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 
Abstract— Since its birth, convolutional neural network (CNN) 

has been widely used in many fields. FPGA implementations of 

CNNs have attracted widespread attention due to their high 

performance and energy efficiency. However, some current 

computing architectures do not fully utilize the computing 

power of FPGAs and can only accelerate a single network. In 

addition, the traditional method of developing FPGA 

accelerators using Verilog cannot meet the diverse needs and 

flexibility of accelerators. Therefore, this paper proposes a 

parameterized configuration of a general convolutional neural 

network accelerator. In order to improve the computing 

throughput and frequency, we adopt a systolic array 

architecture to implement the computing unit of this accelerator. 

Furthermore, in order to effectively meet the diverse needs of 

industry and academia, we adopted an agile development 

approach using Spi-nalHDL. The accelerator was ultimately 

deployed on various boards such as VU9P and tested using 

representative algorithms in convolutional neural networks 

(YOLOv4-Tiny). Experimental results show that when the 

accelerator runs at a frequency of 200 MHz and accelerates the 

YOLOv4-Tiny algorithm, the FPS is 85.09. Has excellent 

acceleration effect. 

 

Index Terms—FPGA, Systolic array, CNN accelerator. 

 

I. INTRODUCTION 

  Research on FPGA-based convolutional neural network 

acceleration[1] has become a focal point in the fields of deep 

learning and computer vision. FPGAs enable customized 

designs tailored to different application scenarios and 

requirements. They can accelerate convolutional operations 

through techniques such as parallelization and pipelining, 

significantly enhancing the computational efficiency of 

CNNs. Moreover, FPGAs support dynamic adjustment and 

real-time deployment of networks, making them highly 

promising for low-power scenarios like embedded systems 

and mobile devices. 

 In current research, FPGA-based acceleration methods for 

CNNs can be categorized into two main approaches: 

dataflow-based methods and architecture-based methods. 

Dataflow-based methods decompose convolution operations 

into sub-operations and execute them in parallel using 

pipelining on FPGA to improve computational efficiency. 

Architecture-based methods optimize FPGA architectures, 

such as incorporating on-chip memory and utilizing 

multi-level caching, to reduce storage access and data transfer 
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overhead and improve computational efficiency. In our 

design, we combine these two approaches by employing a 

systolic array structure for fine-grained decomposition and 

parallel computation of convolution operations. Additionally, 

we make efficient use of on-chip memory on FPGA boards for 

data storage and reuse, achieving high-performance parallel 

computation while reducing power consumption. 

To address the current phenomenon where neural network 

accelerators are developed based on specific networks, we 

have employed an agile development approach based on 

Spinal HDL. This approach enables a more versatile and 

adaptable accelerator design capable of accommodating 

different networks. Using Spinal HDL for agile 

implementation of the neural network accelerator, we have 

developed different operators as plugins. By modifying the 

corresponding parameters, dedicated neural network 

accelerators can be generated for different convolutional 

neural networks. By embracing the principles of agile 

development and hardware-software co-design, we have 

successfully completed this task and achieved remarkable 

acceleration results. 

II. RELATED WORK 

A. Convolutional Neural Networks 

In 1994, Yann LeCun[2] proposed the Convolutional 

Neural Network (CNN) . As a typical algorithm in deep neural 

networks[3], CNN is used in video and image data processing 

with multi-layer network structures. CNN shines in the field 

of computer vision and can efficiently solve tasks such as 

target detection[4], image segmentation[5], and image 

classification[6]. Since the convolutional neural network 

contains a convolutional layer (Convolutional Layer) and a 

pooling layer (Pooling Layer), the CNN can quickly and 

effectively extract local features of the data while reducing the 

amount of model parameters, making the neural network 

model more efficient. The complexity is further reduced and 

the generalization ability of the model is improved. 

Most CNNs are composed of convolutional layers, pooling 

layers, fully connected layers, pooling functions, etc. The 

most critical one is the convolution layer, which contains 

multiple convolution kernels. The convolution kernels are 

also called filters. In the convolutional layer, the convolution 

kernel performs a sliding window convolution operation on 

the input image to extract the feature information of the input 

image. The result of the convolution operation is a new 

feature map (Feature Map), and each value in the feature map 

represents the feature response at that location. Generally 

speaking, the convolutional layer will be followed by a 

nonlinear activation function, such as ReLU (Rectified Linear 
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Unit), etc., with the purpose of introducing nonlinear 

transformation into the model to enhance the expression 

ability of the model. In neural networks, the purpose of the 

pooling layer is to reduce the spatial dimension of the feature 

map, so that the main features can be preserved while 

reducing the computational complexity of the model. Max 

Pooling and Average Pooling are two common operations in 

the pooling layer. The fully connected layer often appears 

after multiple convolution operations and pooling operations, 

and is mainly used to summarize and output the information 

of the feature map to the final classification or regression 

layer. 

B. Agile design of accelerator based on Spinal HDL 

Spinal HDL is a modern hardware description language, 

based on the Scala language, designed to bring a higher level 

of abstraction and flexibility to digital circuit design. Its 

developer is Cocotb engineer Charles Papon, and the first 

version was released in 2017. The design goal of Spinal HDL 

is to combine the advantages of hardware description 

languages and modern programming languages to provide a 

more intuitive and efficient way to describe and design digital 

circuits. 

Spinal HDL language, as an extension library of Scala 

language, allows designers to use the features of Scala 

language to improve the maintainability of circuits and 

improve development efficiency when designing circuits. We 

can understand Spinal HDL as an efficient Verilog generator. 

After the designer uses the Spinal HDL language to design the 

circuit code, it will be compiled into a source program based 

on the Scala language, and then the final Verilog code will be 

generated through the Spinal compiler. Therefore, all 

third-party tool libraries and development processes on the 

market that support Verilog can be seamlessly connected to 

the Spinal HDL language. One of the characteristics of Spinal 

HDL's high-efficiency development is that it integrates 

automatic logic checks to automatically correct and prompt 

problems such as port direction errors, bit width mismatches, 

signal drive loops, and cross-clock domains. It is effective It 

reduces the development complexity and shortens the circuit 

development cycle. At the same time, circuit codes developed 

using Spinal HDL are highly readable and easy to maintain, 

making it easier for designers to reuse chip codes. 

In the field of digital circuits, design and simulation are 

inseparable, and the case construction method of using the 

high-level language Scala has obvious advantages. The 

language also integrates an API that provides functions for 

reading and writing DUT signals, branching and joining the 

simulation process, sleeping and waiting for given conditions 

to be reached. In this way, we can easily combine the test 

platform with common Scala unit testing frameworks, 

supporting not only SpinalSim but also ScalaTest. In addition, 

Spinal HDL also integrates external simulators, including 

Verilator, GHDL, Icarus Verilog, etc., and is also compatible 

with VCS, XSIM in Vivado, etc. for simulation. The 

simulation process using Spinal HDL is shown in Figure 1. To 

sum up, this article uses Spinal HDL to perform agile design 

of deep learning accelerator. 
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Figure 1. Spinal HDL simulation flow chart 

C. Systolic array 

Systolic array is a parallel computing architecture that 

consists of many processing units distributed in a grid-like 

structure. Each processing unit has its own local memory and 

control logic and is able to perform computing tasks 

independently. Systolic array architecture was first used in 

early parallel computer systems, such as array processors and 

data flow computers, to accelerate tasks such as numerical 

calculations and signal processing. 

The systolic array was first proposed by American 

computer scientist H.T. Kung in 1982[7]. Early systolic array 

computer systems typically consisted of multiple processing 

units that communicated and collaborated through an 

interconnection network. Each processing unit can perform 

computing tasks independently and can exchange data and 

coordinate processing with other processing units. Systolic 

array architecture is designed to achieve a high degree of 

parallelism and flexibility to improve the overall performance 

and throughput of computer systems. With the continuous 

development of computer technology, systolic array 

architecture has gradually evolved into various forms, 

including multi-core processors, GPUs (graphics processing 

units) and FPGAs (field programmable gate arrays). These 

new systolic array architectures have been widely used in 

different fields, such as scientific computing, image 

processing, signal processing, and artificial intelligence. 

Figure 2 shows a common two-dimensional systolic array 

structure. 
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Figure 2. Two-dimensional systolic array structure 

III.  ACCELERATOR DESIGN 

A. Accelerator architecture design 

The accelerator architecture design is shown in Figure 3. 

HSOT is the CPU, which is mainly responsible for the three 

tasks of sending data, post-processing the model, and 

visualizing the processing results. By using the IP core of 
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Xilinx XDMA, PCIe is controlled to realize data interaction 

between PS and PL and the scheduling of execution tasks. In 

terms of the overall process, the PS side first sends the image 

data and weight data to the DDR through the AXI bus using 

PCIe. And the instruction set is transmitted to the on-chip 

cache through the AXI-Lite bus using PCIe. This is because 

the data volume of the picture and weight data is large, and it 

is suitable for the complete AXI protocol with bursts. The 

instruction set is a small batch of data. If it is also transmitted 

using the complete AXI protocol, it will cause a certain waste 

of resources. Therefore, the AXI-Lite protocol that cannot be 

transmitted in bursts is used for transmission. The analysis of 

the instruction set is completed through the Instruction 

module. Through the analysis of the instructions, various 

parameters required for the current network layer calculation 

will be obtained, and these parameters will be transferred to 

the Global Controller, Data Pre-processing, ALU and other 

modules. These parameters include but are not limited to the 

calculation type of the current network layer, the size of the 

image and weights, the number of channels and the storage 

location of the data in the DDR, the parameters required for 

quantization, etc. After obtaining the storage location 

parameters of the image and weight, the DMA Group 

transfers the data from the DDR to the Data Pre-processing 

module through the AXI bus for preprocessing. This module 

will process the incoming image data so that the data format 

meets the operation requirements of the ALU module. After 

data pre-processing, Data Pre-processing will send the data to 

the ALU module through AXI-Stream. At the same time, the 

parameters parsed by the Instrucion module will also be sent 

to the ALU module. The ALU module will choose to call the 

Systolic Array for convolution calculation or the Reshape 

module through SWITCH based on the parameters parsed in 

the instruction. The calculation results of the ALU module 

will also be sent to the Buffer Group for buffering through 

AXI-Stream. After the Quantization Unit, that is, the 

quantization module, is ready, it is sent to the quantization 

module in the form of AXI-Stream. After the data is processed 

by the quantization module, the DMA Group sends the final 

result to the specified location in the DDR according to the 

parameters of the storage location. After the neural network is 

completely executed, the final calculation results in the DDR 

are returned to the PS side through PCIe for post-processing 

and other operations. 
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Figure 3. Accelerator architecture 

B. ALU architecture design 

The ALU module is the core computing module of the 

accelerator. It contains not only the systolic array computing 

module but also the ReShape module. It can be said that the 

performance of the ALU determines the overall performance 

of the accelerator. 

The overall architecture of the ALU is shown in Figure 4. 

The input of the ALU module is multiple sets of AXI-Stream 

streams, which corresponds to the multiple sets of DMA 

structures we designed in Block Design. Multiple sets of 

AXI-Stream streams will input multiple input feature maps 

and weight data into the ALU module. Multiple groups of data 

received will first enter the Buffer Group for buffering. Since 

FPGA resources are limited, it is impossible to put all input 

feature maps and weight data into the Buffer. Therefore, we 

adopted the form of line cache in the design and adopted 

channel priority. At the same time, the ALU module will also 

receive the instruction parameters parsed by the Instruction 

module during calculation, and can determine from the 

parameters whether the current network layer enables the 

systolic array module for convolution calculation or the 

ReShape module. When convolution calculation is performed, 

the feature map data and weight data will flow into the 

Systolic Array through SWITCH. After the Systolic Array 

calculation is completed, the data will flow into the Buffer 

through SWITCH, and finally flow out of the ALU module in 

the form of AXI-Stream stream. If the incoming command 

parameter chooses to enable ReShape, multiple feature map 

data will enter the ReShape module in the form of 

AXI-Stream stream for calculation. The calculation results 

will also flow into the Buffer through SWITCH, and finally 

flow out of the ALU in the form of AXI-Stream stream. 

module, passed to downstream. 
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 Figure 4. ALU architecture 

C. Three-dimensional systolic array structure 

Using systolic arrays for calculations will bring huge 

computational gains. In order to cater to the large data volume 

and high parallelism characteristics of convolution 

calculation, our accelerator adopts a three-dimensional 

systolic array structure with customized size, as shown in 

Figure 5. Each PE (processing unit) moves the weights and 

feature maps to adjacent PEs after calculation in each cycle, 

keeping them in a flowing state. For the entire systolic array 

result, buffering is applied not only to the IB Buffer (input 

feature map cache) and WB Buffer (weight cache) in the array, 

but also to the inside of each PE. All input feature map data 

and weights will flow into the IB Buffer and WB Buffer, then 

flow into the PE, and then interconnect with adjacent PEs 

through the PE's internal Buffer. There are similar results in 

OB (output buffer) to achieve seamless pipeline connection. 
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Since the layout of the array is similar to the arrangement of 

the underlying resources of the FPGA, it is more conducive to 

timing convergence and reduces routing complexity. Thanks 

to the support of Spinal HDL language, the size of the entire 

array, the number of PEs, the size of the Buffer, etc. are all 

parameterized and customized. The entire array can be 

customized in detail to meet specific needs. When the FPGA 

board resources are limited, an array structure with smaller 

size and buffer can be generated. For application scenarios 

with high real-time performance, a larger array structure can 

be generated to meet the demand. 
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Figure 5. Three-dimensional systolic array 

D. Mapping of convolution calculations 

Convolutional calculations occupy a major position in 

neural networks. The process of 3*3 size convolution 

calculation is shown in Figure 6. The corresponding feature 

window of the input feature performs multiplication and 

addition operations with each convolution kernel to form an 

output feature map. Each convolution kernel corresponds to 

each channel of a single pixel in the output feature map. 
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Figure 6. 3*3 convolution calculation example 

 

Convolution calculations can be split in different 

dimensions. In this design, the convolution calculation is split 

differently from channels, images, and convolution kernels to 

map to different dimensions of the systolic array, and data 

reuse is performed to varying degrees, as shown in Figure 7 . 

In this design, the input feature window flows in from the top 

of the array, the convolution kernel flows in from the left side 

of the array, and the convolution size is mapped to the third 

dimension. If it is a 2x2 convolution, the number of the third 

dimension is 4, corresponding to Calculation of 4 pixels. The 

feature map information, weights, and current PE calculation 

results in each clock cycle PE will continue to flow to adjacent 

PEs to complete the corresponding operations. The data 

flowing into the input feature map and convolution kernel is 

channel-first, that is, all channel information will be 

processed first before the new sliding window is processed. 

Specifically, if it is a 3x3 array, the three channel information 

of the first input feature map sliding window will flow into the 

top of the array in sequence, realizing parallel operations of 

the input channels. The information of the convolution kernel 

will flow into the left side of the array in sequence. In the flow 

of the convolution kernel, the channel information flows in 

sequence. Only the data of the channel corresponding to the 

feature map will be calculated, thus realizing parallel 

operations between the output channels. However, the result 

of such calculation is only incomplete information of different 

channels and different convolution kernels. After flowing out 

of the pulsation array, these incomplete information will be 

accumulated in the corresponding channel and convolution 

size direction, and finally a complete output will be obtained. 

Channel results. 
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 Figure 7. Convolution mapping example 

E. PE module design 

The PE (Processing Element) unit in the systolic array 

structure refers to the basic computing unit that performs 

specific computing tasks. PE units typically perform various 

mathematical operations and signal processing operations and 

contain storage units for temporary storage of input data, 

intermediate results, and output data. These storage units may 

be registers, memory units or caches. Data transmission and 

exchange are performed between PE units through 

communication interfaces. These communication interfaces 

usually include input ports and output ports, which are used to 

receive input data and transfer calculation results to other PE 

units. PE units are usually organized together in the form of 

arrays to form a large-scale parallel computing structure. 

Generally speaking, the PE unit is composed of DSP. In 

order to better improve the operating frequency of the system, 

align the input data, have higher controllability, and the ability 
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to interrupt and respond to back pressure at any time, we 

designed a controllable buffer with The PE operation unit of 

the structure is shown in Figure 8. 
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Figure 8. PE architecture diagram 

 

Each PE computing unit has three inputs and three outputs. 

The three inputs are the feature map (IN), weight (W) and the 

calculation result of the previous PE (OUT) passed in from 

the adjacent PE. The three output ports transmit the incoming 

feature maps, weights and calculation results of this module to 

the next PE respectively. After getting the input data, if the 

downstream module is allowed to accept the data, the feature 

map data and weight data in the buffer will be transferred to 

the DSP for multiplication and addition operations. The 

calculation result of the previous module is the feature map 

and different convolution kernels. The calculation result 

cannot be added to the current result. It needs to wait for the 

current result to be calculated and transferred to the adjacent 

PE together. 

IV. EXPERIMENT 

A. Experimental environment 

Different FPGA platforms were used for testing in this 

experiment, in order to test the versatility of the accelerator on 

different resource platforms. In the hardware platform, a 

heterogeneous acceleration solution of  CPU+FPGA is used 

to accelerate the neural network. The CPU uses Intel Core 

i7-11800H@2.30GHz, the memory is 16GB, the operating 

system is Ubantu21.04, and the FPGA uses Xilinx VU9P, 

325T and ZYNQ7100. 

The development board with the VU9P chip in the 

experiment is the FX609QL development version of Feishu 

Technology. This development board supports PCIe4.0 X8 

mode transmission method and has 16GB DDR4 and 1Gbit 

FLASH. In the experiment, we used Xilinx's XDMA host 

computer driver to interact with the CPU through PCIe. 

The development board with 325T chip is Milianke 

MK7325FA development board. The board has 4 pieces of 

512Mbyte, a total of 2GB of DDR3 storage capacity, 256Mbit 

FLASH, supports PCIe and Gigabit Ethernet for data 

transmission, and has SATA, USB, HDMI and other 

interfaces. In the experiment, the XDMA driver was also used 

to interact with the CPU-side data through PCIe. 

The ZYNQ series 7100 development board uses the 

Milianke MZ7100FA development board. The development 

board has a Cortex-A9 dual-frequency main core, PS side and 

PL side each have 1GB of DDR3 storage capacity, and has 

multiple interfaces such as PCIe, SATA, and Gigabit 

Ethernet. The Ethernet interface on the PS side is used for 

data exchange on this board. 

This experiment performed inference acceleration on 

YOLOv4-Tiny to verify the flexibility and versatility of the 

accelerator developed by Spinal HDL language. The data set 

uses VOC2007, which consists of aeroplane, bicycle, bird, 

boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, 

motorbike, person, pottedplant, sheep, sofa, train, tvmonitor, 

etc. 20 Each category is composed of training set, verification 

set and test set according to the ratio of 8:1:1. The image size 

is 416×416. The quantification is completed with the help of 

Pytorch1.7. 

B. Analysis of results 

Table 1 shows the resource consumption of the accelerator 

under a single-core architecture. Channel In and Channel Out 

represent the computing parallelism of the input channel and 

the output channel, which is reflected in the size of the array in 

the systolic array. Since the BRAM of 325T and 7100 only 

has 445 and 755 blocks, and the DSP has only 840 and 2020 

blocks, it is not enough to support increasing the parallelism 

of the accelerator, so the parallelism is set to 8 for 

experiments. The VU9P not only has 2160 BRAMs, but also 

has 960 URAM resources unique to the board. The DSP 

resources have reached 6840, which is very rich in resources. 

Therefore, we conducted 3 sets of parallelism experiments on 

the VU9P board, which were 4, 8, and 16 respectively. During 

the synthesis process, you can set whether to use URAM. We 

chose to use URAM in the experiment. It is easy to see from 

the figure that as the degree of parallelism increases, the usage 

of BRAM and URAM will also increase. The number of 

DSPs used in the core systolic array module in the experiment 

is also closely related to the degree of parallelism. When the 

size of the systolic array becomes larger, the degree of 

parallelism increases and the number of DSPs used will also 

increase. 

 

Table1. Resource consumption  

 325T 7100 VU9P VU9P VU9P 

Channel In 8 8 4 8 16 

Channel Out 8 8 4 8 16 

LUT 70536 44307 60289 77806 136806 

BRAM 266.5 243 120 164 244.5 

URAM 0 0 37 73 290 

DSP 474 474 173 477 1525 

Power(W) 11.803 9.042 8.448 10.314 15.136 

 

Table 2 shows the acceleration effect of YOLOv4-Tiny at 

200MHz frequency. It can be seen that with the improvement 

of computing parallelism, FPS has been significantly 

improved. When accelerating the YOLOv4-Tiny algorithm, 

when the parallelism is set to 16 on VU9P, the FPS 

improvement is greatly improved compared to when the 

parallelism is 4. When the calculation parallelism is 8, the 

acceleration effects of the two algorithms on 325T, 7100, and 

VU9P are not exactly the same. This is because the DDR and 

other hardware configurations of these three development 

boards are different, and the interface speed The differences 

lead to different acceleration effects. 
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Table2. Accelerate performance 

 325T 7100 VU9P VU9P VU9P 

Channel In 8 8 4 8 16 

 Channel Out 8 8 4 8 16 

FPS 20.83 22.16 4.63 21.53 85.09 

Power(W) 11.803 9.042 8.448 10.314 15.136 

 

V. CONCLUSION 

This paper designs a convolutional neural network 

accelerator based on the systolic array structure and 

implements it quickly through the Spinal HDL language, so 

that the accelerator can be easily adapted to a variety of deep 

neural networks and integrate the operators in the network in 

the form of plug-ins. in the accelerator. And based on the 

language features of Spinal HDL, the calculation granularity 

of the accelerator can be adjusted to adapt to different scene 

requirements. Using a three-dimensional systolic array, a 

regularly routed structure, to perform core calculations allows 

the accelerator to work at higher frequencies and have higher 

computing performance. Finally, we took YOLOv4-Tiny in 

the convolutional neural network as an example to conduct 

multi-dimensional tests on the accelerator, conducting 

experiments from different FPGA development boards and 

different computing parallelism. Experimental results show 

that the accelerator in this paper not only has good 

performance, but also takes into account versatility and 

flexibility, and is suitable for a wide range of application 

scenarios. 

REFERENCES 

[1] Mittal S. A survey of FPGA-based accelerators for convolutional 

neural networks[J]. Neural computing and applications, 2020, 32(4): 

1109-1139. 

[2] LeCun Y, Bengio Y. Convolutional networks for images, speech, and 

time series[J]. The handbook of brain theory and neural networks, 

1995, 3361(10): 1995. 

[3] Canziani A, Paszke A, Culurciello E. An analysis of deep neural 

network models for practical applications[J]. arXiv preprint 

arXiv:1605.07678, 2016. 

[4] Yan A, Li J, Sun B, et al. Research on moving target tracking system 

based on FPGA[C]//2020 Chinese Control And Decision Conference 

(CCDC). IEEE, 2020: 1667-1671. 

[5] Liu Y, Wang Y, Chang L, et al. A fast and efficient FPGA-based level 

set hardware accelerator for image segmentation[C]//2020 IEEE 

international conference on integrated circuits, technologies and 

applications (ICTA). IEEE, 2020: 61-62. 

[6] Saidi A, Othman S B, Dhouibi M, et al. FPGA-based implementation 

of classification techniques: A survey[J]. Integration, 2021, 81: 

280-299. 

[7] Kung H T. Why systolic architectures?[J]. Computer, 1982, 15(1): 

37-46. 

http://www.ijerm.com/

	I. INTRODUCTION
	II. Related Work
	A. Convolutional Neural Networks
	B. Agile design of accelerator based on Spinal HDL
	C. Systolic array

	III.  Accelerator Design
	A. Accelerator architecture design
	B. ALU architecture design
	C. Three-dimensional systolic array structure
	D. Mapping of convolution calculations
	E. PE module design

	IV. experiment
	A. Experimental environment
	B. Analysis of results

	V. Conclusion
	References

