
International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024 

                                                                                              8                                                                                  www.ijerm.com  

 
Abstract— Identifying Self-Admitted Technical Debt (SATD) 

plays an important role in maintaining software stability and 

improving software quality; SATDs need to be repaid in time, 

otherwise they may cause serious vulnerabilities or even crash 

the software. Identifying SATDs from large project code is a 

costly task, and although existing methods can detect SATDs, 

and researchers have identified design debt and requirements 

debt, there is still a lack of methods to achieve multi-label 

classification of SATDs. In this paper, we propose a CoTCapNet 

model based on a deep generative model and capsule network, 

for both recurrent neural networks and convolutional neural 

networks have the problems of insufficient textual feature 

extraction and easy to cause the loss of important feature 

information, first, we use a text generation model based on CoT 

co-training to generate new samples by learning the original 

SATD data, which can increase the number of small and 

medium SATD samples and reduce the data imbalance, then use 

graph convolutional neural network to encode syntactic 

dependency trees, construct multi-head attention to encode 

dependencies in text sequences, and finally merge with semantic 

information through capsule network. Experiments on 

crossitem recognition of 10 items show that our approach is 

more effective than existing methods such as CNN and text 

mining. The proposed CoTCapNet method has strong 

advantages, especially in the case of highly unbalanced data. 

 
Index Terms— SATDs identification, Capsule network, 

Graph convolutional neural network, Syntactic Dependency 

Tree 

I. INTRODUCTION 

  Software development teams have a common goal when 

developing software products, which is to deliver high 

quality, bug-free software products within a specified (time or 

money) budget[1]. In order to achieve this goal, the 

development team needs to allocate development resources 

and develop a unified programming specification to ensure 

the quality of the delivered final product, but due to some 

irresistible factors, such as rapid delivery time and shortened 

budget, which make it difficult to achieve the current goal, the 

developer needs to take sub-optimal measures to achieve 

these goals. When developers continually use sub-optimal 

solutions to meet current goals, the accumulation of this 

behavior creates technical debt during the development 

process. Technical debt is common in software projects. For 

example, a developer chooses a technical framework to 

implement a feature in a software module, but that technical 

framework is deprecated in later releases, and test engineers 

perform only simple functional tests in the module, forgetting 
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about complexity and stress tests. These technical debts are 

intentionally or unintentionally introduced into the software 

project, and in the future, as software versions and 

maintainers change, these unresolved technical debts are 

never tracked down and remain in the software program 

forever.  

 

Technical debt can manifest itself:  

 

Ad hoc solutions: To quickly implement features or fix bugs, 

developers may use ad hoc solutions instead of full design and 

implementation.  

 

Future refactoring costs: Technical debt means that at some 

point in the future, the development team will have to spend 

additional time and resources refactoring code, improving 

architecture, or fixing bugs to undo the effects of an 

ill-conceived solution that was previously adopted.  

 

Increased complexity: Ad hoc solutions can increase the 

complexity of a system, making it more difficult to maintain 

and expand in the future.  

The key to managing technical debt is to identify it, quantify 

it, monitor it, and pay it off as early as possible. This may 

mean building time into the development cycle for 

refactoring, improving documentation, fixing defects, or 

adjusting the architecture to ensure the health and 

maintainability of the system. Neglecting technical debt can 

lead to reduced development efficiency, lower code quality, 

and an increased risk of long-term project failure.  

Technical debt is not just technical debt, it is like a pile of 

garbage, if it is not dealt with for a long time, more garbage 

will be generated around it, so the "broken window effect" 

will have a great impact on the environment of the future 

project, and everyone will gradually lose confidence in 

maintaining the environment. Therefore, when we discuss 

technical debt, we are not only discussing the technical debt 

itself, but also the impact of technical debt on the team's 

confidence in the pursuit of quality and motivation to 

maintain a clean environment [2]. 

II. RELATED WORK  

Currently, identifying technical debt through code 

annotations is a hot research topic in technical debt detection. 

Current research mainly focuses on solving the binary 

classification problem (i.e., categorizing code annotations as 

"SATD" or "non-SATD")[3] without considering the 

maintenance efficiency of different types of SATDs. In fact, 

identifying different types of technical debt is an important 

task that can help developers better understand technical 

debt.Maldonado[1] et al. manually categorized SATDs into 
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different types, such as design debt, requirements debt, defect 

debt, documentation debt, and test debt. They analyzed that 

different types of SATDs can lead to different unexpected 

behaviors[4] that need to be handled by different developers. 

In another empirical study [9], Maldonado and Shihab stated 

that identifying different types of technical debt can help 

developers to better understand technical debt and is 

complementary to existing research related to technical debt 

detection. Thus, identifying different types of technical debt is 

an important addition to the existing research. However, there 

are challenges in identifying these three types of technical 

debt. First, through a survey of code annotations, we found 

that the number of SATD annotations is less than the number 

in the overall framework of our approach. NonSATD 

annotations in projects. The number of different types of 

SATD annotations in the same project also varies greatly. For 

example, in the JFreeChart[5] project, the number of design 

debt comments is about 20 times higher than the number of 

defect debt comments and about 15 times higher than the 

number of realization debt comments. Second, different types 

of technical debt may share some of the same characteristics. 

Learning useful semantic information for different types of 

technical debt comments is difficult.  

 

Deep generative models (e.g., GAN and VAE)[6] are 

effective for data augmentation mainly because these models 

learn the underlying structure and distribution of the data, thus 

generating new data with richness and realism. These newly 

generated data can help improve the performance of 

downstream tasks for the following main reasons. 

 

Data diversity: Deep generative models can generate new data 

samples in the learned latent space that not only have similar 

characteristics to the training data, but also have some 

diversity. By introducing these new data samples, the 

diversity of the training data set can be increased, which helps 

to improve the generalization ability of the model.  

 

Insufficient data situation: In the case of limited training data, 

data augmentation using deep generative models can 

effectively expand the data set, which helps the model to 

better learn the distribution of the data. In this case, the 

generated data can help the model better adapt to the 

insufficient data domain.  

 

Introduction of noise and transformations: Data generated by 

deep generative models (especially GANs) usually come with 

a certain amount of noise and transformations, which can be 

considered as perturbations of the original data. These 

perturbations help train the model to be more robust to noise 

and transformations, and thus perform better in real-world 

applications.  

 

Generate task-relevant data: By conditioning the deep 

generative model (e.g. conditional GAN), it is possible to 

generate data of a specific class or with specific attributes. 

This approach allows the generation of targeted data based on 

the needs of the downstream[7] task, thus improving the 

performance of the model on a specific task.  

 

In this paper, we propose a capsule generative network text 

classification model CoTCapNet for the task of 

selfrecognition technical debt classification. In the 

preprocessing stage, the original data distribution is learned 

by a deep generative model with co-training approach to 

reduce the class imbalance of small samples, and then a 

graphical convolutional neural network is used as a 

sub-module to encode the syntactic dependency tree to extract 

the syntactic information in the text, which is further 

integrated with the sequence information and dependency 

fusion to improve the effect of text classification. Through the 

model classification effect validation experiments, grammar 

module validation experiments, and module ablation 

experiments, the effect of this paper's model on text 

categorization and multi-label text categorization tasks is 

verified, the function of the grammar module is argued, and 

the combined effect proves the principle of graph 

convolutional neural network, capsule network, and 

multi-head attention. Future work will further optimize the 

model for other downstream text categorization tasks, such as 

the technical debt repayment model. 

III. METHOD  

A. CoT Training  

For continuous discrete data with tractable density, such as 

natural language, generative models are mainly optimized by 

maximum likelihood estimation (MLE), which inevitably 

introduces an exposure bias.This leads to the fact that, given a 

finite set of observations, the parameters of the model that are 

optimally trained by MLE do not correspond to those that 

give the best generation quality. Specifically, the model is 

trained on the input data distribution and tested on a different 

input distribution (i.e., the learning distribution). This 

discrepancy means that the model is never exposed to errors 

during the training phase, and thus errors made along the way 

will accumulate rapidly during the testing phase.  

Because gradient computation requires backpropagation 

through the output of the generator (i.e., the data), GANs can 

only model distributions of continuous variables, making 

them unsuitable for generating discrete sequences such as 

natural language. Researchers then proposed Sequential 

Generative Adversarial Networks (SeqGAN), which uses a 

model-free policy gradient algorithm to optimize the original 

GAN objective. With SeqGAN, the expected JSD between 

the current discrete data distribution and the target discrete 

data distribution is minimized when training is 

perfect.SeqGAN shows significant improvement in many 

tasks. Since then, many variants of SeqGAN have been 

proposed to improve its performance. Nevertheless, 

according to a previous investigation, SeqGAN is not an ideal 

algorithm to solve the problem and current algorithms based 

on it cannot show stable, reliable and observable 

improvements covering all scenarios.  

 

According to Cooperative Training (CoT)[8], a new 

algorithm for training likelihood-based generative models on 

discrete data by directly optimizing the well-estimated 

Jensen-Shannon scatter, proposed by Lu et al. CoT 

coordinates the training of a generative module, G, and an 

auxiliary predictor module, M (called the mediator), which is 

used to guide G in a cooperative manner.  

 

At each iteration, a number of samples are taken from G and 

an equal number of samples are randomly selected from the 

training data[9], and the two are mixed and used to train M. 
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Since in this case we are only concerned with the likelihood 

estimation of M with respect to the given samples, our use of 

MLE in training M does not give rise to the kinds of problems 

that arise in the general sense. After training M, for a set of 

samples s from G, the estimate M(s) given by M is used 

instead of the true value M*(s) to obtain an approximate 

estimate of the JSD. Convergence to the target distribution is 

achieved by minimizing this approximate estimate as G is 

trained. With some derivations, we can give the objective 

function of each of the two modules in this algorithm [10]: 

 
 

Advantages over previous methods CoT have several 

practical advantages over previous methods, including MLE, 

scheduled sampling (SS), and adversarial methods such as 

SeqGAN. First, although the goal of both CoT and GAN is to 

optimize the estimated JSD, CoT is more stable than GAN. 

This is because the two modules, i.e., the generator and the 

mediator, have similar tasks, i.e., they deal with the same data 

distributions[11] as the generative and predictive models, 

respectively.The superiority of CoT over incoherent methods 

such as predetermined sampling is reliable because CoT has a 

systematic theoretical explanation for its behavior[12]. CoT is 

less computationally expensive than methods such as 

SeqGAN, which require pre-training to reduce variance. In 

particular, the computational complexity of CoT is the same 

as that of MLE under the recommended settings.  

 

Moreover, CoT works independently. In fact, it does not 

require pre-training of the model by traditional methods such 

as MLE. This is an important property of unsupervised 

learning algorithms for continuous discrete data, as it 

eliminates the need to use supervised approximation to reduce 

variance or complex smoothing. 

 

B. Capsule  

The following classification model consists of four modules, 

as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data preprocessing module: the preprocessing process 

consists of data filtering, altered record deletion, tokenization, 

deactivated word removal, and word shape reduction.  

 

Attention module: it consists of an attention layer that uses 

multiple attention heads[13]. It encodes the dependencies 

between words and important word information in a text 

sequence to form a textual representation.  

 

Grammar module: consists of GCN[14]. It encodes the 

grammatical dependency tree and extracts the grammatical 

information in the text to form the textual representation.  

 

Capsule network module: it is a 5-layer capsule network. 

Based on the text representation output from the Attention 

Module and the Grammar Module, it further extracts the text 

semantic and structural information to categorize the text.  

IV. EXPERIMENTAL RESULTS  

A. Dataset  

The dataset is derived from a review of 10 projects compiled 

by Maldonado, including Ant, ArgoUML, Columba, EMF, 

Hibernate, JEdit, JFreeChart, JMeter, JRuby, and 

Squirrel[15].These data are publicly available and accessible 

to researchers. Extreme imbalances are observed in the data. 

For example, in the case of deficient debt, there are 472 

deficient debts across the 10 programs, compared to 58,204 

non-SATDs, which is approximately 125 times the number of 

deficient debts. Only 6.50% of the code comments are SATD 

comments, and the number of non-SATD comments is about 

14.38 times the number of SATD comments. In addition, 

11.84%, 67.81%, and 18.99% of the technical debts are defect 

debts, design debts, and realization debts, while only 2.13% 

and 1.4% of the technical debts are test debts and 

documentation debts. The number of comments belonging to 

different types of SATD is highly unbalanced compared to 

non-SATD comments. This extreme data imbalance can make 

categorization very difficult. In addition, they categorized 

self-identified technical debt into five categories, including 

design debt, defect debt, documentation debt, requirements 

debt, and test debt.  

B. Evaluation Indicators  

In this paper, we use four commonly used metrics, i.e., 

precision, recall, and F-measure, to measure the performance 

of the method. If the predicted category matches the true 

category, it is a correct classification result, such as true 

positive (TP) and true negative (TN). Similarly, if there is a 

mismatch, it is a misclassification result, such as false positive 

(FP) and false negative (FN)[16]. TP means that the predicted 

result belongs to SATD and the true result belongs to SATD. 

TN means that the predicted result does not belong to SATD 

and the final true result does not belong to SATD. FP means 

that the predicted result is not SATD, but the final true result 

is SATD.  

 

FN indicates that the predicted result belongs to SATD, but 

the real result does not belong to SATD. different classifiers 

have different experimental results. Precision indicates the 

proportion of samples predicted as positive by the model in 

which the true result is also positive, as shown in equation (4). 

 

Fig. 1. Capnet model structure diagram 
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Recall represents the ratio of samples with positive model 

predictions to those with positive predictions, as shown in 

equation (5). 

 
Since the checking accuracy and the checking rate cannot 

fully evaluate the performance, F-Measure is supplemented 

and introduced. as shown in Eq. From equation (6), it can be 

seen that the reconciled mean value of the check rate and the 

check rate tends to be close to the smaller value, so a higher 

value of F-Measure can indicate that both the check rate and 

the check rate are higher. 

 

C. Experiment Result  

The experimental parameters of our work are as follows. A 

300-dimensional word2vec word vector is input to the model, 

the attention module uses two attention heads, the first layer 

of the capsule network module uses 32 convolutional filters 

with a window size of 3, the second layer uses 32 

transformation matrices with 16-dimensional capsule vectors, 

and the third layer uses 16 transformation matrices with a 

window size of 3. The last layer uses 9 capsule vectors to 

represent the 9 categories. For model training, a mini-batch 

with a batch size of 25 is used, the training batch is controlled 

to be 20, and the learning rate is set to 0.001.  For model 

testing, for single-label classification tasks, the category label 

corresponding to the capsule vector with the largest module 

length is taken. For multi-label classification tasks, the 

category label corresponding to the capsule vector with a 

module length greater than 0.5 is taken 

 

Table.1. Precision against other models 

Projects CNN GRU SGRU BiLSTM ours 

Ant 0.571 0.33 0.429 0.416 0.51 

ArgUML 0.42 0.4 0.457 0.51 0.63 

Columba 0.7 0.75 0.79 0.66 0.83 

EMF 0.4 0.85 1.0 0.541 1.0 

Jedit 0.571 0.575 0.583 0.4 0.699 

Avg 0.563 0.55 0.692 0.61 0.71 

JRuby 0.63 0.69 0.904 0.718 0.85 

JMeter 0.65 0.655 0.67 0.674 0.742 

Squirrel 0.5 0.53 0.529 0.55 0.57 

Hbernate 0.878 0.7 0.854 0.76 0.869 

 

Table.2.Recall against other models 

Projects CNN GRU SGRU BiLSTM ours 

Ant 0.308 0.23 0.462 0.4 0.51 

ArgUML 0.638 0.64 0.669 0.51 0.63 

Columba 0.538 0.57 0.692 0.66 0.86 

EMF 0.25 0.23 0.25 0.241 0.27 

Jedit 0.093 0.07 0.163 0.04 0.199 

Avg 0.348 0.31 0.348 0.361 0.37 

JRuby 0.056 0.09 0.584 0.318 0.61 

JMeter 0.5 0.49 0.545 0.14 0.53 

Squirrel 0.208 0.31 0.375 0.35 0.41 

Hbernate 0.558 0.68 0.673 0.46 0.687 

 

Table.3. F-Measure against other models 

Projects CNN GRU SGRU BiLSTM ours 

Ant 0.4 0.33 0.44 0.46 0.48 

ArgUML 0.506 0.54 0.543 0.51 0.6 

Columba 0.609 0.75 0.72 0.6 0.73 

EMF 0.308 0.39 0.4 0.341 0.44 

Jedit 0.16 0.15 0.255 0.14 0.199 

Avg 0.396 0.33 0.557 0.561 0.61 

JRuby 0.102 0.17 0.709 0.718 0.785 

JMeter 0.55 0.655 0.6 0.64 0.681 

Squirrel 0.294 0.53 0.439 0.55 0.57 

Hbernate 0.682 0.7 0.753 0.67 0.869 

 

The process of our CoTCapNet method is divided into two 

parts. The first part is based on oversampled SATD data from 

CoT. Then, to validate the effectiveness of SCGRU, we 

compare the F-measure of SCGRU with the other four 

methods, i.e., CNN, GRU, SCGRU, and BiLSTM, for five 

types of technical debt (i.e., defect debt, test debt, document 

debt, design debt, and requirements debt). Tables 1, 2, and 3 

show the precision, recall, and F-measures of the five methods 

for identifying defect debt, respectively. The Fmeasure of our 

method outperforms the other four methods on 10 items and 

improves significantly over Columba. Our method 

outperforms the other methods on several items. We can see 

that CNNs have a hard time detecting test debts. Most 

importantly, none of the six methods can detect across items 

on JFreeChart and Squirrel due to lack of training data. 

However, our method can successfully detect them. For 

document debt, the F metric of our method significantly 

outperforms the other methods on ArgoUML and Hibernate, 

and the results on JMeter, JRuby, and Squirrel improve with 

both GRU and SCGRU.  

V. CONCLUSION  

In this paper, we propose an approach called CoTCapNet for 

the identification of multiple classes of SATDs. We use a 

CoT-based deep text generation model to deal with extreme 

data imbalance, and use a combination of an attention 

mechanism and a capsule network model to identify multiple 

classes of SATDs. Five types of technical debt are identified, 

namely, defect debt, test debt, document debt, design debt, 

and requirements debt. Cross-project experiments show that 

our approach significantly outperforms existing methods, 

especially when the data is extremely imbalanced. Our 

proposed method provides new ideas for the practice of 

SATD identification. When performing SATD prediction for 

software projects, we effectively solve some problems where 

SATD cannot be identified due to extreme data imbalance or 

lack of sufficient data. In addition, the proposed method 

successfully identifies multiple categories of SATDs and 

helps to achieve accurate debt localization. In addition, the 

identification of multiple types of SATDs helps in conducting 

other studies on SATDs, such as SATD removal and 

management. If there is an extreme lack of technical debt for a 

particular item, such as fewer than five training samples, even 

if we sample some items for text generation, the generated 

samples may not be sufficient for the classifier to learn 

features due to the small number of samples. Technical data 

volume. In the future, we would like to obtain more data to 

supplement our learning, generate more diverse and valuable 
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technical debt samples, and provide more opportunities to 

validate the effectiveness of our method.  
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