
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 53 www.ijerm.com


Abstract— Since its birth, convolutional neural network (CNN)

has been widely used in many fields. FPGA implementations of

CNNs have attracted widespread attention due to their high

performance and energy efficiency. However, some current

computing architectures do not fully utilize the computing

power of FPGAs and can only accelerate a single network. In

addition, the traditional method of developing FPGA

accelerators using Verilog cannot meet the diverse needs and

flexibility of accelerators. Therefore, this paper proposes a

parameterized configuration of a general convolutional neural

network accelerator. In order to improve the computing

throughput and frequency, we adopt a systolic array

architecture to implement the computing unit of this accelerator.

Furthermore, in order to effectively meet the diverse needs of

industry and academia, we adopted an agile development

approach using Spi-nalHDL. The accelerator was ultimately

deployed on various boards such as VU9P and tested using

representative algorithms in convolutional neural networks

(YOLOv4-Tiny). Experimental results show that when the

accelerator runs at a frequency of 200 MHz and accelerates the

YOLOv4-Tiny algorithm, the FPS is 85.09. Has excellent

acceleration effect.

Index Terms—FPGA, Systolic array, CNN accelerator.

I. INTRODUCTION

 Research on FPGA-based convolutional neural network

acceleration[1] has become a focal point in the fields of deep

learning and computer vision. FPGAs enable customized

designs tailored to different application scenarios and

requirements. They can accelerate convolutional operations

through techniques such as parallelization and pipelining,

significantly enhancing the computational efficiency of

CNNs. Moreover, FPGAs support dynamic adjustment and

real-time deployment of networks, making them highly

promising for low-power scenarios like embedded systems

and mobile devices.

 In current research, FPGA-based acceleration methods for

CNNs can be categorized into two main approaches:

dataflow-based methods and architecture-based methods.

Dataflow-based methods decompose convolution operations

into sub-operations and execute them in parallel using

pipelining on FPGA to improve computational efficiency.

Architecture-based methods optimize FPGA architectures,

such as incorporating on-chip memory and utilizing

multi-level caching, to reduce storage access and data transfer

Manuscript received March 18, 2024

Hongyu Wei, School of computer science and technology, Tiangong

University, Tianjin, China

overhead and improve computational efficiency. In our

design, we combine these two approaches by employing a

systolic array structure for fine-grained decomposition and

parallel computation of convolution operations. Additionally,

we make efficient use of on-chip memory on FPGA boards for

data storage and reuse, achieving high-performance parallel

computation while reducing power consumption.

To address the current phenomenon where neural network

accelerators are developed based on specific networks, we

have employed an agile development approach based on

Spinal HDL. This approach enables a more versatile and

adaptable accelerator design capable of accommodating

different networks. Using Spinal HDL for agile

implementation of the neural network accelerator, we have

developed different operators as plugins. By modifying the

corresponding parameters, dedicated neural network

accelerators can be generated for different convolutional

neural networks. By embracing the principles of agile

development and hardware-software co-design, we have

successfully completed this task and achieved remarkable

acceleration results.

II. RELATED WORK

A. Convolutional Neural Networks

In 1994, Yann LeCun[2] proposed the Convolutional

Neural Network (CNN) . As a typical algorithm in deep neural

networks[3], CNN is used in video and image data processing

with multi-layer network structures. CNN shines in the field

of computer vision and can efficiently solve tasks such as

target detection[4], image segmentation[5], and image

classification[6]. Since the convolutional neural network

contains a convolutional layer (Convolutional Layer) and a

pooling layer (Pooling Layer), the CNN can quickly and

effectively extract local features of the data while reducing the

amount of model parameters, making the neural network

model more efficient. The complexity is further reduced and

the generalization ability of the model is improved.

Most CNNs are composed of convolutional layers, pooling

layers, fully connected layers, pooling functions, etc. The

most critical one is the convolution layer, which contains

multiple convolution kernels. The convolution kernels are

also called filters. In the convolutional layer, the convolution

kernel performs a sliding window convolution operation on

the input image to extract the feature information of the input

image. The result of the convolution operation is a new

feature map (Feature Map), and each value in the feature map

represents the feature response at that location. Generally

speaking, the convolutional layer will be followed by a

nonlinear activation function, such as ReLU (Rectified Linear

Agile Design and Implementation of a Systolic

Array-Based CNN Accelerator

Hongyu Wei

http://www.ijerm.com/

Agile Design and Implementation of a Systolic Array-Based CNN Accelerator

 54 www.ijerm.com

Unit), etc., with the purpose of introducing nonlinear

transformation into the model to enhance the expression

ability of the model. In neural networks, the purpose of the

pooling layer is to reduce the spatial dimension of the feature

map, so that the main features can be preserved while

reducing the computational complexity of the model. Max

Pooling and Average Pooling are two common operations in

the pooling layer. The fully connected layer often appears

after multiple convolution operations and pooling operations,

and is mainly used to summarize and output the information

of the feature map to the final classification or regression

layer.

B. Agile design of accelerator based on Spinal HDL

Spinal HDL is a modern hardware description language,

based on the Scala language, designed to bring a higher level

of abstraction and flexibility to digital circuit design. Its

developer is Cocotb engineer Charles Papon, and the first

version was released in 2017. The design goal of Spinal HDL

is to combine the advantages of hardware description

languages and modern programming languages to provide a

more intuitive and efficient way to describe and design digital

circuits.

Spinal HDL language, as an extension library of Scala

language, allows designers to use the features of Scala

language to improve the maintainability of circuits and

improve development efficiency when designing circuits. We

can understand Spinal HDL as an efficient Verilog generator.

After the designer uses the Spinal HDL language to design the

circuit code, it will be compiled into a source program based

on the Scala language, and then the final Verilog code will be

generated through the Spinal compiler. Therefore, all

third-party tool libraries and development processes on the

market that support Verilog can be seamlessly connected to

the Spinal HDL language. One of the characteristics of Spinal

HDL's high-efficiency development is that it integrates

automatic logic checks to automatically correct and prompt

problems such as port direction errors, bit width mismatches,

signal drive loops, and cross-clock domains. It is effective It

reduces the development complexity and shortens the circuit

development cycle. At the same time, circuit codes developed

using Spinal HDL are highly readable and easy to maintain,

making it easier for designers to reuse chip codes.

In the field of digital circuits, design and simulation are

inseparable, and the case construction method of using the

high-level language Scala has obvious advantages. The

language also integrates an API that provides functions for

reading and writing DUT signals, branching and joining the

simulation process, sleeping and waiting for given conditions

to be reached. In this way, we can easily combine the test

platform with common Scala unit testing frameworks,

supporting not only SpinalSim but also ScalaTest. In addition,

Spinal HDL also integrates external simulators, including

Verilator, GHDL, Icarus Verilog, etc., and is also compatible

with VCS, XSIM in Vivado, etc. for simulation. The

simulation process using Spinal HDL is shown in Figure 1. To

sum up, this article uses Spinal HDL to perform agile design

of deep learning accelerator.

data incentives

test module

simulation code

Spinal HDL

Sim Lib

external

emulator

simulation

results

correct data

comparative

Results

Figure 1. Spinal HDL simulation flow chart

C. Systolic array

Systolic array is a parallel computing architecture that

consists of many processing units distributed in a grid-like

structure. Each processing unit has its own local memory and

control logic and is able to perform computing tasks

independently. Systolic array architecture was first used in

early parallel computer systems, such as array processors and

data flow computers, to accelerate tasks such as numerical

calculations and signal processing.

The systolic array was first proposed by American

computer scientist H.T. Kung in 1982[7]. Early systolic array

computer systems typically consisted of multiple processing

units that communicated and collaborated through an

interconnection network. Each processing unit can perform

computing tasks independently and can exchange data and

coordinate processing with other processing units. Systolic

array architecture is designed to achieve a high degree of

parallelism and flexibility to improve the overall performance

and throughput of computer systems. With the continuous

development of computer technology, systolic array

architecture has gradually evolved into various forms,

including multi-core processors, GPUs (graphics processing

units) and FPGAs (field programmable gate arrays). These

new systolic array architectures have been widely used in

different fields, such as scientific computing, image

processing, signal processing, and artificial intelligence.

Figure 2 shows a common two-dimensional systolic array

structure.

PE PE PE

PE PE PE

PE PE PE

A13 A12 A11

A23 A22 A21

A33 A32 A31

B31

B21

B11

B32

B22

B12

B33

B23

B13

Figure 2. Two-dimensional systolic array structure

III. ACCELERATOR DESIGN

A. Accelerator architecture design

The accelerator architecture design is shown in Figure 3.

HSOT is the CPU, which is mainly responsible for the three

tasks of sending data, post-processing the model, and

visualizing the processing results. By using the IP core of

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 55 www.ijerm.com

Xilinx XDMA, PCIe is controlled to realize data interaction

between PS and PL and the scheduling of execution tasks. In

terms of the overall process, the PS side first sends the image

data and weight data to the DDR through the AXI bus using

PCIe. And the instruction set is transmitted to the on-chip

cache through the AXI-Lite bus using PCIe. This is because

the data volume of the picture and weight data is large, and it

is suitable for the complete AXI protocol with bursts. The

instruction set is a small batch of data. If it is also transmitted

using the complete AXI protocol, it will cause a certain waste

of resources. Therefore, the AXI-Lite protocol that cannot be

transmitted in bursts is used for transmission. The analysis of

the instruction set is completed through the Instruction

module. Through the analysis of the instructions, various

parameters required for the current network layer calculation

will be obtained, and these parameters will be transferred to

the Global Controller, Data Pre-processing, ALU and other

modules. These parameters include but are not limited to the

calculation type of the current network layer, the size of the

image and weights, the number of channels and the storage

location of the data in the DDR, the parameters required for

quantization, etc. After obtaining the storage location

parameters of the image and weight, the DMA Group

transfers the data from the DDR to the Data Pre-processing

module through the AXI bus for preprocessing. This module

will process the incoming image data so that the data format

meets the operation requirements of the ALU module. After

data pre-processing, Data Pre-processing will send the data to

the ALU module through AXI-Stream. At the same time, the

parameters parsed by the Instrucion module will also be sent

to the ALU module. The ALU module will choose to call the

Systolic Array for convolution calculation or the Reshape

module through SWITCH based on the parameters parsed in

the instruction. The calculation results of the ALU module

will also be sent to the Buffer Group for buffering through

AXI-Stream. After the Quantization Unit, that is, the

quantization module, is ready, it is sent to the quantization

module in the form of AXI-Stream. After the data is processed

by the quantization module, the DMA Group sends the final

result to the specified location in the DDR according to the

parameters of the storage location. After the neural network is

completely executed, the final calculation results in the DDR

are returned to the PS side through PCIe for post-processing

and other operations.

HOST

DDR

PCIe

XDMA

DMA

Group

AXI

Global

Controller

Instruction

Data

 Pre-processing

Systolic Array

Quantization Unit

FPGA

Buffer Group

Control

&

Status

Buffer

ReShape

S

W

I

T

C

H

S

W

I

T

C

H

ALU

Figure 3. Accelerator architecture

B. ALU architecture design

The ALU module is the core computing module of the

accelerator. It contains not only the systolic array computing

module but also the ReShape module. It can be said that the

performance of the ALU determines the overall performance

of the accelerator.

The overall architecture of the ALU is shown in Figure 4.

The input of the ALU module is multiple sets of AXI-Stream

streams, which corresponds to the multiple sets of DMA

structures we designed in Block Design. Multiple sets of

AXI-Stream streams will input multiple input feature maps

and weight data into the ALU module. Multiple groups of data

received will first enter the Buffer Group for buffering. Since

FPGA resources are limited, it is impossible to put all input

feature maps and weight data into the Buffer. Therefore, we

adopted the form of line cache in the design and adopted

channel priority. At the same time, the ALU module will also

receive the instruction parameters parsed by the Instruction

module during calculation, and can determine from the

parameters whether the current network layer enables the

systolic array module for convolution calculation or the

ReShape module. When convolution calculation is performed,

the feature map data and weight data will flow into the

Systolic Array through SWITCH. After the Systolic Array

calculation is completed, the data will flow into the Buffer

through SWITCH, and finally flow out of the ALU module in

the form of AXI-Stream stream. If the incoming command

parameter chooses to enable ReShape, multiple feature map

data will enter the ReShape module in the form of

AXI-Stream stream for calculation. The calculation results

will also flow into the Buffer through SWITCH, and finally

flow out of the ALU in the form of AXI-Stream stream.

module, passed to downstream.

S

W

I

T

C

H

Systolic Array

ReShape

S

W

I

T

C

H

B

U

F

F

E

R

B

U

F

F

E

R

AXI-Stream

AXI-Stream

AXI-Stream

AXI-Stream

ALU

B

U

F

F

E

R

B

U

F

F

E

R

 Figure 4. ALU architecture

C. Three-dimensional systolic array structure

Using systolic arrays for calculations will bring huge

computational gains. In order to cater to the large data volume

and high parallelism characteristics of convolution

calculation, our accelerator adopts a three-dimensional

systolic array structure with customized size, as shown in

Figure 5. Each PE (processing unit) moves the weights and

feature maps to adjacent PEs after calculation in each cycle,

keeping them in a flowing state. For the entire systolic array

result, buffering is applied not only to the IB Buffer (input

feature map cache) and WB Buffer (weight cache) in the array,

but also to the inside of each PE. All input feature map data

and weights will flow into the IB Buffer and WB Buffer, then

flow into the PE, and then interconnect with adjacent PEs

through the PE's internal Buffer. There are similar results in

OB (output buffer) to achieve seamless pipeline connection.

http://www.ijerm.com/

Agile Design and Implementation of a Systolic Array-Based CNN Accelerator

 56 www.ijerm.com

Since the layout of the array is similar to the arrangement of

the underlying resources of the FPGA, it is more conducive to

timing convergence and reduces routing complexity. Thanks

to the support of Spinal HDL language, the size of the entire

array, the number of PEs, the size of the Buffer, etc. are all

parameterized and customized. The entire array can be

customized in detail to meet specific needs. When the FPGA

board resources are limited, an array structure with smaller

size and buffer can be generated. For application scenarios

with high real-time performance, a larger array structure can

be generated to meet the demand.

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

OB OB OB OB

IB Buffer

W
B

 B
u

ffe
r

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

OB OB OB OB

IB Buffer

W
B

 B
u

ffe
r

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

OB OB OB OB

IB Buffer

W
B

 B
u

ffe
r

Figure 5. Three-dimensional systolic array

D. Mapping of convolution calculations

Convolutional calculations occupy a major position in

neural networks. The process of 3*3 size convolution

calculation is shown in Figure 6. The corresponding feature

window of the input feature performs multiplication and

addition operations with each convolution kernel to form an

output feature map. Each convolution kernel corresponds to

each channel of a single pixel in the output feature map.

Input feature map

Output feature map

Convolution kernel

Figure 6. 3*3 convolution calculation example

Convolution calculations can be split in different

dimensions. In this design, the convolution calculation is split

differently from channels, images, and convolution kernels to

map to different dimensions of the systolic array, and data

reuse is performed to varying degrees, as shown in Figure 7 .

In this design, the input feature window flows in from the top

of the array, the convolution kernel flows in from the left side

of the array, and the convolution size is mapped to the third

dimension. If it is a 2x2 convolution, the number of the third

dimension is 4, corresponding to Calculation of 4 pixels. The

feature map information, weights, and current PE calculation

results in each clock cycle PE will continue to flow to adjacent

PEs to complete the corresponding operations. The data

flowing into the input feature map and convolution kernel is

channel-first, that is, all channel information will be

processed first before the new sliding window is processed.

Specifically, if it is a 3x3 array, the three channel information

of the first input feature map sliding window will flow into the

top of the array in sequence, realizing parallel operations of

the input channels. The information of the convolution kernel

will flow into the left side of the array in sequence. In the flow

of the convolution kernel, the channel information flows in

sequence. Only the data of the channel corresponding to the

feature map will be calculated, thus realizing parallel

operations between the output channels. However, the result

of such calculation is only incomplete information of different

channels and different convolution kernels. After flowing out

of the pulsation array, these incomplete information will be

accumulated in the corresponding channel and convolution

size direction, and finally a complete output will be obtained.

Channel results.

Input feature map Convolution kernel Convolution kernel Convolution kernel Output feature map

P11 P12 P13

P21 P22 P23

P31 P32 P33

P11 P12 P13

P21 P22 P23

P31 P32 P33

P11 P12 P13

P21 P22 P23

P31 P32 P33

PE PE PE

PE PE PE

PE PE PE

滑动
窗口
通道

一

滑动
窗口
通道

一

滑动
窗口
通道

一

Input
Input

滑动
窗口
通道

一

滑动
窗口
通道

一

滑动
窗口
通道

一

Input

滑动
窗口
通道

一

滑动
窗口
通道

一

滑动
窗口
通道

一

Input

输入特征窗口二输入特征窗口一卷积核一Convolution kernel

输入特征窗口二输入特征窗口一卷积核一Convolution kernel

输入特征窗口二输入特征窗口一卷积核一Convolution kernel

 Figure 7. Convolution mapping example

E. PE module design

The PE (Processing Element) unit in the systolic array

structure refers to the basic computing unit that performs

specific computing tasks. PE units typically perform various

mathematical operations and signal processing operations and

contain storage units for temporary storage of input data,

intermediate results, and output data. These storage units may

be registers, memory units or caches. Data transmission and

exchange are performed between PE units through

communication interfaces. These communication interfaces

usually include input ports and output ports, which are used to

receive input data and transfer calculation results to other PE

units. PE units are usually organized together in the form of

arrays to form a large-scale parallel computing structure.

Generally speaking, the PE unit is composed of DSP. In

order to better improve the operating frequency of the system,

align the input data, have higher controllability, and the ability

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 57 www.ijerm.com

to interrupt and respond to back pressure at any time, we

designed a controllable buffer with The PE operation unit of

the structure is shown in Figure 8.

···

IN From Previous PE

W From Previous PE

IN to nex PEOUT to nex PE

OUT From Previous PE

DSP48

PE Unit

···

···

W to nex PE

Figure 8. PE architecture diagram

Each PE computing unit has three inputs and three outputs.

The three inputs are the feature map (IN), weight (W) and the

calculation result of the previous PE (OUT) passed in from

the adjacent PE. The three output ports transmit the incoming

feature maps, weights and calculation results of this module to

the next PE respectively. After getting the input data, if the

downstream module is allowed to accept the data, the feature

map data and weight data in the buffer will be transferred to

the DSP for multiplication and addition operations. The

calculation result of the previous module is the feature map

and different convolution kernels. The calculation result

cannot be added to the current result. It needs to wait for the

current result to be calculated and transferred to the adjacent

PE together.

IV. EXPERIMENT

A. Experimental environment

Different FPGA platforms were used for testing in this

experiment, in order to test the versatility of the accelerator on

different resource platforms. In the hardware platform, a

heterogeneous acceleration solution of CPU+FPGA is used

to accelerate the neural network. The CPU uses Intel Core

i7-11800H@2.30GHz, the memory is 16GB, the operating

system is Ubantu21.04, and the FPGA uses Xilinx VU9P,

325T and ZYNQ7100.

The development board with the VU9P chip in the

experiment is the FX609QL development version of Feishu

Technology. This development board supports PCIe4.0 X8

mode transmission method and has 16GB DDR4 and 1Gbit

FLASH. In the experiment, we used Xilinx's XDMA host

computer driver to interact with the CPU through PCIe.

The development board with 325T chip is Milianke

MK7325FA development board. The board has 4 pieces of

512Mbyte, a total of 2GB of DDR3 storage capacity, 256Mbit

FLASH, supports PCIe and Gigabit Ethernet for data

transmission, and has SATA, USB, HDMI and other

interfaces. In the experiment, the XDMA driver was also used

to interact with the CPU-side data through PCIe.

The ZYNQ series 7100 development board uses the

Milianke MZ7100FA development board. The development

board has a Cortex-A9 dual-frequency main core, PS side and

PL side each have 1GB of DDR3 storage capacity, and has

multiple interfaces such as PCIe, SATA, and Gigabit

Ethernet. The Ethernet interface on the PS side is used for

data exchange on this board.

This experiment performed inference acceleration on

YOLOv4-Tiny to verify the flexibility and versatility of the

accelerator developed by Spinal HDL language. The data set

uses VOC2007, which consists of aeroplane, bicycle, bird,

boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse,

motorbike, person, pottedplant, sheep, sofa, train, tvmonitor,

etc. 20 Each category is composed of training set, verification

set and test set according to the ratio of 8:1:1. The image size

is 416×416. The quantification is completed with the help of

Pytorch1.7.

B. Analysis of results

Table 1 shows the resource consumption of the accelerator

under a single-core architecture. Channel In and Channel Out

represent the computing parallelism of the input channel and

the output channel, which is reflected in the size of the array in

the systolic array. Since the BRAM of 325T and 7100 only

has 445 and 755 blocks, and the DSP has only 840 and 2020

blocks, it is not enough to support increasing the parallelism

of the accelerator, so the parallelism is set to 8 for

experiments. The VU9P not only has 2160 BRAMs, but also

has 960 URAM resources unique to the board. The DSP

resources have reached 6840, which is very rich in resources.

Therefore, we conducted 3 sets of parallelism experiments on

the VU9P board, which were 4, 8, and 16 respectively. During

the synthesis process, you can set whether to use URAM. We

chose to use URAM in the experiment. It is easy to see from

the figure that as the degree of parallelism increases, the usage

of BRAM and URAM will also increase. The number of

DSPs used in the core systolic array module in the experiment

is also closely related to the degree of parallelism. When the

size of the systolic array becomes larger, the degree of

parallelism increases and the number of DSPs used will also

increase.

Table1. Resource consumption

 325T 7100 VU9P VU9P VU9P

Channel In 8 8 4 8 16

Channel Out 8 8 4 8 16

LUT 70536 44307 60289 77806 136806

BRAM 266.5 243 120 164 244.5

URAM 0 0 37 73 290

DSP 474 474 173 477 1525

Power(W) 11.803 9.042 8.448 10.314 15.136

Table 2 shows the acceleration effect of YOLOv4-Tiny at

200MHz frequency. It can be seen that with the improvement

of computing parallelism, FPS has been significantly

improved. When accelerating the YOLOv4-Tiny algorithm,

when the parallelism is set to 16 on VU9P, the FPS

improvement is greatly improved compared to when the

parallelism is 4. When the calculation parallelism is 8, the

acceleration effects of the two algorithms on 325T, 7100, and

VU9P are not exactly the same. This is because the DDR and

other hardware configurations of these three development

boards are different, and the interface speed The differences

lead to different acceleration effects.

http://www.ijerm.com/

Agile Design and Implementation of a Systolic Array-Based CNN Accelerator

 58 www.ijerm.com

Table2. Accelerate performance

 325T 7100 VU9P VU9P VU9P

Channel In 8 8 4 8 16

 Channel Out 8 8 4 8 16

FPS 20.83 22.16 4.63 21.53 85.09

Power(W) 11.803 9.042 8.448 10.314 15.136

V. CONCLUSION

This paper designs a convolutional neural network

accelerator based on the systolic array structure and

implements it quickly through the Spinal HDL language, so

that the accelerator can be easily adapted to a variety of deep

neural networks and integrate the operators in the network in

the form of plug-ins. in the accelerator. And based on the

language features of Spinal HDL, the calculation granularity

of the accelerator can be adjusted to adapt to different scene

requirements. Using a three-dimensional systolic array, a

regularly routed structure, to perform core calculations allows

the accelerator to work at higher frequencies and have higher

computing performance. Finally, we took YOLOv4-Tiny in

the convolutional neural network as an example to conduct

multi-dimensional tests on the accelerator, conducting

experiments from different FPGA development boards and

different computing parallelism. Experimental results show

that the accelerator in this paper not only has good

performance, but also takes into account versatility and

flexibility, and is suitable for a wide range of application

scenarios.

REFERENCES

[1] Mittal S. A survey of FPGA-based accelerators for convolutional

neural networks[J]. Neural computing and applications, 2020, 32(4):

1109-1139.

[2] LeCun Y, Bengio Y. Convolutional networks for images, speech, and

time series[J]. The handbook of brain theory and neural networks,

1995, 3361(10): 1995.

[3] Canziani A, Paszke A, Culurciello E. An analysis of deep neural

network models for practical applications[J]. arXiv preprint

arXiv:1605.07678, 2016.

[4] Yan A, Li J, Sun B, et al. Research on moving target tracking system

based on FPGA[C]//2020 Chinese Control And Decision Conference

(CCDC). IEEE, 2020: 1667-1671.

[5] Liu Y, Wang Y, Chang L, et al. A fast and efficient FPGA-based level

set hardware accelerator for image segmentation[C]//2020 IEEE

international conference on integrated circuits, technologies and

applications (ICTA). IEEE, 2020: 61-62.

[6] Saidi A, Othman S B, Dhouibi M, et al. FPGA-based implementation

of classification techniques: A survey[J]. Integration, 2021, 81:

280-299.

[7] Kung H T. Why systolic architectures?[J]. Computer, 1982, 15(1):

37-46.

http://www.ijerm.com/

	I. INTRODUCTION
	II. Related Work
	A. Convolutional Neural Networks
	B. Agile design of accelerator based on Spinal HDL
	C. Systolic array

	III. Accelerator Design
	A. Accelerator architecture design
	B. ALU architecture design
	C. Three-dimensional systolic array structure
	D. Mapping of convolution calculations
	E. PE module design

	IV. experiment
	A. Experimental environment
	B. Analysis of results

	V. Conclusion
	References

