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Abstract—Deep learning has been widely applied to multi-view 

3D reconstruction tasks and has achieved significant progress. 

The mainstream solutions mainly rely on 2D encoder 3D 

decoder network architectures to establish mappings between 

views and object shapes. However, these methods are often 

limited by image quality and quantity when processing image 

feature collections, resulting in low-quality 3D shape 

reconstructions. Humans typically use incomplete or noisy 

visual cues to retrieve similar 3D shapes from memory and 

reconstruct the 3D shape of an object. Inspired by this, we 

propose a new method called RSP3D, which explicitly 

constructs shape priors to compensate for missing information 

in images. The shape priors exist in the form of “image-voxel” 
pairs in a memory network and are used to retrieve accurate 3D 

shapes that are highly related to the input image. Additionally, 

we extract information from the retrieved 3D shapes that is 

useful for object recovery. Experimental results indicate that 

RSP3D significantly improves the quality of 3D reconstruction. 

 
Index Terms—3D reconstructions, Multi View, priors, 

memory network.  

 

I. INTRODUCTION 

3D reconstruction is a cross-cutting issue in the fields of 

computer vision and computer graphics, and is also the core 

of many technologies such as computer-aided geometric 

design, computer animation, medical image processing, 

digital media, and robotics. As a generative task, transforming 

a 2D image into a 3D object is undoubtedly a challenging 

ill-posed inverse problem compared to image restoration and 

other tasks. According to the number of input images, the task 

is divided into single-view reconstruction and multi-view 

reconstruction. This article focuses on deep learning-based 

multi-view 3D reconstruction algorithms, aiming to 

reconstruct the shape of 3D objects with voxel representation 

from multiple images.  

At present, most mainstream solutions adopt a basic 

framework that combines 2D encoders and 3D decoders, and 

reshapes their advanced features into two-dimensional 

connections to establish mappings between images and 

voxels. However, multi-view reconstruction still faces a key 

problem - how to effectively aggregate features from any 

number of views.  

In our research, there are four types of fusion strategies. 

After connecting the feature maps from all views, we adjusted 

the pooling-based method to use a pooling layer to compress 
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the feature maps to a specific size. However, this dimension 

reduction is too coarse and leads to significant content loss 

that cannot be avoided. To enable the fusion module to learn, 

the 3D-R2N2 series used a method based on recurrent neural 

networks (RNNs). The features from all views are treated as a 

sequence and processed by a recurrent unit before the 

decoder. However, this method demonstrates inconsistent 

predictions for different arrangements. Additionally, due to 

limited long-term memory, this method is not suitable for 

numerous views as input. To address these shortcomings, an 

attention-based fusion method creates a subnetwork to predict 

the confidence score map for each view and merges features 

based on this. The AttSets and Pix2Vox series that follow this 

idea produce stable reconstructors. The former merges 

features, while the latter mergers voxels directly recovered 

from each view. Recently, some studies have used 

transformer architectures for multi-view reconstruction. 

While leveraging natural advantages, the fusion process is 

integrated into the encoder stage. They perform well when a 

large number of views are input, but the reconstruction quality 

is poor when there are few input images.  

We believe that attention-based fusion performs better and 

more stably compared to other fusion methods, but it still has 

obvious shortcomings. During the prediction of score maps, 

the connections of branches rely solely on the softmax layer 

and there are no learnable parameters, Therefore, it cannot 

adapt to the global state and only trusts the memory of the 

net work.To improve this method, we consider integrating 

shape priors into the attention-based fusion process. 

Specifically, we first extract image features from given 

images through a 2D encoder, and then capture the 

relationship between image features and 3D prototypes with 

the help of attention mecha nisms. In this way, we can obtain 

shape priors.Next, we apply clustering algorithms to the shape 

priors to obtain preliminary representations of objects in 3D 

space. This representation can help us better understand 

image features and allocate them reasonably to corresponding 

3D prototypes.Finally, we combine the obtained shape priors 

with attention-based fusion methods to further optimize the 

matching process between image features and 3D prototypes. 

In this way, we can not only fully utilize the information in 

shape priors but also overcome the shortcomings of 

attention-based fusion methods to better reconstruct 3D 

objects. 

 In conclusion, the main contributions are summarized as 

follows:  

• Tbject shapes highly related to the input image and extract 

useful knowledge from them to form shape prior vectors. By 

adopting cross-modal attention mechanisms, image and shape 

prior information can be effectively fused together and 
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forwarded to the decoder to predict the 3D shape of the 

object.  

• Experimental results show that the proposed RSP3D 

method significantly improves the reconstruction quality on 

the ShapeNet and Pix3D datasets and outperforms the state 

of-the-art methods. 

II. RELATED WORKS 

• Single-view 3D reconstruction. In recent years, estimating 

3D shapes from single-view images has attracted a lot of 

attention. PointSetGeneration generates 3D shapes based on 

point cloud representations. Pixel2Mesh represents objects 

with triangle meshes and processes them with graph 

convolutional networks (GCN). Voxel representations are 

common. 3DCNN is used directly to modify voxel grids. 

Generative adversarial networks (GANs) propose 3DGAN 

and 3DIWGAN to solve 3D object generation problems, and 

combine variational autoencoders (VAEs) to convert these 

works’ generators into single-view reconstructors. For 

high-resolution results, OGN adopts an octree representation 

to overcome huge memory budget issues and designs a 

network to process it directly. However, Matryoshka 

Networks recursively decompose 3D shapes into nested shape 

layers. To bridge the gap between synthetic and real-world 

data, DAREC and VPAN introduce domain-adaptive 

supervision during training. To supplement missing 

information in images, Mem3D builds a memory network to 

provide accumulated prior information from a training set.  

•Multi-view 3D Reconstruction. Traditional reconstruction 

methods such as SFM and SLAM rely on matching features to 

establish relationships between different views, but they have 

significant limitations in practical applications. Recently, 

methods based on deep learning have become popular for 

multi-view 3D reconstruction, typically without the need for 

viewpoint labels. This approach utilizes 2D CNNs to predict 

dense point clouds representing 3D object surfaces. In 

Pixel2Mesh++, coarse meshes can be iteratively improved 

through a series of deformations predicted by GCN to 

produce final results. This method utilizes voxel 

representations and focuses on how to merge features from 

multiple views. Max pooling layers are used to compress 

concatenated features from all views. The 3D-R2N2 series 

and LSM receive views one by one through recursive units 

and extract useful knowledge. EVolT and LegoFormer 

leverage the advantages of transformer architectures to 

achieve information fusion between various views during the 

encoder stage. As the most stable method currently, AttSets 

and Pix2Vox series apply attention modules to multi-branch 

tasks, but lack information exchange between branches. 

• Memory Network. The Memory Network was first 

proposed in , which enhances the neural network with external 

memory modules to enable the network to store long-term 

memories. Subsequent work has improved the memory 

network to enable end-to-end training. Hierarchical Memory 

Networks have been proposed, which allow the reading 

controller to access large-scale memory effectively. 

Key-Value Memory Networks store prior knowledge in a 

key-value structured memory, where keys are used to address 

and retrieve relevant memories with corresponding values 

III. METHOD 

In existing single-view 3D reconstruction methods [36,28, 

37, 4], the shape priors are learnt into model parame-ters, 

which leads to low quality reconstructions for images 

containing heavy occlusion and noisy backgrounds. To 

alleviate this issue, the proposed RSP3D explicitly constructs 

the shape priors using a Key-Value Memory Network [17]. 

Specifically, the image encoder extracts features from the 

input image. During training, the extracted features and the 

corresponding 3D shape are then stored in the memory 

network in a key-value fashion. For both training and testing, 

the 3D shapes whose corresponding keys have high 

similarities are forwarded to the LSTM shape encoder. After 

that, the LSTM shape encoder generates a shape prior vector. 

Finally, the decoder takes the both image features and the 

shape prior vector to reconstruct the 3D shape of the object. 

A. Memory Network 

The memory network aims to explicitly construct the shape 

priors by storing the “image-voxel” pairs, which memorize 

the correspondence between the image features and the 

corresponding 3D shapes.The memory items are constructed 

as: [key, value, age], which is denoted as M = {(Ki,Vi, Ai)m 

i=1}, where m denotes the size of the memory. The “key” and 

“value” memory slots store the image features and the 

corresponding 3D volume, respectively. The “key” Ki ∈  R
nk

 

is used to compute the cosine similar ities with the input image 

features. The “value” Vi ∈  R
nv

 is returned if the similarity 

score between the query and thekeys of memory exceeds a 

threshold. The nk and nv are dimension of the memory “key” 

and memory “value”, respectively. The “age” Ai ∈  N 

represents the alive time of the pair, which is to set to zero 

when the pair is matched by the input image features. The 

memory network overwrites the “oldest” pair when writing 

new pairs. 

B. LSTM Shape Encoder 

The value sequence V retrieved by the memory 

readercontains 3D shapes that are similar to the object in the 

input image. The value sequence from the memory reader is 

length-variant and has been ordered by the similarities. 

Intuitively, different parts of different shapes in the value 

sequence may have a different importance in reconstructing 

the 3D shape from the current image. To contextually 

consider and incorporate knowledge useful for current 

reconstruction from the value sequence into the image feature 

to supplement the occluded or noisy parts, we leverage LSTM 

[9] to encode the value sequence V in a sequential manner. 

The LSTM shape encoder takes the length-variant value 

sequence as input and outputs a fixed-length “shape prior 

vector”. The “shape prior vector” is then concatenated with 

the input image feature to provide extra useful information for 

the shape decoder. 

C. Network Architecture 

Image Encoder. The image encoder contains the first 
threeconvolutional blocks of ResNet-50 [8] to extract a 

512×28
2 
feature map from a 224 × 224 × 3 image. Then the 

ResNet is followed by three sets of 2D convolutional layers, 

batch normalization layers and ReLU layers. The kernel sizes 

of the three convolutional layers are 32, with a padding of 1. 

http://www.ijerm.com/
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There is a max pooling layer with a kernel size of 22 after the 

second and third ReLU layers. The output channels of the 

three convolutional layers are 512, 256, and 256, 

respectively. 

LSTM Shape Encoder. The shape encoder is an LSTM 

[9]network with 1 hidden layer. The hidden size is set to 2,048 

which indicates that the output shape prior vector is a 2,048 

dimensional vector.  

Shape Decoder. The decoder contains five 3D transposed 

convolutional layers. The first four transposed convolutional 
layers are of kernel sizes 43, with strides of 2 and paddings of 

1. The next transposed convolutional layer has a bank of 13 

filter. Each of the first four transposed convolutional layers is 
followed by a batch normalization layer and a ReLU, and the 

last transposed convolutional layer is followed by a sigmoid 

function. The output channel numbersof the five transposed 
convolutional layers are 512, 128, 32,8, and 1, respectively. 

The final output of decoder is a 323
voxelized shape. 

 
Figure 1. The proposed RSP3D reconstruct the 3D shape of 

an object from a single input image. The Memory Network 

learns to retrieve 3D volumes that are highly related to the 

input image. The LSTM Shape Encoder is proposed to 

contextually encode multiple 3D volumes into a shape prior 

vector, which provides the information that helps to recover 

the 3D shape of the object’s hidden and noisy parts. 

IV. EXPERIMENTS 

A. Datasets 

ShapeNet. The ShapeNet dataset [2] is composed of 

synthetic images and corresponding 3D volumes. We use a 

subset of the ShapeNet dataset consisting of 44K models and 

13 major categories following [4]. Specifically, we use 

renderings provided by 3D-R2N2 which contains 24 random 

views of size 137 × 137 for each 3D model. We also apply 

random background augmentation [36, 22] to the image 

during training. Note that only the ShapeNet dataset is used 

for training Mem3D. 

Pix3D. The Pix3D [24] dataset contains 395 3D models of 

nine classes. Each model is associated with a set of real 

images, capturing the exact object in diverse environments. 

The most significant category in this dataset is chairs. The 

Pix3D dataset is used only for evaluation. 

B.  Evaluation Metrics 

We apply the intersection over union (IoU) and F-score 

evaluation metrics widely used by existing works. The IoU 

is formulated as 

 
where p(i, j, k) and gt(i, j, k) indicate predicted occupancy 

probability and ground-truth at (i,j,k), respectively. I is 

thindication function which will equal to one when the 

requirements are satisfied. The t denotes a threshold, t = 0.3 in 

our experiments. Following Tatarchenko et al. [26], we also 

take F-Score as an extra metric to evaluate the performance of 

3D reconstruction results, which can be defined as 

 
where P(d) and R(d) denote the precision and recall with 

adistance threshold d, respectively. P(d) and R(d) are 

computed as 

 
where R and G represent the predicted and ground truth point 

clouds, respectively. nR and nG are the number of points in R 

and G, respectively. To adapt the F-Score to voxel models, 

like existing works [36], we apply the marching cube 

algorithm [13] to generate the object surface, then 8,192 

points are sampled from the surface to compute F-Score 

between predicted and ground truth voxels. A higher IoU and 

F-Score indicates better reconstruction results. 

C. Experiment Result 

We compare the performance with other state-of-the- art 

methods on the ShapeNet testing set. Tables 1 and 2 show the 

IoU and F-Score@1% of all methods, respectively, which 

indicates that Mem3D outperforms all other competitive 

methods with a large margin in terms of both IoU and 

F-Score@1%. Our Mem3D benefits from the memory 
network which explicitly constructs shape priors and applies 

them according to an object’s individual needs to improve 

reconstruction quality. 

 
Table 1. Evaluation and comparison of the performance on 

ShapeNet using IoU / F-Score@1%. The best results are 

highlighted in bold. 

V.  CONCLUSION 

In this paper, we propose a novel framework for 3D object 

reconstruction, named RSP3D. Compared to the existing 

methods for single-view and mutil-view 3D object 

reconstruction that directly learn to transform image features 

into 3D representations, RSP3D constructs shape priors that 

are helpful to complete the missing image features to recover 

the 3D shape of an object that is heavy occluded or in a 

complex environment. Experimental results demonstrate that 

RSP3D significantly improves the reconstruction quality and 
performs favorably against state-of-the-art methods on the 

ShapeNet and Pix3D datasets. 
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