free weighted matrices is also introduced. Through some 

inequalities Schur's lemma and others derive robust global 

exponential stability criteria for time-delay related discrete 

stochastic neural network systems with time-varying delays. 

The above criteria are given in the form of linear matrix 

inequalities (LMI), so it is easy to obtain the relevant 

parameters through the LMI toolbox in MATLAB. The 

effectiveness of the proposed method is verified through 

numerical examples. 

Notation In this article, 𝑅𝑛  represents an n-dimensional 

Euclidean space; diag{…} represents a block diagonal 

matrix; the superscript ‘T’ indicates transpose; the 

superscript ‘-1’ represents the inverse operation of the 

corresponding matrix; E[] representing mathematical 

expectation operators; ‖∙‖ representing the Euclidean vector 

norm; I representing the identity matrix of appropriate 

dimensions; λ𝑚𝑎𝑥(∙)  represents the maximum eigenvalue; 

the symbol ‘*’ indicates an omitted term caused by 

symmetry. 

 

II. PROBLEM FORMULATION AND PRELIMINARIES 

In a complete probability space (Ω, Γ,  P), consider a time-

varying time-delay discrete stochastic neural network 

system model with the following form:  

    {  
  𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))+𝜎(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘)𝜔(𝑘))𝑥(𝑘) = 𝜙(𝑘), 𝑘 = [−ℎ𝑀, 0]  (1) 

Where x(k) = [𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), … , 𝑥𝑛(𝑘)]𝑇𝜖𝑅𝑛 , 

(k=1,2,...) represents the state vector of the neuron, and 𝜙(𝑘)  is the initial function of the above state vector; 

Matrices A, B, C, and D are some constant matrices with 

appropriate dimensions, where A = diag(𝑎1,  𝑎2, 𝑎3,   … , 𝑎𝑛) 
is a real constant diagonal matrix with appropriate 

dimensions, represent the state feedback coefficient matrix, 

constant matrix 𝐶 = [𝑐𝑖𝑗]𝑛×𝑛  represent the connection 

weights matrix, constant matrix 𝐷 = [𝑑𝑖𝑗]𝑛×𝑛 represent the 

delayed connection weights matrix; f(x(k)) =[𝑓1(𝑥1(𝑘)), 𝑓2(𝑥2(𝑘)), 𝑓3(𝑥3(𝑘)), … , 𝑓𝑛(𝑥𝑛(𝑘))]𝑇  and g (x(k − h(k))) = [𝑔1 (𝑥1(𝑘 − ℎ(𝑘))) , 𝑔2 (𝑥2(𝑘 −ℎ(𝑘))) , 𝑔3 (𝑥3(𝑘 − ℎ(𝑘))) , … , 𝑔𝑛 (𝑥𝑛(𝑘 − ℎ(𝑘)))]𝑇  

represent the activation function of neurons; The time-

varying delay h(k)  is a positive integer that satisfies the 

following conditions: 0 < ℎ𝑚 ≤ ℎ(k) ≤ ℎ𝑀    (2) 

where ℎ𝑚 ,  ℎ𝑀  are known normal number; ω(k) is a scalar 

Wiener process on (Ω, Γ,  P) with E[ω(k)] = 0, 𝐸[𝜔2(𝑘)] = 1, 𝐸[𝜔(𝑖)𝜔(𝑗)] = 0(𝑖 ≠ 𝑗) 
We make following assumptions for the neuron network 

(1). 

Assumption 1. 𝛿: 𝑍 × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛  satisfying the 

following assumption: 𝜎𝑇(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘)𝜎(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘) ≤𝜌1𝑥𝑇(𝑘)𝑥(𝑘) + 𝜌2𝑥𝑇(𝑘 − ℎ(𝑘))𝑥(𝑘 − ℎ(𝑘))               (3) 

where ρ1,  ρ2 are two known normal scalar numbers. 

Assumption 2.  For any i=1, 2, 3, …, n, and any  ξ1, ξ2, with 

known constants 𝑐𝑖+,  𝑐𝑖−, such that: 𝑐𝑖− ≤ 𝑓𝑖(ξ1)−𝑓𝑖(ξ2)ξ1−ξ2 ≤ 𝑐𝑖+ ,   𝑓𝑖(0) = 0   (4) 

where 𝜉1 ≠ 𝜉2,   𝑐𝑖+𝑐𝑖− ≥ 0,   𝜉1, 𝜉2 ∈ 𝑅 . The neuron 

activation functions 𝑓𝑖(∙)  is continuous and bounded 

functions.  

For the convenience of representation, the following 

definitions are made in this article: 𝐿1 = diag(𝑐1+𝑐1−, 𝑐2+𝑐2−, 𝑐3+𝑐3−, … , 𝑐𝑛+𝑐𝑛−) 𝐿2 = 𝑑𝑖𝑎𝑔 (𝑐1+ + 𝑐1−2 , 𝑐2+ + 𝑐2−2 , 𝑐3+ + 𝑐3−2 ,… , 𝑐𝑛+ + 𝑐𝑛−2 ) 𝐿3 = 𝑑𝑖𝑎𝑔(𝑐1−, 𝑐2−, 𝑐3−, … , 𝑐𝑛−) 𝐿4 = 𝑑𝑖𝑎𝑔(𝑐1++𝑐1−, 𝑐2+ + 𝑐2−, 𝑐3+ + 𝑐3−, … , 𝑐𝑛+ + 𝑐𝑛−)     (5) 

The following lemmas and definitions are essential in 

proving the main theorems. 

Lemma 1. (Schur complement) For a given symmetric 

matrix A, 𝐴 = (𝐴11 𝐴12∗ 𝐴22) 
The following three propositions are equivalent: 

1) 𝐴 < 0; 

2) 𝐴11 < 0, 𝐴22 − 𝐴12𝑇 𝐴11−1𝐴12 < 0; 

3)  𝐴22 < 0, 𝐴11 − 𝐴12𝐴22−1𝐴12𝑇 < 0; 
Lemma 2. [33]. For any integers 𝑏 ≥ 𝑎 , constant matrix 𝐺 ∈ 𝑅𝑛×𝑛 , 𝐺 = 𝐺𝑇 ≥ 0 , vector function 𝜑: {𝑎, 𝑎 +1, . . . , 𝑏} → 𝑅𝑛, so that we can easy to get that −(𝑏 − 𝑎 + 1)∑𝜑𝑇(𝑖)𝐺𝑏

𝑖=𝑎 𝜑(𝑖) ≤ −(∑𝜑(𝑖)𝑏
𝑖=𝑎 )𝑇𝐺(∑𝜑(𝑖)𝑏

𝑖=𝑎 ) 
Definition 1. [34] Consider system (1), if there are constants 

a>0 and 1<b<0 such that each solution of system (1) 

satisfies: 𝐸‖𝑥(𝑘)‖2 ≤ 𝑎𝑏𝑘 𝑠𝑢𝑝𝑖=[−ℎ𝑀,0]𝐸‖𝑥(𝑖)‖2 , ∀𝑘 ≥0 

The system (1) is said to be robust exponentially stable. 
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III. MATH 

In this section, we investigate the stability analysis of 

discrete-time stochastic neural network systems with time-

varying delays (1) and give a criteria, guaranteeing the 

robust exponential stability of system (1).  

Firstly, we prove the asymptotical stability of system (1). 

Theorem 1. Under the condition that Assumptions 1 and 2 

hold, for given scalars ℎ𝑚 and ℎ𝑀 , satisfying (2) ,the neural 

network systems (1) is asymptotical stability, if there exist 

positive definite matrixs P, Q, 𝑆1 ,𝑆2 , 𝑈1 , 𝑈2 , 𝐾1 , 𝐾2 , any 

matrices 𝑋𝑖𝑗  (i=1, 2, 3; j=1, 2, 3, 4) with appropriate 

dimensions and scalar λ∗ > 0, such that the following LMI 

hold: Ξ = [Ξ1 Ξ2∗ Ξ3] < 0    (6) 𝑃 < 𝜆∗𝐼    （7） 

where 

𝛯1 =
[  
   
 𝜃11 𝜃12 𝜃13∗ 𝜃22 𝜃23∗ ∗ 𝜃33 𝜃14 𝜃15 𝜃16 𝜃17𝜃24 𝜃25 𝜃26 𝜃27𝜃34 0 0 0∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

𝜃44 0 0 0∗ 𝜃55 𝜃56 𝜃57∗ ∗ 𝜃66 𝜃67∗ ∗ ∗ 𝜃77]  
   
 
 

𝛯2 = [𝜃1𝑇 𝜃2𝑇 𝜃3𝑇 𝜃4𝑇 0 0 0]𝑇 𝛯3 = 𝑑𝑖𝑎𝑔(−ℎ𝑀𝑆1, −𝜂(𝑆1 + 𝑆2), −𝜂𝑆2) 𝜃11 = 𝐴T𝑃𝐴 − 𝑃 + (𝜂 + 1)𝑄 + 𝜆∗𝜌1𝐼 − 2(𝜂 + 1)𝐿3𝑇𝐾1+ 2(𝜂 + 1)𝐿4𝑇𝐾2 + 𝑋11 + 𝑋11𝑇 − 𝐿1 + 𝑈2− 𝑈1𝑇 𝜃12 = 𝐴T𝑃𝐵 − 𝑋11 + 𝑋12 + 𝑋21 − 𝑋31 𝜃13 = 𝑋13𝑇 +𝑋31 + 𝑈1 𝜃14 = −𝑋21 + 𝑋14𝑇  𝜃15 = (𝐴 − 𝐼)T𝑃 𝜃16 = 𝐴T𝑃𝐶 + (𝜂 + 1)𝐾1𝑇 − 2(𝜂 + 1)𝐾2𝑇 + 𝐿2 𝜃17 = 𝐴T𝑃𝐷 𝜃22 = 𝐵T𝑃𝐵 − 𝑄 + 2𝐿3𝑇𝐾1 − 2𝐿4𝑇𝐾2 − 𝑋12 − 𝑋12𝑇 + 𝑋22+ 𝑋22𝑇 + 𝜆∗𝜌2𝐼 − 𝐿1 − 𝑋32 − 𝑋32𝑇  𝜃23 = −𝑋13 + 𝑋23+𝑋32 − 𝑋33𝑇  𝜃24 = −𝑋22 − 𝑋34𝑇 + 𝑋24𝑇 − 𝑋14𝑇  𝜃25 = 𝐵T𝑃 𝜃26 = 𝐵T𝑃𝐶 𝜃27 = 𝐵T𝑃𝐷 − 𝐾1𝑇 + 𝐾2𝑇 + 𝐿2 𝜃33 = 𝑋33 + 𝑋33𝑇 − 𝑈1 𝜃34 = −𝑋23 + 𝑋34𝑇  𝜃44 = −𝑈2 − 𝑋24𝑇 − 𝑋24 𝜃55 = −2𝑃 + ℎ𝑀𝑆1 + 𝜂𝑆2 + ℎ𝑚2 𝑈1 𝜃56 = 𝑃𝐶 

𝜃66 = 𝐶T𝑃𝐶 − 𝐼 𝜃67 = 𝐶T𝑃𝐷 𝜃77 = 𝐷T𝑃𝐷 − 𝐼 𝜃1 = [ℎ𝑀𝑋11 𝜂𝑋21 𝜂𝑋31] 𝜃2 = [ℎ𝑀𝑋12 𝜂𝑋22 𝜂𝑋32] 𝜃3 = [ℎ𝑀𝑋13 𝜂𝑋23 𝜂𝑋33] 𝜃4 = [ℎ𝑀𝑋14 𝜂𝑋24 𝜂𝑋34] 𝑋1 = [𝑋11𝑇 𝑋12𝑇 𝑋13𝑇 𝑋14𝑇 0 0 0]𝑇 𝑋2 = [𝑋21𝑇 𝑋22𝑇 𝑋23𝑇 𝑋24𝑇 0 0 0]𝑇 𝑋3 = [𝑋31𝑇 𝑋32𝑇 𝑋33𝑇 𝑋34𝑇 0 0 0]𝑇 

 

Proof. Construct the following Lyapunov Krasovskii 

functional for discrete neural network systems with time-

varying delays (1): 𝑉(𝑘) =∑𝑉𝑖9
𝑖=1 (𝑘)   (8) 

where 𝑉1(𝑘) = 𝑥T(𝑘)𝑃𝑥(𝑘) 
𝑉2(𝑘) = ∑ 𝑥T𝑘−1

𝑖=𝑘−ℎ(𝑘) (𝑖)𝑄𝑥(𝑖) 
𝑉3(𝑘) = ∑ ∑ 𝑥T𝑘−1

𝑗=𝑘+𝑖 (𝑗)𝑄𝑥(𝑗)−ℎ𝑚
𝑖=−ℎ𝑀+1  

𝑉4(𝑘) = ∑ ∑ 𝑒T𝑘−1
𝑗=𝑘+𝑖 (𝑗)𝑆1𝑒(𝑗)−1

𝑖=−ℎ𝑀  

𝑉5(𝑘) = ∑ ∑ 𝑒T𝑘−1
𝑗=𝑘+𝑖 (𝑗)𝑆2𝑒(𝑗)−ℎ𝑚−1

𝑖=−ℎ𝑀  

𝑉6(𝑘) = ℎ𝑚 ∑ ∑ 𝑒T𝑘−1
𝑗=𝑘+𝑖 (𝑗)𝑈1𝑒(𝑗)−1

𝑖=−ℎ𝑚  

𝑉7(𝑘) = ∑ 𝑥T𝑘−1
𝑖=𝑘−ℎ𝑀 (𝑖)𝑈2𝑥(𝑖) 

𝑉8(𝑘) = 2 ∑ [𝑓(𝑥(𝑖)) − 𝐿3𝑥(𝑖)]𝑇𝐾1𝑥(𝑖)𝑘−1
𝑖=𝑘−ℎ(𝑘)

+ 2 ∑ ∑ [𝑓(𝑥(𝑖))𝑘−1
𝑗=𝑘+𝑖

−ℎ𝑚
𝑖=−ℎ𝑀+1− 𝐿3𝑥(𝑖)]𝑇𝐾1𝑥(𝑖) 

http://www.ijerm.com/
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𝑉9(𝑘) = 2 ∑ [𝐿4𝑥(𝑖) − 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑖)𝑘−1
𝑖=𝑘−ℎ(𝑘)

+ 2 ∑ ∑ [𝐿4𝑥(𝑖)𝑘−1
𝑗=𝑘+𝑖

−ℎ𝑚
𝑖=−ℎ𝑀+1− 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑖) 

We defined: 𝑒(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘)         (9) 𝜂 = ℎ𝑀 − ℎ𝑚                              (10) 

By performing forward differentiation along the 

solution of  (1), we can obtain: ∆𝑉(𝑘) =∑∆𝑉𝑖(𝑘)7
𝑖=1      （11） 

∆𝑉𝑖(𝑘) , (i=1,2,3,4,5,6,7), the calculation results are as 

follows: Δ𝑉1(𝑘) = 𝑥T(𝑘 + 1)𝑃𝑥(𝑘 + 1) − 𝑥T(𝑘)𝑃𝑥(𝑘) = [A𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))]T𝑃 [A𝑥(𝑘)+ 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))]+ [𝜎(𝑥(𝑘), 𝑥(𝑘− ℎ(𝑘)), 𝑘)𝜔(𝑘)]T𝑃[𝜎(𝑥(𝑘), 𝑥(𝑘− ℎ(𝑘)), 𝑘)𝜔(𝑘)] − 𝑥T(𝑘)𝑃𝑥(𝑘) 
From Assumption 1 and equation (7), it can be concluded 

that [𝜎(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘)𝜔(𝑘)]T𝑃[𝜎(𝑥(𝑘), 𝑥(𝑘− ℎ(𝑘)), 𝑘)𝜔(𝑘)] ≤ 𝜆𝑚𝑎𝑥(𝑃)[𝜎(𝑥(𝑘), 𝑥(𝑘− ℎ(𝑘)), 𝑘)𝜔(𝑘)]T[𝜎(𝑥(𝑘), 𝑥(𝑘− ℎ(𝑘)), 𝑘)𝜔(𝑘)] ≤ 𝜆∗𝜌1𝑥T(𝑘)𝑥(𝑘) + 𝜆∗𝜌2𝑥T(𝑘 − ℎ(𝑘))𝑥(𝑘 − ℎ(𝑘)), 
so that Δ𝑉1(𝑘) ≤ [A𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))]T𝑃 [A𝑥(𝑘)+ 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))] + 𝜆∗𝜌1𝑥T(𝑘)𝑥(𝑘)+ 𝜆∗𝜌2𝑥T(𝑘 − ℎ(𝑘))𝑥(𝑘 − ℎ(𝑘))− 𝑥T(𝑘)𝑃𝑥(𝑘)                                     (12) Δ𝑉2(𝑘) = ∑ 𝑥T𝑘

𝑖=𝑘−ℎ(𝑘+1)+1 (𝑖)𝑄𝑥(𝑖) − ∑ 𝑥T𝑘−1
𝑖=𝑘−ℎ(𝑘) (𝑖)𝑄𝑥(𝑖) 

= 𝑥T(𝑘)𝑄𝑥(𝑘) + ∑ 𝑥T𝑘−1
𝑖=𝑘−ℎ(𝑘+1)+1 (𝑖)𝑄𝑥(𝑖)− 𝑥T(𝑘 − ℎ(𝑘))𝑄𝑥(𝑘 − ℎ(𝑘))− ∑ 𝑥T𝑘−1
𝑖=𝑘−ℎ(𝑘)+1 (𝑖)𝑄𝑥(𝑖) ≤ 𝑥T(𝑘)𝑄𝑥(𝑘) − 𝑥T(𝑘 − ℎ(𝑘))𝑄𝑥(𝑘 − ℎ(𝑘))+ ∑ 𝑥T𝑘−ℎ𝑚
𝑖=𝑘−ℎ𝑀+1 (𝑖)𝑄𝑥(𝑖)       (13) 

Δ𝑉3(𝑘) = ∑ ∑ 𝑥T(𝑗)𝑄𝑥(𝑗)𝑘
𝑗=𝑘+𝑖+1

−ℎ𝑚
𝑖=−ℎ𝑀+1− ∑ ∑ 𝑥T(𝑗)𝑄𝑥(𝑗)𝑘−1

𝑗=𝑘+𝑖
−ℎ𝑚

𝑖=−ℎ𝑀+1  

= ∑ [𝑥T(𝑘)𝑄𝑥(𝑘) − 𝑥T(𝑘 + 𝑖)𝑄𝑥(𝑘 + 𝑖)]−ℎ𝑚
𝑖=−ℎ𝑀+1  

= 𝜂𝑥T(𝑘)𝑄𝑥(𝑘) − ∑ 𝑥T(𝑖)𝑄𝑥(𝑖)𝑘−ℎ𝑚
𝑖=𝑘−ℎ𝑀+1       (14) 

Δ𝑉4(𝑘) = ∑ ∑ 𝑒T(𝑗)𝑆1𝑒(𝑗)𝑘
𝑗=𝑘+𝑖+1

−1
𝑖=−ℎ𝑀 − ∑ ∑ 𝑒T(𝑗)𝑆1𝑒(𝑗)𝑘−1

𝑗=𝑘+𝑖
−1

𝑖=−ℎ𝑀  

= ∑ [ ∑ 𝑒T(𝑗)𝑆1𝑒(𝑗) − ∑ 𝑒T(𝑗)𝑆1𝑒(𝑗)𝑘−1
𝑗=𝑘+𝑖

𝑘
𝑗=𝑘+𝑖+1 ]−1

𝑖=−ℎ𝑀  

= ℎ𝑀𝑒T(𝑘)𝑆1𝑒(𝑘) − ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1
𝑖=𝑘−ℎ𝑀    (15) 

Δ𝑉5(𝑘) = ∑ ∑ 𝑒T(𝑗)𝑆2𝑒(𝑗)𝑘
𝑗=𝑘+𝑖+1

−ℎ𝑚−1
𝑖=−ℎ𝑀 − ∑ ∑ 𝑒T(𝑗)𝑆2𝑒(𝑗)𝑘−1

𝑗=𝑘+𝑖
−ℎ𝑚−1
𝑖=−ℎ𝑀  

= ∑ [ ∑ 𝑒T(𝑗)𝑆2𝑒(𝑗) − ∑ 𝑒T(𝑗)𝑆2𝑒(𝑗)𝑘−1
𝑗=𝑘+𝑖

𝑘
𝑗=𝑘+𝑖+1 ]−ℎ𝑚−1

𝑖=−ℎ𝑀  

= 𝜂𝑒T(𝑘)𝑆2𝑒(𝑘) − ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ𝑀      (16) 

For the convenience of subsequent processing, organizing 

the accumulated part of Δ𝑉4(𝑘) and Δ𝑉5(𝑘) can obtain: − ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1
𝑖=𝑘−ℎ𝑀  

= −[ ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗) + ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1
𝑖=𝑘−ℎ(𝑘)

𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀 ]    (17) 

− ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ𝑀  

= −[ ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗) + ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ(𝑘)

𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀 ]    (18) 

Combine (17) and (18), we can obtain: − ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1
𝑖=𝑘−ℎ𝑀 − ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1

𝑖=𝑘−ℎ𝑀  
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= − ∑ 𝑒T(𝑖)(𝑆1 + 𝑆2)𝑒(𝑗)𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀 − ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1

𝑖=𝑘−ℎ(𝑘)− ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ(𝑘)   (19) 

 Δ𝑉6(𝑘) = ℎ𝑚 ∑ ∑ 𝑒T𝑘
𝑗=𝑘+𝑖+1 (𝑗)𝑈1𝑒(𝑗)−1

𝑖=−ℎ𝑚− ℎ𝑚 ∑ ∑ 𝑒T𝑘−1
𝑗=𝑘+𝑖 (𝑗)𝑈1𝑒(𝑗)−1

𝑖=−ℎ𝑚  

= ℎ𝑚 ∑ [𝑒T(𝑘)𝑈1𝑒(𝑘) − 𝑒T(𝑘 + 𝑖)𝑈1𝑒(𝑘 + 𝑖)]−1
𝑖=−ℎ𝑚  

= ℎ𝑚2𝑒T(𝑘)𝑈1𝑒(𝑘) − ℎ𝑚 ∑ 𝑒T(𝑖)𝑈1𝑒(𝑖)𝑘−1
𝑖=𝑘−ℎ𝑚  

Combine with Lemma 2, we can get: −ℎ𝑚 ∑ 𝑒T(𝑖)𝑈1𝑒(𝑖)𝑘−1
𝑖=𝑘−ℎ𝑚 ≤ −[ ∑ 𝑒T(𝑖)𝑘−1

𝑖=𝑘−ℎ𝑚 ]𝑈1[ ∑ 𝑒(𝑖)𝑘−1
𝑖=𝑘−ℎ𝑚 ] ≤ −[𝑥(𝑘) − 𝑥(𝑘 − ℎ𝑚)]𝑇𝑈1[𝑥(𝑘) − 𝑥(𝑘 − ℎ𝑚)] 

so that: Δ𝑉6(𝑘) ≤ ℎ𝑚2𝑒T(𝑘)𝑈1𝑒(𝑘)−[𝑥(𝑘) − 𝑥(𝑘 − ℎ𝑚)]𝑇𝑈1[𝑥(𝑘)− 𝑥(𝑘 − ℎ𝑚)]                    (20) Δ𝑉7(𝑘) = ∑ 𝑥T𝑘
𝑖=𝑘−ℎ𝑀+1 (𝑖)𝑈2𝑥(𝑖) − ∑ 𝑥T𝑘−1

𝑖=𝑘−ℎ𝑀 (𝑖)𝑈2𝑥(𝑖) = 𝑥𝑇(𝑘)𝑈2𝑥(𝑘) − 𝑥𝑇(𝑘 − ℎ𝑀)𝑈2𝑥(𝑘 − ℎ𝑀)    (21) Δ𝑉8(𝑘) = 2 ∑ [𝑓(𝑥(𝑖)) − 𝐿3𝑥(𝑖)]𝑇𝐾1𝑥(𝑖)𝑘−1
𝑖=𝑘+1−ℎ(𝑘+1)+ 2[𝑓(𝑥(𝑘)) − 𝐿3𝑥(𝑘)]𝑇𝐾1𝑥(𝑘)+ 2 ∑ ∑[𝑓(𝑥(𝑗))𝑘

𝑗=𝑖
𝑘+1−ℎ𝑚
𝑖=𝑘−ℎ𝑀+2− 𝐿3𝑥(j)]𝑇𝐾1𝑥(j)− 2 ∑ [𝑓(𝑥(𝑖)) − 𝐿3𝑥(𝑖)]𝑇𝐾1𝑥(𝑖)𝑘−1
𝑖=𝑘+1−ℎ(𝑘)− 2[𝑓(𝑥(𝑘)) − 𝐿3𝑥(𝑘)]𝑇𝐾1𝑥(𝑘)− 2 ∑ ∑[𝑓(𝑥(𝑗))𝑘−1

𝑗=𝑖
𝑘−ℎ𝑚

𝑖=𝑘−ℎ𝑀+1− 𝐿3𝑥(j)]𝑇𝐾1𝑥(j) ≤ 2(𝜂 + 1)[𝑓(𝑥(𝑘)) − 𝐿3𝑥(𝑘)]𝑇𝐾1𝑥(𝑘) − 2[𝑓(𝑥(𝑘 −ℎ(𝑘))) − 𝐿3𝑥(𝑘 − ℎ(𝑘))]𝑇𝐾1𝑥(𝑘 − ℎ(𝑘))    (22) 

Δ𝑉9(𝑘) = 2 ∑ [𝐿4𝑥(𝑖) − 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑖)𝑘−1
𝑖=𝑘+1−ℎ(𝑘+1)+ 2[𝐿4𝑥(𝑖) − 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑘)+ 2 ∑ ∑[𝐿4𝑥(𝑖)𝑘

𝑗=𝑖
𝑘+1−ℎ𝑚
𝑖=𝑘−ℎ𝑀+2− 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(j)− 2 ∑ [𝐿4𝑥(𝑖) − 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑖)𝑘−1
𝑖=𝑘+1−ℎ(𝑘)− 2[𝐿4𝑥(𝑖) − 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(𝑘)− 2 ∑ ∑[𝐿4𝑥(𝑖)𝑘−1

𝑗=𝑖
𝑘−ℎ𝑚

𝑖=𝑘−ℎ𝑀+1− 𝑓(𝑥(𝑖))]𝑇𝐾2𝑥(j) ≤ 2(𝜂 + 1)[𝐿4𝑥(k) − 𝑓(𝑥(k))]𝑇𝐾2𝑥(𝑘) − 2[𝐿4𝑥(𝑘 −ℎ(𝑘)) − 𝑓(𝑥(𝑘 − ℎ(𝑘)))]𝑇𝐾2𝑥(𝑘 − ℎ(𝑘))    (23) 

Combine (12)-(23), we can easy to obtain: ∆𝑉(𝑘) ≤ [A𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))]T𝑃 [A𝑥(𝑘)+ 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘)))] + 𝑥T(𝑘)[𝑈2 − 𝑃+ 𝜆∗𝜌1 + (𝜂 + 1)𝑄 − 2(𝜂 + 1)𝐿3𝐾1+ 2(𝜂 + 1)𝐿4𝑇𝐾2]𝑥(𝑘)+ 𝑥𝑇(𝑘 − ℎ(𝑘))(𝜆∗𝜌2 − 𝑄 + 2𝐿3𝑇𝐾1− 2𝐿4𝑇𝐾2)𝑥(𝑘 − ℎ(𝑘))− 𝑥𝑇(𝑘 − ℎ𝑀)𝑈2𝑥(𝑘 − ℎ𝑀)+ 𝑒T(𝑘)(ℎ𝑀𝑆1 + 𝜂𝑆2+ ℎ𝑚2𝑈1)𝑒(𝑘)−[𝑥(𝑘)− 𝑥(𝑘 − ℎ𝑚)]𝑇𝑈1[𝑥(𝑘) − 𝑥(𝑘 − ℎ𝑚)]+ 𝑓(𝑥(𝑘))[2(𝜂 + 1)𝐾1 − 2(𝜂+ 1)𝐾2]𝑥(𝑘) + 𝑓(𝑥(𝑘 − ℎ(𝑘)))[−2𝐾1− 2𝐾2]𝑥(𝑘 − ℎ(𝑘))− ∑ 𝑒T(𝑖)(𝑆1 + 𝑆2)𝑒(𝑗)𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀− ∑ 𝑒T(𝑖)𝑆1𝑒(𝑗)𝑘−1
𝑖=𝑘−ℎ(𝑘)− ∑ 𝑒T(𝑖)𝑆2𝑒(𝑗)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ(𝑘)  

(24) 

We defined 𝛼𝑇(𝑘) = [𝑥T(𝑘)    𝑥T(𝑘 − ℎ𝑚)     𝑥T(𝑘 − ℎ(𝑘))    𝑥T(𝑘− ℎ𝑀)    𝑓T(𝑥(𝑘))    𝑓T (𝑥(𝑘 − ℎ(𝑘)))] 
According to the definition of e (k), it can be inferred that: 0 = 𝑥(𝑘) − 𝑥(𝑘 − ℎ(𝑘)) − ∑ 𝑒(𝑖)𝑘−1

𝑖=𝑘−ℎ(𝑘)      （25） 

0 = 𝑥(𝑘 − ℎ(𝑘)) − 𝑥(𝑘 − ℎ𝑀) − ∑ 𝑒(𝑖)𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀      （26） 
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0 = 𝑥(𝑘 − ℎ𝑚) − 𝑥(𝑘 − ℎ(𝑘)) − ∑ 𝑒(𝑖)𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ(𝑘)      （27） 

0 = (A − I)𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘))) − 𝑒(𝑘)    (28) 
Combine (25)-(28), for any matrix of appropriate 

dimensions 𝑋𝑖𝑗  (i=1, 2, 3 ;  j=1, 2, 3, 4), the following 

equation always holds: 2[𝑥T(𝑘)X11 + 𝑥T(𝑘 − ℎ𝑚)X12 + 𝑥T(𝑘 − ℎ(𝑘))X13+ 𝑥T(𝑘 − ℎ𝑀)X14] × [𝑥(𝑘)− 𝑥(𝑘 − ℎ(𝑘)) − ∑ 𝑒(𝑖)𝑘−1
𝑖=𝑘−ℎ(𝑘) ]

= 0     （29） 2[𝑥T(𝑘)X21 + 𝑥T(𝑘 − ℎ𝑚)X22 + 𝑥T(𝑘 − ℎ(𝑘))X23+ 𝑥T(𝑘 − ℎ𝑀)X24] × [𝑥(𝑘 − ℎ(𝑘))
− 𝑥(𝑘 − ℎ𝑀) − ∑ 𝑒(𝑖)𝑘−ℎ(𝑘)−1

𝑖=𝑘−ℎ𝑀 ]
= 0     （30） 2[𝑥T(𝑘)X31 + 𝑥T(𝑘 − ℎ𝑚)X32 + 𝑥T(𝑘 − ℎ(𝑘))X33+ 𝑥T(𝑘 − ℎ𝑀)X34] × [𝑥(𝑘 − ℎ𝑚)
− 𝑥(𝑘 − ℎ(𝑘)) − ∑ 𝑒(𝑖)𝑘−ℎ𝑚−1

𝑖=𝑘−ℎ(𝑘) ]
= 0     （31） 2eT(k)P[(A − I)𝑥(𝑘) + 𝐵𝑥(𝑘 − ℎ(𝑘)) + 𝐶𝑓(𝑥(𝑘))+ 𝐷𝑓 (𝑥(𝑘 − ℎ(𝑘))) − 𝑒(𝑘)] = 0  (32) 

  From Assumpution 2, we can easily obtain follows with 

i=1, 2, 3, ..., n: (𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖−𝑥𝑖(𝑘))𝑇(𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖+𝑥𝑖(𝑘)) ≤ 0 

So that: 

∑ (𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖−𝑥𝑖(𝑘))𝑇(𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖+𝑥𝑖(𝑘))𝑛
𝑖=𝑖 ≤ 0   （33） 

Similarly, it can be inferred that: 

∑ (𝑓𝑖(𝑥𝑖(𝑘 − ℎ(𝑘))) − 𝑐𝑖−𝑥𝑖(𝑘 − ℎ(𝑘)))𝑇(𝑓𝑖(𝑥𝑖(𝑘𝑛
𝑖=𝑖 − ℎ(𝑘))) − 𝑐𝑖+𝑥𝑖(𝑘 − ℎ(𝑘))) ≤ 0  (34) 

Combining (33) and (34): 

0 ≤ −∑ (𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖−𝑥𝑖(𝑘))𝑇(𝑓𝑖(𝑥𝑖(𝑘)) − 𝑐𝑖+𝑥𝑖(𝑘))𝑛
𝑖=𝑖 −∑ (𝑓𝑖(𝑥𝑖(𝑘 − ℎ(𝑘))) − 𝑐𝑖−𝑥𝑖(𝑘𝑛

𝑖=𝑖− ℎ(𝑘)))𝑇(𝑓𝑖(𝑥𝑖(𝑘 − ℎ(𝑘))) − 𝑐𝑖+𝑥𝑖(𝑘− ℎ(𝑘))) 0 ≤ −𝑥𝑇(𝑘)𝐿1𝑥(𝑘) − 𝑓𝑇(𝑥(𝑘))𝑓(𝑥(𝑘))+ 2𝑥𝑇(𝑘)𝐿2𝑓(𝑥(𝑘)) − 𝑥𝑇(𝑘− ℎ(𝑘))𝐿1𝑥(𝑘 − ℎ(𝑘)) − 𝑓𝑇(𝑘− ℎ(𝑘))𝑓(𝑘 − ℎ(𝑘)) + 2𝑥𝑇(𝑘− ℎ(𝑘))𝐿2𝑓(𝑥(𝑘 − ℎ(𝑘))) 
  (35) 

According to (24) - (32) and (35), the following inequality 

holds: ∆𝑉(𝑘) ≤ 𝛼𝑇(𝑘)[𝛯1 + ℎ𝑀𝑋1𝑆1−1𝑋1𝑇 + 𝜂𝑋2(𝑆1 + 𝑆2)−1𝑋2𝑇+ 𝜂𝑋3𝑆2−1𝑋3𝑇]𝛼(𝑘) − ∑ (𝑋1𝑇𝛼(𝑘) + 𝑆1𝑒(𝑖))𝑇𝑆1−1(𝑋1𝑇𝛼(𝑘) + 𝑆1𝑒(𝑖))𝑘−1
𝑖=𝑘−ℎ(𝑘)  

− ∑ (𝑋2𝑇𝛼(𝑘) + (𝑆1 + 𝑆2)𝑒(𝑖))𝑇(𝑆1 + 𝑆2)−1(𝑋2𝑇𝛼(𝑘)𝑘−ℎ(𝑘)−1
𝑖=𝑘−ℎ𝑀 + (𝑆1 + 𝑆2)𝑒(𝑖)) 
− ∑ (𝑋3𝑇𝛼(𝑘) + 𝑆2𝑒(𝑖))𝑇𝑆2−1(𝑋3𝑇𝛼(𝑘) + 𝑆2𝑒(𝑖))𝑘−ℎ𝑚−1
𝑖=𝑘−ℎ(𝑘)  

(36) 

According to Lemma 1, equation (6) is equivalent to: 𝛯1 + ℎ𝑀𝑋1𝑆1−1𝑋1𝑇 + 𝜂𝑋2(𝑆1 + 𝑆2)−1𝑋2𝑇 + 𝜂𝑋3𝑆2−1𝑋3𝑇 < 0 

(37)  

Therefore, there exists a sufficiently small scalar 𝜀 < 0 

that: ∆𝑉 ≤ −𝜀‖𝑥(𝑘)‖2 < 0    (38) 

This means that the discrete-time stochastic neural 

network system with time-varying delays (1) is 

asymptotically stable. 

Next, we will further proof the robust exponential 

stability of system (1). 

According to the definition of V(k) (8), it is easy to obtain: 
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𝑉(𝑘) ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑥(𝑘)‖2+ 𝑞1 ∑ ‖𝑥(𝑗)‖2𝑘−1
𝑗=𝑘−ℎ𝑀+ 𝑞2 ∑ ‖𝑥(𝑗 + 1)‖2𝑘−1
𝑗=𝑘−ℎ𝑀  

(39) 

where 𝑞1 = 𝜆𝑚𝑎𝑥(𝑈1) + (𝜂 + 1)𝜆𝑚𝑎𝑥(𝑄) + 2ℎ𝑀𝜆𝑚𝑎𝑥(𝑆1 + 𝑆2)+ 2ℎ𝑚2 𝜆𝑚𝑎𝑥(𝑈2) + 2(𝜂 + 1)[𝜆𝑚𝑎𝑥(𝐿3𝐾1)+ 𝜆𝑚𝑎𝑥(𝐿4𝐾2)] 𝑞2 = 2ℎ𝑀𝜆𝑚𝑎𝑥(𝑆1 + 𝑆2) + 2ℎ𝑚2 𝜆𝑚𝑎𝑥(𝑈2) 
For any 𝛾 > 1, combine equations (38) and (39), it can be 

obtained that: 𝛾𝑖+1𝑉(𝑖 + 1) − 𝛾𝑖𝑉(𝑖) = 𝛾𝑖+1𝛥𝑉(𝑖) + 𝛾𝑖(𝛾 − 1)𝑉(𝑖) ≤ [−𝜀𝛾 + (𝛾 − 1)𝜆𝑚𝑎𝑥(𝑃)]γi‖𝑥(𝑖)‖2 + (𝛾− 1)[𝑞1𝛾𝑖 ∑ ‖𝑥(𝑗)‖2𝑖−1
𝑗=𝑖−ℎ𝑀+ 𝑞2𝛾𝑖 ∑ ‖𝑥(𝑗 + 1)‖2𝑖−1

𝑗=𝑖−ℎ𝑀 ] 
(40) 

Existence of any integer 𝑇 ≥ ℎ𝑀 +1, accumulate from 0 

to T-1 on both sides of the above equation to obtain 

𝛾𝑇𝑉(𝑇) − 𝑉(0) ≤ [−𝜀𝛾 + (𝛾 − 1)𝜆𝑚𝑎𝑥(𝑃)]∑γi‖𝑥(𝑖)‖2𝑇−1
𝑖=0+ (𝛾

− 1)[𝑞1∑ ∑ 𝛾𝑖‖𝑥(𝑗)‖2𝑖−1
𝑗=𝑖−ℎ𝑀

𝑇−1
𝑖=0

+ 𝑞2∑ ∑ 𝛾𝑖‖𝑥(𝑗 + 1)‖2𝑖−1
𝑗=𝑖−ℎ𝑀

𝑇−1
𝑖=0 ]  

(41) 

According to [36]. , the two cumulative terms in equation 

(41) can be calculated separately to obtain: 

∑ ∑ 𝛾𝑖‖𝑥(𝑗)‖2𝑖−1
𝑗=𝑖−ℎ𝑀

𝑇−1
𝑖=0
≤ ( ∑ ∑ +𝑗+ℎ𝑀

𝑖=0 ∑ ∑ + ∑ ∑ )𝑇−1
𝑖=𝑗+1

𝑇−1
𝑗=𝑇−ℎ𝑀

𝑗+ℎ𝑀
𝑖=𝑗+1

𝑇−1+ℎ𝑀
𝑗=0

−1
𝑗=−ℎ𝑀 𝛾𝑖‖𝑥(𝑗)‖2 

≤ hM2 γℎ𝑀 supj=[−ℎ𝑀,0]‖𝑥(𝑗)‖2+ hMγℎ𝑀∑𝛾𝑗‖𝑥(𝑗)‖2𝑇−1
𝑗=0      （42） 

∑ ∑ 𝛾𝑖‖𝑥(𝑗 + 1)‖2 ≤𝑖−1
𝑗=𝑖−ℎ𝑀

𝑇−1
𝑖=0 ℎ𝑀2 𝛾ℎ𝑀 𝑠𝑢𝑝𝑗=[−ℎ𝑀,0]‖𝑥(𝑗)‖2

+ ℎ𝑀𝛾ℎ𝑀∑𝛾𝑗‖𝑥(𝑗)‖2𝑇
𝑗=1      （43） 

From equation (39), it can be concluded that 𝑉(0) ≤ [𝜆𝑚𝑎𝑥(𝑃) + ℎ𝑀(𝑞1 + 𝑞2)] 𝑠𝑢𝑝𝑗=[−ℎ𝑀,0]‖𝑥(𝑗)‖2  

(44) 

By combining equations (39) - (43), it can be concluded 

that 

𝛾𝑇𝑉(𝑇) ≤ 𝛽1(𝛾)∑𝛾𝑗‖𝑥(𝑗)‖2 +𝑇
𝑗=0 𝛽2(𝛾) 𝑠𝑢𝑝𝑗=[−ℎ𝑀,0]‖𝑥(𝑗)‖2  

(45) 

where 𝛽1(𝛾) = (𝛾 − 1)𝜆𝑚𝑎𝑥(𝑃) − 𝛾𝜀 + (𝑞1 + 𝑞2)(𝛾 − 1)ℎ𝑀𝛾ℎ𝑀 𝛽2(𝛾) = 𝜆𝑚𝑎𝑥(𝑃) + ℎ𝑀(𝑞1 + 𝑞2) + (𝑞1 + 𝑞2)(𝛾− 1)ℎ𝑀2 𝛾ℎ𝑀  

In addtion, for 𝛽1(1) = −𝜀 < 0 , there must exist a 

positive scalar 𝛾0 > 1 that makes 𝛽1(𝛾0) < 0, thus 𝑉(𝑇) ≤ 𝛽2(𝛾0)( 1𝛾0)𝑇 𝑠𝑢𝑝𝑗=[−ℎ𝑀,0]‖𝑥(𝑗)‖2    (46) 

From the definition of V (k), it can be obtained that 𝑉(𝑇) ≥ 𝜆𝑚𝑖𝑛(𝑃)‖𝑥(𝑇)‖2   (47) 

Combining (45) - (47), it can be concluded that: ‖𝑥(𝑇)‖2 ≤ 𝛽2(𝛾)𝜆𝑚𝑖𝑛(𝑃) ( 1𝛾0)𝑇 𝑠𝑢𝑝𝑗=[−ℎ𝑀,0]‖𝑥(𝑗)‖2   (48) 

This means that the discrete-time stochastic neural 

network system with time-varying delays (1) is robust 

exponentially stable. 

 

IV. NUMERICAL EXAMPLE 

In this section, two numerical examples are provided to 

demonstrate the effectiveness of the proposed criterion for 

discrete-time stochastic neural network systems with time-

varying delays (1). 

Example 1. Consider a neural network system (1) with the 

following parameters 

A=[0.4 0 00 0.2 00 0 0.45]  B=[0.02 0 00 0.03 0.10 0.055 −0.1] 
C=[0.4 0.25 00 −0.015 −0.020.1 0.02 0.01 ] D=[ 0 0.2 0.010.2 0.01 0.10.2 −0.4 0.03] 
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I=[1 0 00 1 00 0 1]     𝜌1 = 0.01    𝜌2 = 0.02    

The activation function is described as: 𝑓1(𝑠) = 𝑡𝑎𝑛ℎ(0.6𝑠), 𝑓2(𝑠) = 𝑡𝑎𝑛ℎ(−0.4𝑠),  𝑓3(𝑠) = 𝑡𝑎𝑛ℎ(−0.2𝑠); 
Based on the above parameters, it is easy to obtain: 𝐿1 = [0 0 00 0 00 0 0]  𝐿2 = [0.3 0 00 −0.2 00 0 −0.1]   𝐿3 = [0 0 00 −0.4 00 0 −0.2] 𝐿4 = [0.6 0 00 −0.4 00 0 −0.2] 
By using the LMI toolbox in MATLAB, the following 

feasible solutions can be obtained by solving (6) and (7), a 

more details about ℎ𝑀 given in Table 1. : 𝑃 = [2.1181 0.0844 0.27510.0844 2.2083 −0.22250.2751 −0.2225 1.2859 ]    𝑄 = [0.0237 0.0152 0.01780.0152 0.1476 −0.05160.0178 −0.0516 0.0953 ]      𝑆1 = [0.0858 0.0040 0.02310.0040 0.0525 0.01320.0231 0.0132 0.0516]     𝑆2 = [0.1529 0.0013 0.03530.0013 0.0663 0.01770.0353 0.0177 0.0676]     𝑈1 = [ 0.0961 −0.0050 0.0197−0.0050 0.0253 0.00660.0197 0.0066 0.0261] 
Table 1. Calculated upper bound ℎ𝑀 for given ℎ𝑚. ℎ𝑚 2 3 6 1

0 

1

5 

Theorem 1. 8 9 1

1 

1

5 

2

0 

 𝑈2 = [ 0.1441 −0.0076 0.0325−0.0076 0.0496 0.01020.0325 0.0102 0.0408]      𝐾1 = [ 0.1876 −0.0059 −0.0154−0.0059 0.0418 0.0515−0.0154 0.0515 0.0753 ] 𝐾2 = [ 0.0950 −0.0029 −0.0075−0.0029 0.0273 0.0228−0.0075 0.0228 0.0345 ]  𝜆∗ = 2.3026 

Therefore, according to Theorem 1, a neural network system 

(1) with given parameters is robust globally exponentially 

stable. 

 

V. CONCLUSION 

This paper investigates the stability problem of discrete 

stochastic neural network systems with time-varying delays. 

By constructing a new set of Lyapunov Krasovskii 

functionals, sufficient conditions for robust global 

exponential stability related to delays in discrete stochastic 

neural network systems with time-varying delays are 

proposed, and presented in the form of linear matrix 

inequalities (LMIs). Finally, the effectiveness of the 

proposed method is verified through numerical examples.  
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