
International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 8 www.ijerm.com


Abstract— Identifying Self-Admitted Technical Debt (SATD)

plays an important role in maintaining software stability and

improving software quality; SATDs need to be repaid in time,

otherwise they may cause serious vulnerabilities or even crash

the software. Identifying SATDs from large project code is a

costly task, and although existing methods can detect SATDs,

and researchers have identified design debt and requirements

debt, there is still a lack of methods to achieve multi-label

classification of SATDs. In this paper, we propose a CoTCapNet

model based on a deep generative model and capsule network,

for both recurrent neural networks and convolutional neural

networks have the problems of insufficient textual feature

extraction and easy to cause the loss of important feature

information, first, we use a text generation model based on CoT

co-training to generate new samples by learning the original

SATD data, which can increase the number of small and

medium SATD samples and reduce the data imbalance, then use

graph convolutional neural network to encode syntactic

dependency trees, construct multi-head attention to encode

dependencies in text sequences, and finally merge with semantic

information through capsule network. Experiments on

crossitem recognition of 10 items show that our approach is

more effective than existing methods such as CNN and text

mining. The proposed CoTCapNet method has strong

advantages, especially in the case of highly unbalanced data.

Index Terms— SATDs identification, Capsule network,

Graph convolutional neural network, Syntactic Dependency

Tree

I. INTRODUCTION

 Software development teams have a common goal when

developing software products, which is to deliver high

quality, bug-free software products within a specified (time or

money) budget[1]. In order to achieve this goal, the

development team needs to allocate development resources

and develop a unified programming specification to ensure

the quality of the delivered final product, but due to some

irresistible factors, such as rapid delivery time and shortened

budget, which make it difficult to achieve the current goal, the

developer needs to take sub-optimal measures to achieve

these goals. When developers continually use sub-optimal

solutions to meet current goals, the accumulation of this

behavior creates technical debt during the development

process. Technical debt is common in software projects. For

example, a developer chooses a technical framework to

implement a feature in a software module, but that technical

framework is deprecated in later releases, and test engineers

perform only simple functional tests in the module, forgetting

Manuscript received March 10, 2024

Liang Li, School of computer science and technology, Tiangong

University, Tianjin, China

about complexity and stress tests. These technical debts are

intentionally or unintentionally introduced into the software

project, and in the future, as software versions and

maintainers change, these unresolved technical debts are

never tracked down and remain in the software program

forever.

Technical debt can manifest itself:

Ad hoc solutions: To quickly implement features or fix bugs,

developers may use ad hoc solutions instead of full design and

implementation.

Future refactoring costs: Technical debt means that at some

point in the future, the development team will have to spend

additional time and resources refactoring code, improving

architecture, or fixing bugs to undo the effects of an

ill-conceived solution that was previously adopted.

Increased complexity: Ad hoc solutions can increase the

complexity of a system, making it more difficult to maintain

and expand in the future.

The key to managing technical debt is to identify it, quantify

it, monitor it, and pay it off as early as possible. This may

mean building time into the development cycle for

refactoring, improving documentation, fixing defects, or

adjusting the architecture to ensure the health and

maintainability of the system. Neglecting technical debt can

lead to reduced development efficiency, lower code quality,

and an increased risk of long-term project failure.

Technical debt is not just technical debt, it is like a pile of

garbage, if it is not dealt with for a long time, more garbage

will be generated around it, so the "broken window effect"

will have a great impact on the environment of the future

project, and everyone will gradually lose confidence in

maintaining the environment. Therefore, when we discuss

technical debt, we are not only discussing the technical debt

itself, but also the impact of technical debt on the team's

confidence in the pursuit of quality and motivation to

maintain a clean environment [2].

II. RELATED WORK

Currently, identifying technical debt through code

annotations is a hot research topic in technical debt detection.

Current research mainly focuses on solving the binary

classification problem (i.e., categorizing code annotations as

"SATD" or "non-SATD")[3] without considering the

maintenance efficiency of different types of SATDs. In fact,

identifying different types of technical debt is an important

task that can help developers better understand technical

debt.Maldonado[1] et al. manually categorized SATDs into

Co-Training and Multi-Level Semantic Extraction Based

Code Debt Detection

Liang Li

http://www.ijerm.com/

Co-Training and Multi-Level Semantic Extraction Based Code Debt Detection

 9 www.ijerm.com

different types, such as design debt, requirements debt, defect

debt, documentation debt, and test debt. They analyzed that

different types of SATDs can lead to different unexpected

behaviors[4] that need to be handled by different developers.

In another empirical study [9], Maldonado and Shihab stated

that identifying different types of technical debt can help

developers to better understand technical debt and is

complementary to existing research related to technical debt

detection. Thus, identifying different types of technical debt is

an important addition to the existing research. However, there

are challenges in identifying these three types of technical

debt. First, through a survey of code annotations, we found

that the number of SATD annotations is less than the number

in the overall framework of our approach. NonSATD

annotations in projects. The number of different types of

SATD annotations in the same project also varies greatly. For

example, in the JFreeChart[5] project, the number of design

debt comments is about 20 times higher than the number of

defect debt comments and about 15 times higher than the

number of realization debt comments. Second, different types

of technical debt may share some of the same characteristics.

Learning useful semantic information for different types of

technical debt comments is difficult.

Deep generative models (e.g., GAN and VAE)[6] are

effective for data augmentation mainly because these models

learn the underlying structure and distribution of the data, thus

generating new data with richness and realism. These newly

generated data can help improve the performance of

downstream tasks for the following main reasons.

Data diversity: Deep generative models can generate new data

samples in the learned latent space that not only have similar

characteristics to the training data, but also have some

diversity. By introducing these new data samples, the

diversity of the training data set can be increased, which helps

to improve the generalization ability of the model.

Insufficient data situation: In the case of limited training data,

data augmentation using deep generative models can

effectively expand the data set, which helps the model to

better learn the distribution of the data. In this case, the

generated data can help the model better adapt to the

insufficient data domain.

Introduction of noise and transformations: Data generated by

deep generative models (especially GANs) usually come with

a certain amount of noise and transformations, which can be

considered as perturbations of the original data. These

perturbations help train the model to be more robust to noise

and transformations, and thus perform better in real-world

applications.

Generate task-relevant data: By conditioning the deep

generative model (e.g. conditional GAN), it is possible to

generate data of a specific class or with specific attributes.

This approach allows the generation of targeted data based on

the needs of the downstream[7] task, thus improving the

performance of the model on a specific task.

In this paper, we propose a capsule generative network text

classification model CoTCapNet for the task of

selfrecognition technical debt classification. In the

preprocessing stage, the original data distribution is learned

by a deep generative model with co-training approach to

reduce the class imbalance of small samples, and then a

graphical convolutional neural network is used as a

sub-module to encode the syntactic dependency tree to extract

the syntactic information in the text, which is further

integrated with the sequence information and dependency

fusion to improve the effect of text classification. Through the

model classification effect validation experiments, grammar

module validation experiments, and module ablation

experiments, the effect of this paper's model on text

categorization and multi-label text categorization tasks is

verified, the function of the grammar module is argued, and

the combined effect proves the principle of graph

convolutional neural network, capsule network, and

multi-head attention. Future work will further optimize the

model for other downstream text categorization tasks, such as

the technical debt repayment model.

III. METHOD

A. CoT Training

For continuous discrete data with tractable density, such as

natural language, generative models are mainly optimized by

maximum likelihood estimation (MLE), which inevitably

introduces an exposure bias.This leads to the fact that, given a

finite set of observations, the parameters of the model that are

optimally trained by MLE do not correspond to those that

give the best generation quality. Specifically, the model is

trained on the input data distribution and tested on a different

input distribution (i.e., the learning distribution). This

discrepancy means that the model is never exposed to errors

during the training phase, and thus errors made along the way

will accumulate rapidly during the testing phase.

Because gradient computation requires backpropagation

through the output of the generator (i.e., the data), GANs can

only model distributions of continuous variables, making

them unsuitable for generating discrete sequences such as

natural language. Researchers then proposed Sequential

Generative Adversarial Networks (SeqGAN), which uses a

model-free policy gradient algorithm to optimize the original

GAN objective. With SeqGAN, the expected JSD between

the current discrete data distribution and the target discrete

data distribution is minimized when training is

perfect.SeqGAN shows significant improvement in many

tasks. Since then, many variants of SeqGAN have been

proposed to improve its performance. Nevertheless,

according to a previous investigation, SeqGAN is not an ideal

algorithm to solve the problem and current algorithms based

on it cannot show stable, reliable and observable

improvements covering all scenarios.

According to Cooperative Training (CoT)[8], a new

algorithm for training likelihood-based generative models on

discrete data by directly optimizing the well-estimated

Jensen-Shannon scatter, proposed by Lu et al. CoT

coordinates the training of a generative module, G, and an

auxiliary predictor module, M (called the mediator), which is

used to guide G in a cooperative manner.

At each iteration, a number of samples are taken from G and

an equal number of samples are randomly selected from the

training data[9], and the two are mixed and used to train M.

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 10 www.ijerm.com

Since in this case we are only concerned with the likelihood

estimation of M with respect to the given samples, our use of

MLE in training M does not give rise to the kinds of problems

that arise in the general sense. After training M, for a set of

samples s from G, the estimate M(s) given by M is used

instead of the true value M*(s) to obtain an approximate

estimate of the JSD. Convergence to the target distribution is

achieved by minimizing this approximate estimate as G is

trained. With some derivations, we can give the objective

function of each of the two modules in this algorithm [10]:

Advantages over previous methods CoT have several

practical advantages over previous methods, including MLE,

scheduled sampling (SS), and adversarial methods such as

SeqGAN. First, although the goal of both CoT and GAN is to

optimize the estimated JSD, CoT is more stable than GAN.

This is because the two modules, i.e., the generator and the

mediator, have similar tasks, i.e., they deal with the same data

distributions[11] as the generative and predictive models,

respectively.The superiority of CoT over incoherent methods

such as predetermined sampling is reliable because CoT has a

systematic theoretical explanation for its behavior[12]. CoT is

less computationally expensive than methods such as

SeqGAN, which require pre-training to reduce variance. In

particular, the computational complexity of CoT is the same

as that of MLE under the recommended settings.

Moreover, CoT works independently. In fact, it does not

require pre-training of the model by traditional methods such

as MLE. This is an important property of unsupervised

learning algorithms for continuous discrete data, as it

eliminates the need to use supervised approximation to reduce

variance or complex smoothing.

B. Capsule

The following classification model consists of four modules,

as shown in Figure 1.

Data preprocessing module: the preprocessing process

consists of data filtering, altered record deletion, tokenization,

deactivated word removal, and word shape reduction.

Attention module: it consists of an attention layer that uses

multiple attention heads[13]. It encodes the dependencies

between words and important word information in a text

sequence to form a textual representation.

Grammar module: consists of GCN[14]. It encodes the

grammatical dependency tree and extracts the grammatical

information in the text to form the textual representation.

Capsule network module: it is a 5-layer capsule network.

Based on the text representation output from the Attention

Module and the Grammar Module, it further extracts the text

semantic and structural information to categorize the text.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset is derived from a review of 10 projects compiled

by Maldonado, including Ant, ArgoUML, Columba, EMF,

Hibernate, JEdit, JFreeChart, JMeter, JRuby, and

Squirrel[15].These data are publicly available and accessible

to researchers. Extreme imbalances are observed in the data.

For example, in the case of deficient debt, there are 472

deficient debts across the 10 programs, compared to 58,204

non-SATDs, which is approximately 125 times the number of

deficient debts. Only 6.50% of the code comments are SATD

comments, and the number of non-SATD comments is about

14.38 times the number of SATD comments. In addition,

11.84%, 67.81%, and 18.99% of the technical debts are defect

debts, design debts, and realization debts, while only 2.13%

and 1.4% of the technical debts are test debts and

documentation debts. The number of comments belonging to

different types of SATD is highly unbalanced compared to

non-SATD comments. This extreme data imbalance can make

categorization very difficult. In addition, they categorized

self-identified technical debt into five categories, including

design debt, defect debt, documentation debt, requirements

debt, and test debt.

B. Evaluation Indicators

In this paper, we use four commonly used metrics, i.e.,

precision, recall, and F-measure, to measure the performance

of the method. If the predicted category matches the true

category, it is a correct classification result, such as true

positive (TP) and true negative (TN). Similarly, if there is a

mismatch, it is a misclassification result, such as false positive

(FP) and false negative (FN)[16]. TP means that the predicted

result belongs to SATD and the true result belongs to SATD.

TN means that the predicted result does not belong to SATD

and the final true result does not belong to SATD. FP means

that the predicted result is not SATD, but the final true result

is SATD.

FN indicates that the predicted result belongs to SATD, but

the real result does not belong to SATD. different classifiers

have different experimental results. Precision indicates the

proportion of samples predicted as positive by the model in

which the true result is also positive, as shown in equation (4).

Fig. 1. Capnet model structure diagram

http://www.ijerm.com/

Co-Training and Multi-Level Semantic Extraction Based Code Debt Detection

 11 www.ijerm.com

Recall represents the ratio of samples with positive model

predictions to those with positive predictions, as shown in

equation (5).

Since the checking accuracy and the checking rate cannot

fully evaluate the performance, F-Measure is supplemented

and introduced. as shown in Eq. From equation (6), it can be

seen that the reconciled mean value of the check rate and the

check rate tends to be close to the smaller value, so a higher

value of F-Measure can indicate that both the check rate and

the check rate are higher.

C. Experiment Result

The experimental parameters of our work are as follows. A

300-dimensional word2vec word vector is input to the model,

the attention module uses two attention heads, the first layer

of the capsule network module uses 32 convolutional filters

with a window size of 3, the second layer uses 32

transformation matrices with 16-dimensional capsule vectors,

and the third layer uses 16 transformation matrices with a

window size of 3. The last layer uses 9 capsule vectors to

represent the 9 categories. For model training, a mini-batch

with a batch size of 25 is used, the training batch is controlled

to be 20, and the learning rate is set to 0.001. For model

testing, for single-label classification tasks, the category label

corresponding to the capsule vector with the largest module

length is taken. For multi-label classification tasks, the

category label corresponding to the capsule vector with a

module length greater than 0.5 is taken

Table.1. Precision against other models

Projects CNN GRU SGRU BiLSTM ours

Ant 0.571 0.33 0.429 0.416 0.51

ArgUML 0.42 0.4 0.457 0.51 0.63

Columba 0.7 0.75 0.79 0.66 0.83

EMF 0.4 0.85 1.0 0.541 1.0

Jedit 0.571 0.575 0.583 0.4 0.699

Avg 0.563 0.55 0.692 0.61 0.71

JRuby 0.63 0.69 0.904 0.718 0.85

JMeter 0.65 0.655 0.67 0.674 0.742

Squirrel 0.5 0.53 0.529 0.55 0.57

Hbernate 0.878 0.7 0.854 0.76 0.869

Table.2.Recall against other models

Projects CNN GRU SGRU BiLSTM ours

Ant 0.308 0.23 0.462 0.4 0.51

ArgUML 0.638 0.64 0.669 0.51 0.63

Columba 0.538 0.57 0.692 0.66 0.86

EMF 0.25 0.23 0.25 0.241 0.27

Jedit 0.093 0.07 0.163 0.04 0.199

Avg 0.348 0.31 0.348 0.361 0.37

JRuby 0.056 0.09 0.584 0.318 0.61

JMeter 0.5 0.49 0.545 0.14 0.53

Squirrel 0.208 0.31 0.375 0.35 0.41

Hbernate 0.558 0.68 0.673 0.46 0.687

Table.3. F-Measure against other models

Projects CNN GRU SGRU BiLSTM ours

Ant 0.4 0.33 0.44 0.46 0.48

ArgUML 0.506 0.54 0.543 0.51 0.6

Columba 0.609 0.75 0.72 0.6 0.73

EMF 0.308 0.39 0.4 0.341 0.44

Jedit 0.16 0.15 0.255 0.14 0.199

Avg 0.396 0.33 0.557 0.561 0.61

JRuby 0.102 0.17 0.709 0.718 0.785

JMeter 0.55 0.655 0.6 0.64 0.681

Squirrel 0.294 0.53 0.439 0.55 0.57

Hbernate 0.682 0.7 0.753 0.67 0.869

The process of our CoTCapNet method is divided into two

parts. The first part is based on oversampled SATD data from

CoT. Then, to validate the effectiveness of SCGRU, we

compare the F-measure of SCGRU with the other four

methods, i.e., CNN, GRU, SCGRU, and BiLSTM, for five

types of technical debt (i.e., defect debt, test debt, document

debt, design debt, and requirements debt). Tables 1, 2, and 3

show the precision, recall, and F-measures of the five methods

for identifying defect debt, respectively. The Fmeasure of our

method outperforms the other four methods on 10 items and

improves significantly over Columba. Our method

outperforms the other methods on several items. We can see

that CNNs have a hard time detecting test debts. Most

importantly, none of the six methods can detect across items

on JFreeChart and Squirrel due to lack of training data.

However, our method can successfully detect them. For

document debt, the F metric of our method significantly

outperforms the other methods on ArgoUML and Hibernate,

and the results on JMeter, JRuby, and Squirrel improve with

both GRU and SCGRU.

V. CONCLUSION

In this paper, we propose an approach called CoTCapNet for

the identification of multiple classes of SATDs. We use a

CoT-based deep text generation model to deal with extreme

data imbalance, and use a combination of an attention

mechanism and a capsule network model to identify multiple

classes of SATDs. Five types of technical debt are identified,

namely, defect debt, test debt, document debt, design debt,

and requirements debt. Cross-project experiments show that

our approach significantly outperforms existing methods,

especially when the data is extremely imbalanced. Our

proposed method provides new ideas for the practice of

SATD identification. When performing SATD prediction for

software projects, we effectively solve some problems where

SATD cannot be identified due to extreme data imbalance or

lack of sufficient data. In addition, the proposed method

successfully identifies multiple categories of SATDs and

helps to achieve accurate debt localization. In addition, the

identification of multiple types of SATDs helps in conducting

other studies on SATDs, such as SATD removal and

management. If there is an extreme lack of technical debt for a

particular item, such as fewer than five training samples, even

if we sample some items for text generation, the generated

samples may not be sufficient for the classifier to learn

features due to the small number of samples. Technical data

volume. In the future, we would like to obtain more data to

supplement our learning, generate more diverse and valuable

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 12 www.ijerm.com

technical debt samples, and provide more opportunities to

validate the effectiveness of our method.

REFERENCES

1) E. da S. Maldonado, E. Shihab, and N. Tsantalis, “Using

natural language processing to automatically detect

self-admitted technical debt”, IEEE Trans. Softw. Eng.,

vol. 43, no. 11, pp. 1044–1062, Nov. 2017.

2) R. Marinescu, “Detection strategies: Metrics-based rules

for detecting design flaws,” in Proc. 20th Int. Conf. Softw.

Maintenance, Chicago, IL, USA, 2004, pp. 350–359.

3) C. Nacimento, S. Matalonga, and J. C. R. Hauck,

“Identifying technical debt cost factors in reflection

activities of an agile projects,” in Proc. XL Latin Amer.

Comput. Conf., Montevideo, Uruguay, 2014, pp. 1– 11.

4) K. W. Church and P. Hanks, “Word association norms,

mutual information, and lexicography,” Comput.

Linguistics, vol. 16, no. 1, pp. 22–29, 1990.

5) W. Liu, S. Wang, X. Chen, and H. Jiang, “Predicting the

severity of bug reports based on feature selection,” Int. J.

Softw. Eng. Knowl. Eng., vol. 28, no. 4, pp. 537–558,

2018.

6) Information explaining API types using text classification,”
in Proc. 37th IEEE/ACM Int. Conf. Softw. Eng.,

Florence, Italy, 2015, vol. 1, pp. 869–879

7) X. Chen et al., “A systemic framework for crowdsourced

test report quality assessment,” Empirical Softw. Eng.,

vol. 25, no. 2, pp. 1382– 1418, 2020.

8) N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou,

“JDeodorant: Identification and removal of type-checking

bad smells,” in Proc. 12th Eur. Conf. Softw. Maintenance

Reengineering, Athens, Greece, 2008, pp. 329–331.

9) G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescap,

“Multiclassification approaches for classifying mobile

app traffic,” J. Netw. Comput. Appl., vol. 103, pp.

131–145, 2018.

10) F. Sebastiani, “Machine learning in automated text

categorization,” ACM Comput. Surv., vol. 34, no. 1, pp.

1–47, 2002.

11) A. Mccallum and K. Nigam, “A comparison of event

models for naive Bayes text classification,” in Proc.

AAAI-98 Workshop Learn. Text Categorization, 1998,

pp. 41–48.

12) N. Beringer, “Fast and effective retraining on contrastive

vocal characteristics with bidirectional long short-term

memory nets,” in Proc. 9th Int. Conf. Spoken

13) Alaparthi S, Mishra M. 2020. Bidirectional Encoder

Representations from Transformers (BERT): a sentiment

analysis odyssey. Available at

http://arxiv.org/abs/2007.01127.

14) Bastings J, Titov I, Aziz W, Marcheggiani D, Sima’an K.

2017. Graph convolutional encoders for syntax-aware

neural machine translation. In: Proceedings of the 2017

Conference on Empirical Methods in Natural Language

Processing. Copenhagen, Denmark, 1957–1967.

15) Eriguchi A, Tsuruoka Y, Cho K. 2017. Learning to parse

and translate improves neural machine translation. In:

55th Annual Meeting of the Association for

Computational Linguistics. Vancouver, Canada, 72– 78.

16) Lewis DD. 1992. An evaluation of phrasal and clustered

representations on a text categorization task. In:

Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieva. Copenhagen, Denmark, 37–50.

17) Marcheggiani D, Titov I. 2017. Encoding sentences with

graph convolutional networks for semantic role labeling.

In: The 2017 Conference on Empirical Methods in

Natural Language Processing. 1506–1515.

http://www.ijerm.com/

	I. INTRODUCTION
	II. RELATED WORK
	III. METHOD
	IV. EXPERIMENTAL RESULTS
	A. Dataset
	B. Evaluation Indicators
	C. Experiment Result

	V. CONCLUSION
	REFERENCES

