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Abstract— The real-time scheduling of automatic guided 

vehicles (AGV) in flexible manufacturing system (FMS) is 

observed to be highly critical and complex due to the dynamic 

variations of production requirements such as an imbalance of 

AGV loading, the high travel time of AGVs, variation in jobs, 

and AGV routes to name a few. The output from FMS 

considerably depends on the efficient scheduling of AGV in the 

FMS. This paper mainly studied intelligent logistics scheduling 

of automated guided vehicle(AGV) in job shop. AGV logistics 

scheduling optimization model was established to minimize the 

travel time of AGV and to reduce energy consumption of AGV. 

The multi-objective scheduling is carried out by the application 

of improved grey wolf optimizer (MPGGWO) with task 

sequencing as the constraint condition. Finally, the actual 

logistics scheduling of workshop was taken as example to verify 

the method proposed in this paper. The calculation results show 

that the AGV logistics scheduling model proposed can well 

simulate the AGV scheduling time and energy consumption, 

and the improved grey wolf optimizer (MPGGWO) presents a 

faster convergence speed and a better optimization ability. 

 

Index Terms—Automated guided vehicle, Energy 

consumption, Grey wolf optimization algorithm, Logistics 

scheduling. 

 

I. INTRODUCTION 

 Traditional manufacturing in the production, warehousing 

workshop in the production logistics and transportation 

methods, there are often high labor costs, operating time 

constraints, operational inefficiencies and other issues, in the 

global manufacturing industry competing to seize the 

high-end position in the value chain, through information 

technology, digitalization, intelligence and other 

technological means to promote the manufacturing industry 

to the development of intelligent manufacturing and to 

further advance the industrial technological change has been 

a general trend. 
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Automatic guided vehicles (AGVs) are one of the most 

representative logistics conveyor robots, and since their 

introduction in 1955
[1]

, AGV systems consisting of multiple 

AGVs have been widely used in a variety of manufacturing 

systems and warehousing and distribution areas
[2, 3]

. The task 

of AGVs on the production floor is to transport finished bins 

to the inspection area. According to Gotting, more than 

20,000 AGVs have been used in industrial applications, and 

the use of AGVs for transportation can reduce the labor 

intensity of workers, lower the labor cost of enterprises, and 

improve the productivity of the workshop
[4]

. How to perform 

path optimization for AGVs so that they can provide timely 

and effective scheduling according to the actual production 

situation in the workshop and also reduce the waste of energy 

consumption caused by untimely scheduling. However, how 

to design AGV scheduling algorithms that are more suitable 

for production workshops to achieve faster and more accurate 

transportation operations for production tasks is the great 

challenge facing the current transformation of the domestic 

manufacturing industry to intelligent manufacturing. 

Currently, in the context of AGV task scheduling 

strategy in production plant, Umar et al
[5]

proposed a 

comprehensive hybrid genetic algorithm for optimization of 

various performance parameters of FMS. The FMS 

parameters such as AGV travel time, maximum range, job 

delay penalty cost and avoidance of AGV delays due to 

conflicts were optimized. Fazlollahtabar et al
[6]

solved the 

problem of scheduling multiple Automated Guided Vehicles 

(AGVs) in a manufacturing system by considering the arrival 

dates of AGVs required for material handling in each shop in 

a job shop arrangement. The applied algorithm minimizes the 

maximum completion time of the NP-hard combinatorial 

problem. Komaki and Kayvanfar
[7]

applied the Gray Wolf 

optimization algorithm to a two-stage assembly flow shop 

floor scheduling problem considering the release times of 

manufacturing and assembly operations. Xuesong Shao et 

al
[8]

proposed a multi-objective load task scheduling model 

for AGVs based on vehicle travel distance, task waiting time 

and handling task priority. The loading and unloading 

problem of FMS was solved by Singh and Khan
[9]

. The 

authors proposed an efficient analytical method for solving 

the loading and unloading problem. Similarly, Lu et al
[10]

 

applied the Gray Wolf optimization algorithm to welding 

operations to solve a multi-objective dynamic scheduling 

problem. In order to solve the real-time dynamic scheduling 

problem for welding operations with the objective of 

maximizing the completion time, the scheduling problem was 

formulated taking into account the job quality, machine 
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reliability, and job delays, and controlling the process time, 

sequence dependency time, and job transfer time. The proper 

selection and application of material handling system 

equipment is a strategic decision
[11]

. Chanda and 

Chawla
[12-15]

applied the Modified Modal Particle Swarm 

Optimization (MMPSO) algorithm, Clone Selection (CS) 

algorithm, and Gray Wolf Optimizer (GWO) to synchronous 

scheduling of AGVs and AGV fleet size optimization in 

FMS. Angra et al
[16]

 evaluated the performance of different 

priority scheduling rules when applied to multi-load AGVs 

with variable size FMS configurations. Han
[17]

 et al. proposed 

a new realistic mixed-flow shop scheduling model that 

considers the potential impact of human factors. Experiments 

show that the model can better solve the practical problems in 

foundries and the scheduling scheme fully meets the delivery 

requirements. Wu
[18]

 et al. proposed an improved 

non-dominated sorting genetic algorithm II based on 

similarity scheduling and demonstrated that the algorithm can 

effectively reduce the loading and unloading time of the 

workpiece while guaranteeing a certain maximum 

completion time. 

From the literature studies, it is understood that there are 

few studies for the minimum waiting time and minimum 

travel time scheduling problems for multi-load AGVs, and 

the energy consumption of AGVs during the scheduling 

process is rarely considered. This paper focuses on the 

workshop AGV scheduling optimization problem, the goal is 

to reduce the response time and travel time of the AGV after 

the task occurs, and the introduction of green energy 

consumption indexes, the AGV response time, travel time, 

energy consumption of the three indexes will be weighted and 

unified, and put forward the workshop scheduling model of 

multiple AGVs, which is of great significance for the 

reduction of the production cost of the factory floor. 

 

II. IMPROVEMENT OF THE GRAY WOLF OPTIMIZER 

A. Grey Wolf Optimizer 

The Gray wolf optimizer is a typical bio-heuristic algorithm 

proposed by Seyedali Mirjalili et al
[19]

 in 2014, which is 

inspired by the two behaviors of social hierarchical 

stratification and group predation of prey in gray wolf packs. 

Gray wolves are considered to be top predators at the top of 

the food chain, and their social hierarchy is divided into four 

tiers: alpha, beta, delta and omega, the lower the tier, the 

greater the number of wolves. The position of alpha indicates 

the current optimal solution in the search space. beta and 

delta represent the second and third best solutions in the 

population. The alpha task is to guide the other wolves in 

their search, trying their best to bring the gray wolf 

population towards the global optimal solution. ω wolves 
guide the gray wolf population in a broader search by 

exploring unsearched areas, improving the algorithm's global 

search capabilities
[20]

. Through the interaction and 

cooperation among alpha, beta, delta and omega, the gray 

wolf optimizer is able to simulate the social behaviors and 

collaborations in the gray wolf population to find the optimal 

solution faster. 

The hunting process of the gray wolf can be divided into 

three steps: searching for prey, encircling prey, and attacking 

prey. 

The behavior of encircling prey during a hunt is defined 

as follows: 

  (2.1) 

  (2.2) 

Equation (2.1) represents the distance between an 

individual and its prey, Equation (2.2) is the position update 

formula for the gray wolf. Where t is the number of iterations, 

A and C are the coefficient vectors, and are the prey's 

position vector and the gray wolf's position vector, 

respectively. The formulas for A and C are as follows: 

  (2.3) 

  (2.4) 

Where components of a are linearly decreased from 2 to 

0 over the course of iterations and and   are random 

vectors in [0,1]. 

Gray wolves are able to recognize the location of their 

prey and surround them. Once the gray wolves recognized the 

location of their prey, beta and delta, led by alpha, guided the 

pack to surround the prey, with each individual updating their 

position according to the formula. 

   (2.5) 

Where , ,  denote the distances between alpha, 

beta, delta and other gray wolf individuals respectively; 

， ，  represent the current position of alpha, beta, and 

delta; , , determined by Equation (2.4), represents the 

current position of the individual gray wolf.  

  (2.6) 

  (2.7) 

Equation (2.6) defines the step size and direction of the 

individual omega approaching to alpha, beta, and delta, 

respectively, in the wolf pack, and Equation (2.7) is the 

updated location. 

B. Improved Gray Wolf Optimizer 

There is a strong correlation between the quality of the 

population in the initialization phase and the excellence of the 

algorithm. The standard gray wolf optimizer generally uses a 

random initialization method to generate the initial 

population in the initialization phase, which produces a poor 

diversity of the initial population and fails to achieve a 

uniform distribution of population individuals in the search 

space. Typical characteristics of chaotic mapping are 

randomness, ergodicity, regularity, etc., which can ensure 

population diversity and optimize the global search 

process
[21]

. Chaotic Tent mapping uses the Tent function as a 

mapping function, which under certain initial conditions and 

parameters can generate sequences with chaotic properties as 

an alternative to pseudo-random number generators, which 

usually give better results
[22]

. The chaotic Tent mapping is 

defined as follows: 
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  (2.8) 

Assuming a population size of N, When  and 

, the system is in a chaotic state. 

Genetic algorithms are a series of computational models 

developed by Holland
[23, 24]

, which by applying the principle 

of survival of the fittest, are computational models that 

simulate the process of biological evolution based on the 

principles of natural selection and genetics of Darwin's theory 

of biological evolution, and are capable of searching for and 

determining the optimal solution in the evolutionary process. 

The crossover mutation operator is an operation in genetic 

algorithms used to introduce randomness and diversity into 

the evolutionary process, prompting the population to 

perform a comprehensive search in the solution space, 

thereby improving the algorithm's search performance. 

According to the model mentioned in this paper, the encoding 

of machine task sequences as chromosomes is used, and a 

chromosome is a sequence of task occurrences. For example, 

the chromosomes of an individual are coded as 

(1,3,2,4,7,8,9,6,5) indicating that the order of execution of 

the tasks is to perform the 1st occurring task first, then the 3rd 

occurring task, until all the tasks are performed. When the 

AGV actually performs a task, it needs to take into account 

the maximum number of loaded weights, for example, after 

completing 5 loading tasks, the AGV needs to deliver the 

goods to the unloading point X before going to perform the 

rest of the tasks. Then the actual traveling route of the AGV is 

(1,3,2,4,7, X, 8,9,6,5).  

The crossover strategy used in this paper is two-point 

crossover, as shown in Fig. 1 crossover points are randomly 

set in the coding strings of two individuals paired with each 

other, and part of the chromosomes of the two individuals 

between the two crossover points set are exchanged with 

probability . The mutation strategy employed in this paper 

is multi-point mutation, where each locus of the chromosome 

undergoes a mutation operation with a certain probability : 

  (2.9) 

Where  is the probability of mutation, is the current 

number of iterations, and  is the maximum number of 

iterations. As the number of iterations increases, the 

population tends to fall into a local optimum, and the 

probability of mutation is increased from 0.1 to 0.2 to help 

the population jump out of the local optimum. 

 

 
Figure1: Crossover and Mutation diagram 

 

Existing research on multi population optimization has 

shown that multi population strategies can be easily 

integrated into various heuristic algorithms and usually 

perform better than single population optimization 

algorithms. The effectiveness of multi-population strategies 

lies in
[25-27]

: (1) dividing the entire population into multiple 

sub-populations allows for diversity maintenance as different 

sub-populations can explore different search spaces; (2) it 

enables searching in different regions, facilitating efficient 

identification of optimal solutions; (3) multi-population 

strategies can be easily integrated into various heuristic 

algorithms. In the Grey Wolf Algorithm, as individual 

directions are guided by the three alpha, beta, and delta 

wolves, if the alpha wolf gets trapped in a local optimum, it 

can lead to early convergence of the entire population and 

reduced diversity. Therefore, a multi-population strategy is 

employed to optimize the aforementioned problem. 

The present study first initializes n*N gray wolf 

individuals (1 master population and n-1 slave populations) 

to enhance the algorithm's search capability, while employing 

a leader competition strategy to maintain information 

exchange among n populations. The article proposes a 

population scheme as shown in Fig.2: using a master-slave 

communication model to maintain algorithm 

synchronization, where the main group is associated with the 

subgroups, and each slave node independently executes the 

gray wolf algorithm, including searching for the leader 

individual of the population and updating individual 

positions. 

 

 

Figure2: The master-slave model 

 

  (2.10) 

Equation (2.10) is the calculation formula for the main 

group's leader position. where  represents the best 

individual position of slave population i,   represents the 

best individual position among all the slave nodes,  

represents the second best individual position, and  

represents the third best individual position. 

When all individuals in each node have completed their 

updates, each node sends the best individual of its respective 

population to the master node. The master node then selects 

the top three individuals from all the received individuals as 

the leader wolves of the main group, enabling dynamic 

updates of the master population's leader. The 

multi-population strategy allows the main group to benefit 

from the search experiences of other subgroups, helping to 

avoid getting trapped in local optima and increasing the 

likelihood of discovering the global optimal solution. The 

pseudo-code of MPGGWO is shown in Fig.2. 
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Figure2: Pseudo-code for the MPGGWO algorithm 

 

III. AGV TASK SCHEDULING MODEL 

A. Description of the problem 

Fig.3 depicts the layout of machine positions in the 

workshop, with each machine accompanied by a buffer area. 

There are a total of 30 task points represented by black 

circles, and the black straight line represents the path for the 

Automated Guided Vehicle (AGV) to travel. The black 

circular markers denote the task points, while the black 

ring-shaped circles indicate the unloading points. The AGV 

starts its operation at the unloading point. Upon receiving a 

scheduling task, it selects a feasible path to move towards the 

task point and load the goods. When the cargo reaches a 

certain threshold, denoted as "k," the AGV returns to the 

unloading point to unload the goods before proceeding with 

the next task. This process is repeated until all tasks are 

completed. The objective of this study is to find a reasonable 

task sequence that minimizes the waiting time for AGV 

responses and reduces energy consumption as much as 

possible. 

 
Figure3: Task point distribution of workshop 

 

The provisions for modeling are as follows: 

(1) Work of AGV: Deliver products from the task point to 

the unloading point for unloading. 

 (2) All production facilities have sufficient raw materials, 

and no lack of raw materials will occur. 

 (3) All production equipment will process products 

without interruption due to malfunction. 

 (4) The maximum load of the AGV cannot exceed k 

products. 

 (5) The loading time and unloading time of the product are 

fixed. 

 (6) The AGV receives a loading task and performs only 

one loading task at the mission point. 

 (7) All production equipment and AGVs are operational at 

the start of moment zero. 

 (8) The AGV maintains a constant speed and its travel time 

is only related to the path length and the number of curves it 

passes through. 

 The model parameters are shown in Table I. 

 

Table I Symbol meaning table 

symbol meaning 

 Moment of occurrence of task i 

 Loading time 

 Straight-line travel speed of AGV 

 Curve travel speed of AGV 

 Travel time from unloading point to task point i 

 Travel time from task point i to task point j 

 Moment of completion of task i 

 AGV pending response time for task j 

 Curve travel distance of AGV 

 Straight-line travel distance of AGV 

 Operating power of AGV 

 Standby power of AGV 

 AGV running time 

 AGV standby time 

 Time cost 

 Energy cost 

 AGV scheduling cost 

 

B. Description of the AGV Task Scheduling Model 

In the logistics scheduling of workshop, the main factors 

affecting the scheduling time of AGVs are the traveling time 

of AGVs between task points and the standby response time 

after receiving a scheduling task. AGVs are not running every 

moment during the whole scheduling period, and if there is no 

new task to schedule AGVs will remain in standby at the 

previous task point. The operation power of AGV is much 

larger than the standby power, therefore, finding an optimal 

task sequence to make the operation time of AGV and the 

energy consumption of AGV operation less is the key of this 

paper. Considering the above factors, the scheduling model is 

established as follows: 

  (3.1) 

  (3.2) 

  (3.3) 

  (3.4) 
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  (3.5) 

  (3.6) 

  (3.7) 

  (3.8) 

  (3.9) 

Where  and  are weight coefficients.  

represents the operational power of the vehicle. Equation 

(3.4) represents the travel time of the vehicle from task point 

i to j, If the vehicle reaches its maximum load capacity when 

completing task i, it needs to return to the unloading point to 

unload the goods before proceeding to execute task j. 

Equation (3.5) represents the completion time of task j. 

Equation (3.6) represents the waiting time for task j, which is 

the time that has elapsed since task i was completed until task 

j occurs. If task j occurs after task i has been completed, the 

waiting time for task j is considered to be 0. Equation (3.7) 

represents the total running time of the vehicle. Equation 

(3.8) represents the total idle time of the vehicle. Equation 

(3.9) represents the objective function for the vehicle's energy 

consumption. 

Equation (3.2) represents the total objective function for a 

single vehicle, converting the multi-objective model of AGV 

scheduling in a production workshop to a single-objective 

model. The Analytic Hierarchy Process (AHP) is used for 

assigning values. The relative importance scores for the three 

factors affecting the objective function, namely AGV 

response time, running time, and energy consumption, were 

determined through expert assessment to determine their 

relative weights. The consistency-checked weight 

coefficients obtained are shown in Table II. The total 

objective function for n AGV vehicles is given by Equation 

(3.1). 

 

Table II Weight evaluation table 

  

0.7703 0.2297 

77.03% 22.97% 

 

IV. EXPERIMENTAL SIMULATION AND ANALYSIS 

A.  Simulation Experiment Environment 

The simulation environment of this paper is AMD 

Ryzen 7 6800H with Radeon Graphics CPU, 3.20 GHz 

running memory 32GB, operating system Windows11, 

programming environment MatlabR2022b. 

B.  Comparison Algorithms and Parameter Settings 

In order to verify the effectiveness and superiority of the 

MPGGWO algorithm mentioned in this paper for solving the 

AGV task scheduling, this paper uses three different sets of 

task data as shown in Table III, Table IV and Table V, and 

seeks for the optimal scheduling result using Equation (3.1) 

as the objective function. The GWO algorithm, GGWO 

algorithm, MPGWO algorithm and MPGGWO algorithm 

mentioned in this paper are compared and analyzed. The 

specific parameters of each algorithm are shown in Table VI. 

 

 

Table III Task1 data sheet 

Task 

number 

Machin

e 

number 
 

Task 

number 

Machine 

number  

1 10 16 9 15 284 

2 3 67 10 2 311 

3 7 96 11 4 351 

4 14 149 12 11 370 

5 6 181 13 13 410 

6 12 199 14 8 418 

7 1 207 15 5 479 

8 9 238    

 

Table IV Task2 data sheet 

Task 

number 

Machin

e 

number 
 

Task 

number 

Machine 

number  

1 19 37 13 11 633 

2 12 89 14 5 657 
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3 21 155 15 22 686 

4 18 172 16 17 741 

5 8 202 17 3 766 

6 2 221 18 16 821 

7 9 256 19 1 841 

8 4 307 20 10 884 

9 6 399 21 15 903 

10 13 426 22 20 947 

11 24 522 23 7 956 

12 23 574 24 14 992 

 

Table V Task3 data sheet 

Task 

number 

Machin

e 

number 
 

Task 

number 

Machine 

number  

1 25 5 16 21 373 

2 4 7 17 28 444 

3 13 13 18 18 489 

4 20 79 19 15 522 

5 30 102 20 26 532 

6 2 117 21 22 550 

7 23 161 22 24 618 

8 3 191 23 10 695 

9 14 269 24 17 749 

10 12 274 25 9 754 

11 7 293 26 6 760 

12 1 308 27 19 817 

13 11 312 28 8 844 

14 29 331 29 27 875 

15 16 360 30 5 961 

 

Table VI Algorithm parameter settings 

Algorithm Parameter settings 

GWO 
,  , ,  and 

 are the random number of the interval  

GGWO 

,  , ,  and 

 are the random number of the interval , 

,  

MPGWO ,  , ,  and 
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 are the random number of the interval ,  

MPGGWO 

,  , ,  and 

 are the random number of the interval , 

, ,  

C.  Experimental Results and Analysis 

Table VII shows the optimization results of the four 

algorithms under different tasks, and 30 sets of data were 

used to compare the superiority of the algorithms 

respectively. When the problem size is simple, the 

improvement of the improved algorithms is not obvious. 

When the complexity of the problem increases, the improved 

algorithm MPGGWO has a more prominent optimization 

searching ability, and the effect is improved by 14.14% and 

13.08% in Task 2 and Task 3, respectively. 

 

 

Table VII The result of the comparison of MPGGWO with GWO, GGWO and MPGWO  

Task Index GWO GGWO   MPGWO MPGGWO 

Task1 

Best 716.9905 716.9905 716.9905 716.9905 

Avg 808.7612 767.6604 798.8993 754.0125 

Worst 993.1095 911.3037 889.8246 900.7682 

 Best 929.3597 957.1789 957.1789 929.3597 

Task2 Avg 1251.0901 1161.051 1103.7189 1074.7294 

 Worst 1610.9565 1561.7177 1473.703 1305.5817 

 Best 2250.2054 2214.8273 2116.3107 2052.9883 

Task3 Avg 2752.4221 2601.6227 2504.3359 2392.0506 

 Worst 3722.8201 3190.496 3038.1803 2623.3984 

 

 

Figure4: Box plot of various algorithms on task1, task2 and task3 

 

 

Figure5: Convergence curves of various algorithms on task1, task2 and task3 

 

Fig.4 shows the box plot comparison of the four 

algorithms under different tasks, and the results of 30 sets of 

experiments were used to analyze the experimental data of 

the MPGGWO algorithm, which is more stable and has not 
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appeared dirty data, and has achieved a more satisfactory 

result. 

Fig.5 shows the convergence images of the four 

algorithms under different task sizes. By analyzing the 

convergence graph, it can be seen that the traditional GWO 

algorithm has the problem of slow convergence in planning 

the optimal task sequence, and the MPGGWO algorithm 

proposed in this paper further improves the convergence 

speed of the global search at the initial stage, and the optimal 

solution of multiple experiments is also more stable. The 

MPGGWO algorithm effectively improves the deficiencies 

of the traditional GWO algorithm in optimizing the solution, 

and improves the overall convergence performance and local 

search performance of the algorithm. It can be seen that the 

MPGGWO algorithm has better comprehensive optimization 

ability in the AGV task scheduling problem, which helps to 

reduce the waiting response time of the machine in the 

workshop and the energy consumption of the AGV operation. 

 

V.   CONCLUSIONS 

In this paper, an optimization model combining AGV 

pending response time and energy consumption is established 

for the characteristics of the workshop AGV scheduling 

problem, for which an improved gray wolf algorithm, 

MPGGWO, is proposed, which mainly improves the 

traditional grey wolf optimizer from the initialization of the 

population, the introduction of the Crossover and mutation 

and the multi-population collaboration. To address the 

defects of the traditional GWO algorithm that the initialized 

population is not uniformly distributed, this paper introduces 

the chaotic Tent mapping to initialize the gray wolf 

population to increase the randomness and diversity of the 

population, to expand the search space, to accelerate the 

convergence speed, and to improve the robustness of the 

algorithm. Aiming at the traditional grey wolf optimizer, 

which is easy to fall into the local optimal solution problem, 

this paper proposes the elite retention and multiple 

population synergy strategies, so that the algorithm can jump 

out of the local optimum in the iterative process. Simulation 

experiments show that under three groups of simulation 

experimental scenarios with different complexity, the 

MPGGWO algorithm in this paper has certain superiority in 

terms of optimality seeking ability and stability in AGV task 

scheduling. It has greater practical significance for solving 

the workshop AGV scheduling problem. 
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