
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 59 www.ijerm.com

Abstract— Cardinality estimation is a crucial component of the

query optimizer in database systems, which selects query plans

based on the results of cardinality estimates and outputs them to

the query executor. This study initially proposes a data-driven

learning-based cardinality estimation method. This method

constructs a probabilistic graph model based on database data,

transforming cardinality estimation into a probability

estimation of the variables within the model, and provides a

lightweight modeling approach. Subsequently, through

extensive comparative experiments, the proposed method in this

paper is compared with other cutting-edge learning-based

cardinality estimation methods across various dimensions,

demonstrating the superior performance of the method in

handling cardinality estimation problems.

Index Terms—Database; Cardinality Estimation; Query

Optimization; Multi-Table Joins.

I. INTRODUCTION

 Databases, as system software for storing, managing, and

retrieving data, are one of the cornerstones of the information

technology field[1]. They support various aspects of modern

society, from everyday banking transactions and social media

to enterprise-level customer relationship management and

data analysis[2]. The performance of databases directly

affects the speed of data retrieval and system response time,

which in turn impacts user experience and the efficiency of

business decision-making. Database performance

optimization involves multiple aspects, including the way

data is stored, the design of index structures, and the

mechanisms for processing data queries and updates. Among

these, query optimization is particularly critical, as efficient

query processing can significantly reduce data retrieval time

and alleviate server load, improving the overall processing

capability and resource utilization of the system. The query

optimizer in a database system is responsible for analyzing

user-submitted queries, generating multiple potential

execution plans, and selecting the most efficient one for

execution[3]. The quality of this decision directly affects the

speed of query execution and the efficient use of system

resources, which in turn affects the performance and stability

of the entire database system. In the case of large data

volumes and complex queries, an excellent query optimizer

can significantly reduce query response time and resource

consumption, enhancing user experience and system

throughput[4].

Cardinality estimation plays a central role in the query

Manuscript received March 19, 2024

Wenqiang Li, School of Computer Science and Technology, Tiangong

University, Beijing, China

optimization process. Cardinality, or the estimated size of the

result set, is a key input for the optimizer when formulating

execution plans[5]. The optimizer requires this estimate to

calculate the cost of different execution plans. For example,

when deciding whether to use a hash join or a nested loop join

for the join of two tables, the size of the cardinality is an

important consideration[6]. If the cardinality estimate is too

high or too low, it can lead the optimizer to choose a

suboptimal query execution plan, resulting in decreased query

execution efficiency and increased resource consumption.

Therefore, accurate cardinality estimation is extremely

important for the query optimizer, as it is directly linked to the

optimization of database query performance and the efficient

use of system resources.

However, achieving accurate cardinality estimation has

been a longstanding challenge in the field of query

optimization. Traditional methods such as histograms and

sampling, while computationally simple and efficient, often

struggle to accurately handle data skew and correlations

between attributes in complex queries. In recent years, with

the rise of machine learning, its powerful ability to model

complex relationships between data has led researchers to

turn their attention to the field where machine learning and

cardinality estimation intersect, giving birth to learning-based

cardinality estimation methods. These methods use machine

learning models to learn the intrinsic relationships between

data, providing more accurate cardinality estimates and

assisting the query optimizer in making better decisions.

Compared to traditional methods, the advantage of

learning-based cardinality estimation methods lies in their

robust modeling capabilities for data distribution and

correlations between attributes. This not only makes the

estimates more accurate but also enhances the ability to

handle complex query scenarios, thereby effectively

supporting the query optimizer in making more reasonable

decisions.

II. RELATED WORK

A. Query Drive

Query-driven cardinality estimation methods typically use

records of historical query requests and the results of

executing these requests to train models. These methods

extract features from historical queries, including the

structure of the queries, predicates, and execution plans. By

fitting a mapping relationship between these features and the

actual results, they capture the cardinality distribution under

specific query patterns.

For example, the LWGT model[7] proposed by Dutt et al.

uses both neural networks[8] and XGBoost[9] methods to

achieve this fitting. The advantage of such methods is their

Improving Learning Based Cardinality Estimation Using

Sampling Joins

Wenqiang Li

http://www.ijerm.com/

Improving Learning Based Cardinality Estimation Using Sampling Joins

 60 www.ijerm.com

ability to optimize for specific database workloads. For

instance, if a database system primarily handles a certain type

of query, the query-driven model can learn the patterns of

these queries to provide more accurate estimates. However,

this characteristic also requires a large amount of historical

query data to train effective models, and the model's

generalization ability becomes very limited for new or

uncommon query patterns. Based on a similar idea, Kipf et al.

implemented the MSCN model[10] based on a multi-set

convolutional neural network, which represents queries as

feature vectors containing three modules (table, join, and

predicate modules). Each module is a two-layer neural

network, and the outputs of different modules are connected

and fed into the final output network, which is also a two-layer

neural network. This complex model improves the model's

estimation accuracy and generalization to some extent but

also increases the difficulty of training.

Hayek proposed a method to improve estimation accuracy by

learning the containment rate between queries. The

"containment rate" refers to the proportion of one query result

set within another query result set. To achieve this, they

developed a deep learning model called CRN[11], which can

represent query features in the form of sets and vectors. In the

CRN model, the query pair (q1, q2) is first transformed into a

vector representation, mainly involving the transformation of

the original query's tables, joins, and column predicates into

set forms. Then, through a neural network MLPi, the obtained

vectors are transformed into a unique representative vector.

Finally, the model uses these two vectors to predict the

containment rate between queries.

In 2023, Kipf et al. from MIT, the team behind MSCN,

proposed an improved Robust MSCN[12] to overcome the

issue of MSCN's heavy reliance on workload stability. This

method first simulates workload drift in queries involving

unseen tables or columns by randomly masking parts of table

or column features during the training process, forcing the

model to rely on more stable features based on the latest

database statistics for prediction. Secondly, it introduces a

join bitmap, a technique that extends feature-based sampling

through the idea of lateral information transfer to ensure

feature consistency in join operations. This method improves

the generalization ability of query-driven methods to some

extent but still requires a large amount of query workload for

training, and the difficulty of obtaining training data remains

high.

Also from 2023, BICE[13], proposed by a team from the

University of Electronic Science and Technology of China in

collaboration with Aalborg University and the Huawei

database team, designed a feature extractor with four

sub-encoders to extract different types of information from

the query plan tree. It uses graph embedding methods to

encode joins and designs a parallel network for filters to

improve encoding efficiency, and employs a compressor

based on bidirectional LSTM to learn the encoded output and

reduce the learning difficulty of the estimation model.

B. Data Driven

Data-driven cardinality estimation methods directly learn the

probability distribution of these attributes from the data in the

database. By transforming cardinality estimation into a

problem of estimating the probability of attributes under

specific predicates, they complete cardinality estimation.

Their advantage is that they do not require input historical

query workloads and can more comprehensively capture the

potential relationships and distribution characteristics

between data. Since they do not rely on historical query

records, they can better generalize to new queries, especially

in scenarios where data relationships are complex or data

distribution changes frequently. However, these methods

usually involve constructing complex machine learning

models, such as deep neural networks, which means that

data-driven methods generally have more complex models

and higher training costs.

In 2019, Yang et al. proposed a novel cardinality estimation

method using a deep autoregressive model to capture the

multivariate distribution of relational tables to improve the

accuracy of cardinality estimation[14]. The core advantage of

this method is its unsupervised learning ability, which can

accurately capture the relationships between column

attributes in the database without the need for data labels,

including range queries. To effectively handle

multidimensional range queries, the study incorporated

Monte Carlo integration techniques, which can effectively

handle high-dimensional range queries.

In 2020, Hilprecht et al. proposed DeepDB[15], which

includes the development of a new deep probabilistic

model—Relational Sum-Product Networks (RSPNs). This

model is capable of capturing the joint probability distribution

of data in databases, reflecting correlations between attributes

as well as the data distribution of individual attributes. The

design of RSPNs allows it to provide answers for various user

tasks at runtime, such as query answering and cardinality

estimation. DeepDB also supports direct updates to the

database, meaning that insert, update, and delete operations

can be directly reflected in the model without the need for

retraining. This update capability gives DeepDB a significant

advantage in handling dynamically changing data.

NeuroCard[16] is also a learning-based cardinality estimation

method based on a deep autoregressive model. It originates

from Naru and extends it to multi-table join scenarios,

developed by Yang Zongheng and his team at the University

of California, Berkeley. It can capture the correlations

between all tables in the database without relying on

independence assumptions between tables or columns. The

biggest feature of NeuroCard is that it covers the entire

database with a single neural density estimator, using

sampling from joins rather than computing complete joins to

address the high training cost problem. With lossless column

factorization technology, it decomposes columns into

multiple sub-columns to reduce the size of the autoregressive

model, allowing the model to remain practical even when

facing columns with a large number of different values.

FACE[17] is a novel cardinality estimator proposed by Li

Guoliang's team from Tsinghua University at the VLDB

conference in 2022. It is based on the Normalizing Flow

model and can effectively learn the joint distribution of data in

relational databases without being limited by the query

workload. A notable feature of FACE is its ability to simplify

complex probability distributions into manageable forms,

such as multivariate normal distributions, through continuous

joint distribution transformations. This allows it to use

probability density to accurately estimate the cardinality of

SQL queries. Additionally, FACE effectively handles discrete

and string data by designing de-quantization methods and

string data encoding techniques.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 61 www.ijerm.com

III. RELATED TECHNOLOGIES

A. Sum-Product Networks

Sum-Product Networks (SPNs[18]n innovative deep learning

architecture that combines the representational power of

neural networks with the inferential efficiency of probabilistic

graphical models. SPNs construct a directed acyclic graph

where nodes can be either sum nodes or product nodes,

representing complex probability distributions. This structure

allows SPNs to handle high-dimensional data while

maintaining model complexity and enabling efficient

inference. In SPNs, sum nodes mix (i.e., weighted sum) the

outputs from lower-level nodes, which can be seen as a

mixture over variable sets, similar to mixture models in

probabilistic models. Product nodes, on the other hand,

represent the independence between variables through

multiplication operations, which helps simplify the model's

complexity and improve computational efficiency. The core

advantage of SPNs lies in their ability to learn complex

structures in the data without the need for intricate feature

engineering.

B. Sampling Joins

Sampling Joins[19] a technique used in database queries to

quickly estimate the cardinality of the result of a join

operation. This method involves drawing a sample from the

tables involved in the join and then performing the join

operation on these samples to approximate the entire dataset's

join result. Since only a subset of the data is processed,

sampling joins can significantly reduce the use of

computational resources and speed up query response times,

making them particularly suitable for handling large datasets

and complex queries.

In the context of cardinality estimation, sampling joins allow

database systems to quickly obtain an approximation of a join

result without sacrificing too much accuracy. The key to this

method is how to draw a representative sample from the

dataset and how to infer the join cardinality of the entire

dataset based on the results of the sample join. To control the

estimation error, specific sampling techniques and statistical

methods may need to be employed.

The efficiency and accuracy of sampling joins depend on the

sample selection strategy and the characteristics of the dataset.

In practice, this method can be part of the database optimizer,

helping the optimizer balance speed and accuracy in the

selection of execution plans. Although sampling joins may

not provide completely accurate cardinality estimates, they

offer a practical compromise in many situations, enabling

database systems to respond to user queries more quickly

while maintaining relative accuracy in the estimated results.

IV. LIGHTWEIGHT DATA-DRIVEN LEARNING CARDINALITY

ESTIMATION METHOD

A. cardninality estimation based on sum-product

networks

In the database context, we can consider the attributes of a

data table as random variables, with each row of data

representing the concrete values of these random variables.

Based on this, we can use Sum-Product Networks (SPNs) to

establish a database cardinality estimation model. When this

model receives a query request, it can identify the attributes

and predicates involved in the query, and the cardinality

estimation for this query can be transformed into estimating

the joint probability of these variables satisfying all

predicates.

B. Building sum-product networks from data tables

Data Preparation: First, perform uniform sampling on tables

with large data volumes to reduce the scale of the data table,

thereby indirectly reducing the size of the final model and

speeding up the modeling process.

Recursive Data Partitioning: Start by creating an empty

Sum-Product Network structure with a root node set as either

a sum or product node. From the root node, recursively

partition the dataset and assign the resulting subsets to all

child nodes of that node.For sum nodes, use clustering

algorithms such as K-Means to divide the dataset into

multiple clusters, with each cluster corresponding to a subtree,

and calculate the weight of its corresponding subtree based on

the proportion of the cluster to compute the mixture

probability. For child nodes of sum nodes, if they do not meet

the conditions for constructing leaf nodes, set them as product

nodes.For product nodes, determine how to divide all

attributes into several sets with low correlation by calculating

the random dependency coefficients between attributes, and

based on the attribute division, divide the data into multiple

subsets and assign them to all child nodes of that node. For

child nodes of product nodes, if they do not meet the

conditions for constructing leaf nodes, set them as sum nodes.

Learning Variable Probability Distributions at Leaf Nodes: If

a node in the above partitioning process corresponds to a data

subset that meets the conditions for forming a leaf node, set it

as a leaf node. In this study, the condition is: the data subset

has fewer rows than a threshold T and has 1 attribute. The

purpose of this setting is to fully divide the data into several

low-correlation and suitable data subsets during the recursive

partitioning process, making it easier to learn the probability

distribution of the attribute on that subset.

For the tool to learn the probability distribution of single

variables, this study chooses to implement it through

histograms, as histograms can model both continuous and

discrete variables, which is more suitable for scenarios with

diverse data types like databases. Moreover, histograms have

a faster modeling speed, aligning with the goal of this study to

build a lightweight model.

C. Sampling connectivity combined with a

learning-based approach

Bernoulli Sampling: Bernoulli sampling uniformly samples

all tuples in the original table with the same probability. In

Bernoulli sampling, the original table is sampled with a fixed

probability 𝑝, and if two data tables are separately Bernoulli

sampled and then joined, it may lead to a quadratic reduction

in the number of rows in the joined table. That is, if each

uniform sample occupies 1/𝑝 of the original table, then the

number of rows in their joined table is only 1/𝑝^2 of the

original joined table.

Universe Sampling: Universe sampling maps tuples in the

table to the [0,1] interval using a hash function ℎ and decides
whether a row is included in the sample based on the sampling

rate 𝑝. If the hash value is less than 𝑝, the row is included in

the sample. This method can avoid the quadratic reduction in

the number of output, and the sampled table using universe

sampling often contains more correlations, which may lead to

http://www.ijerm.com/

Improving Learning Based Cardinality Estimation Using Sampling Joins

 62 www.ijerm.com

uneven sampling. Universe sampling is particularly useful in

equi-joins because it ensures that if a row in one table is

sampled, then the row with the same join key in the other table

will also be sampled.

Stratified Sampling: The goal of stratified sampling is to

ensure that the sample table does not miss minority groups, in

other words, rows with fewer occurrences of a certain feature

are not completely un-sampled. It defines groups (or strata)

based on one or more columns (called stratification columns)

and ensures that at least 𝑘 rows are uniformly and randomly

drawn from each group. When the number of rows in a group

is less than 𝑘, all rows are retained. This method helps to

maintain the diversity and representativeness of data in join

queries.

Since different sampling methods have different suitable

scenarios, relying solely on one sampling method may lead to

unbalanced sampling results. Therefore, this paper chooses a

hybrid sampling method SUBS[20]which combines the three

sampling methods mentioned above into a hierarchical

structure. The workflow is as follows: (1) For a data table 𝑇,

first divide it into 𝑘 groups: {𝐺1, 𝐺2, … 𝐺𝑘}, select a column

from the table (usually the join key), and a set of parameters

Fig.1 Sum-product network after combining sampled

connections

{𝑝1, 𝑝2, … 𝑝𝑘, 𝑞1, 𝑞2, … 𝑞𝑘}, and then define a hash

function ℎ: 𝑈 → [0,1]. (2) For each group, 𝐺𝑖, sample using its

corresponding universe sampling rate 𝑝𝑖. (3) Apply the

Bernoulli sampling rate 𝑞𝑖 to the sampling results from step

(2).

When using Sum-Product Network models, we can pre-scan

the metadata information of the database to obtain the

dependency relationships between tables and perform the

above hybrid sampling join on both sides of the dependency

relationship, thus obtaining a smaller and more accurate

joined table. Subsequently, build Sum-Product Network

models on all single data tables and the sampled joined table.

The overall workflow is shown in Figure 1, which illustrates a

database with 3 data tables, where T1 and T2 have a foreign

key dependency. Therefore, when creating the Sum-Product

Network model, pre-sampling join was performed on T1 and

T2 before entering the modeling stage. For the Sum-Product

Network before joining the sampling, the strategy was to

pre-create an anti-normalization join table, and if the size of

the join table exceeded a certain threshold, it would be

randomly sampled. After incorporating hybrid sampling join

technology in this section, both the establishment time of the

anti-normalization join table and the model construction time

will be shortened, and naturally, the total volume of the model

will also decrease.

V. EXPERIMENT

A. Test Benchmarks

This study adopts Synthetic as the test benchmark, which was

initially derived from IMDB-JOB but was later modified by

Kipf et al. The modifications included the removal of

complex requests involving cyclic joins and string predicates,

which are difficult for learning-based cardinality estimation to

handle. A large number of query statements were randomly

generated using templates, and this benchmark has since been

widely used for benchmark testing in learning-based

cardinality estimation. The benchmark utilizes the real-world

IMDB dataset, which contains 5,000 query statements, with

the majority of predicates being equality predicates and range

predicates. The number of tables joined in join queries varies

from 0 to 2.

B. subject of comparison

This research selected a mix of traditional and learning-based

methods for comparison. The traditional method used is

PostgreSQL version 13.1, while the learning-based methods

include recent representatives of query-driven and

data-driven approaches, such as Robust MSCN, BICE,

DeepDB, and FLAT.

PostgreSQL: A representative of traditional cardinality

estimation methods, PostgreSQL is a widely popular

open-source database system that uses histograms and

independence assumptions for cardinality estimation.

Robust MSCN: A query-driven learning-based cardinality

estimation method, it is an improvement proposed by the

MSCN authors to address the original method's inability to

handle workload drift, which led to weak generalization

capabilities. It is based on multi-set neural networks and

incorporates techniques such as random query feature

masking and join bitmaps during the training process.

BICE: A query-driven learning-based cardinality estimation

method that employs four sub-encoders to extract features

from the query plan tree and uses graph embedding and

parallel networks for efficient encoding of joins and filters. It

learns the encoder output of the feature extractor based on a

bidirectional LSTM.

DeepDB and FLAT: Both are data-driven learning-based

cardinality estimation methods with a core idea based on

Sum-Product Networks. They propose RSPN and FSPN

models, respectively, targeting multi-table join problems and

strong attribute correlation problems.

C. Result analysis

1) Build efficiency

Table1 Build time comparison

modle total preparation training

PostgreSQL 2min 0 2min

Robust MSCN 1687min 1630min 57min

BICE 1668min 1630min 38min

DeepDB 68min 17min 51min

FLAT 57min 12min 45min

SimpleBuild(ours) 40min 12min 28min

We posits that data importation should not be included in the

data preparation phase of the model. Therefore, for

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024

 63 www.ijerm.com

PostgreSQL, its modeling process can begin with the

initiation of the ANALYZE command request and end upon

the completion of the statement execution. During this

process, PostgreSQL constructs multiple histograms at the

system level to simulate the probability distribution of the

data tables. Since it does not involve any complex

calculations and only requires simple binning processing, the

speed is very fast.

For Robust MSCN and BICE, both of which are data-driven

learning-based methods, this study includes the training data

preparation phase in the total duration of model construction.

Both adopt the atomic MSCN training data generation scheme,

obtaining query workload and actual cardinality as training

data by executing 100K randomly generated query statements

in PostgreSQL. Therefore, they require a lengthy data

preparation process. However, thanks to the data-driven

methods not needing to simulate the probability distribution

of data, and both models using lightweight neural networks

and LSTM, the training duration is relatively short.

As for DeepDB and FLAT, both are based on Sum-Product

Networks, but DeepDB has a longer data preparation time

because its RSPN model creates a large number of

anti-normalization join tables during the preparation period to

handle multi-table join requests. FLAT has a shorter training

time compared to DeepDB, which is due to FLAT's leaf nodes

not corresponding to just one attribute. To accelerate

modeling, FLAT chooses to combine multiple related

variables to jointly build multi-column histograms.

Regarding the SimpleBuild proposed in this study, since it

simplifies the construction algorithm of the Sum-Product

Network, it directly omits a large amount of clustering

computation during the modeling process, significantly

improving the modeling speed compared to DeepDB and

FLAT, which also use Sum-Product Networks. In terms of

total duration, the method proposed in this study is nearly 40

times faster in modeling speed compared to Robust MSCN

and BICE, 1.7 times faster than DeepDB, and 1.43 times

faster than FLAT.

CONCLUSION

This study begins by clarifying the problem definition of

cardinality estimation and analyzes the strengths and

weaknesses of traditional cardinality estimation methods as

well as existing learning-based cardinality estimation

methods. It concludes that the main work of this research is to

propose a lightweight data-driven learning-based cardinality

estimation method that can overcome the deficiencies in

construction efficiency and access efficiency of data-driven

learning-based cardinality estimation.

REFERENCES

[1] Berg K L, Seymour T, Goel R. History of databases[J]. International

Journal of Management & Information Systems (IJMIS), 2013, 17(1):

29-36.

[2] Taipalus T. Database management system performance comparisons: A

systematic literature review[J]. Journal of Systems and Software,

2023: 111872.

[3] Leis V. Query processing and optimization in modern database

systems[D]. Technische Universität München, 2016.

[4] Jarke M, Koch J. Query optimization in database systems[J]. ACM

Computing surveys (CsUR), 1984, 16(2): 111-152.

[5] Harmouch H, Naumann F. Cardinality estimation: An experimental

survey[J]. Proceedings of the VLDB Endowment, 2017, 11(4):

499-512.

[6] Han Y, Wu Z, Wu P, et al. Cardinality estimation in DBMS: a

comprehensive benchmark evaluation[J]. Proceedings of the VLDB

Endowment, 2021, 15(4): 752-765.

[7] Dutt A, Wang C, Nazi A, et al. Selectivity estimation for range predicates

using lightweight models[J]. Proceedings of the VLDB Endowment,

2019, 12(9): 1044-1057.

[8] Rumelhart D E, Hinton G E, Williams R J. Learning representations by

back-propagating errors[J]. nature, 1986, 323(6088): 533-536.

[9] Chen T, Guestrin C. Xgboost: A scalable tree boosting

system[C]//Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. 2016: 785-794.

[10] Kipf A, Kipf T, Radke B, et al. Learned cardinalities: Estimating

correlated joins with deep learning[J]. arXiv preprint

arXiv:1809.00677, 2018.

[11] Hayek R, Shmueli O. Improved Cardinality Estimation by Learning

Queries Containment Rates[C]//Proceedings of the 23rd International

Conference on Extending Database Technology, EDBT 2020,

Copenhagen, Denmark, March 30 - April 02, 2020.

OpenProceedings.org, 2020: 157-168.

[12] Negi P, Wu Z, Kipf A, et al. Robust query driven cardinality

estimation under changing workloads[J]. Proceedings of the VLDB

Endowment, 2023, 16(6): 1520-1533.

[13] Liang Z, Chen X, Zhao Y, et al. Efficient Cardinality and Cost

Estimation with Bidirectional Compressor-based Ensemble

Learning[C]//2023 IEEE International Conference on Data Mining

(ICDM). IEEE, 2023: 388-397.

[14] Yang Z, Liang E, Kamsetty A, et al. Deep Unsupervised Cardinality

Estimation[J]. Proceedings of the VLDB Endowment, 13(3).

[15] Hilprecht B, Schmidt A, Kulessa M, et al. DeepDB: Learn from Data,

not from Queries![J]. Proceedings of the VLDB Endowment, 13(7).

[16] Yang Z, Kamsetty A, Luan S, et al. NeuroCard: one cardinality

estimator for all tables[J]. Proceedings of the VLDB Endowment,

2020, 14(1): 61-73.

[17] Wang J, Chai C, Liu J, et al. FACE: A normalizing flow based

cardinality estimator[J]. Proceedings of the VLDB Endowment,

2021, 15(1): 72-84.

[18] Poon H, Domingos P. Sum-product networks: A new deep

architecture[C]//2011 IEEE International Conference on Computer

Vision Workshops (ICCV Workshops). IEEE, 2011: 689-690.

[19] Chen Y, Yi K. Two-level sampling for join size

estimation[C]//Proceedings of the 2017 ACM International

Conference on Management of Data. 2017: 759-774.

[20] Huang D, Yoon D Y, Pettie S, et al. Joins on Samples: A Theoretical

Guide for Practitioners[J]. Proceedings of the VLDB Endowment,

13(4).

http://www.ijerm.com/

	I. INTRODUCTION
	II. related work
	A. Query Drive
	B. Data Driven

	III. Related Technologies
	A. Sum-Product Networks
	B. Sampling Joins

	IV. Lightweight data-driven learning cardinality estimation method
	A. cardninality estimation based on sum-product networks
	B. Building sum-product networks from data tables
	C. Sampling connectivity combined with a learning-based approach

	V. experiment
	A. Test Benchmarks
	B. subject of comparison
	C. Result analysis
	1) Build efficiency

	Conclusion
	This study begins by clarifying the problem definition of cardinality estimation and analyzes the strengths and weaknesses of traditional cardinality estimation methods as well as existing learning-based cardinality estimation methods. It concludes th...
	References

