
                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024 

                                                                                              59                                                                                    www.ijerm.com  

 

 
Abstract— Cardinality estimation is a crucial component of the 

query optimizer in database systems, which selects query plans 

based on the results of cardinality estimates and outputs them to 

the query executor. This study initially proposes a data-driven 

learning-based cardinality estimation method. This method 

constructs a probabilistic graph model based on database data, 

transforming cardinality estimation into a probability 

estimation of the variables within the model, and provides a 

lightweight modeling approach. Subsequently, through 

extensive comparative experiments, the proposed method in this 

paper is compared with other cutting-edge learning-based 

cardinality estimation methods across various dimensions, 

demonstrating the superior performance of the method in 

handling cardinality estimation problems. 

Index Terms—Database; Cardinality Estimation; Query 

Optimization; Multi-Table Joins.  

 

I. INTRODUCTION 

  Databases, as system software for storing, managing, and 

retrieving data, are one of the cornerstones of the information 

technology field[1]. They support various aspects of modern 

society, from everyday banking transactions and social media 

to enterprise-level customer relationship management and 

data analysis[2]. The performance of databases directly 

affects the speed of data retrieval and system response time, 

which in turn impacts user experience and the efficiency of 

business decision-making. Database performance 

optimization involves multiple aspects, including the way 

data is stored, the design of index structures, and the 

mechanisms for processing data queries and updates. Among 

these, query optimization is particularly critical, as efficient 

query processing can significantly reduce data retrieval time 

and alleviate server load, improving the overall processing 

capability and resource utilization of the system. The query 

optimizer in a database system is responsible for analyzing 

user-submitted queries, generating multiple potential 

execution plans, and selecting the most efficient one for 

execution[3]. The quality of this decision directly affects the 

speed of query execution and the efficient use of system 

resources, which in turn affects the performance and stability 

of the entire database system. In the case of large data 

volumes and complex queries, an excellent query optimizer 

can significantly reduce query response time and resource 

consumption, enhancing user experience and system 

throughput[4]. 

Cardinality estimation plays a central role in the query 
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optimization process. Cardinality, or the estimated size of the 

result set, is a key input for the optimizer when formulating 

execution plans[5]. The optimizer requires this estimate to 

calculate the cost of different execution plans. For example, 

when deciding whether to use a hash join or a nested loop join 

for the join of two tables, the size of the cardinality is an 

important consideration[6]. If the cardinality estimate is too 

high or too low, it can lead the optimizer to choose a 

suboptimal query execution plan, resulting in decreased query 

execution efficiency and increased resource consumption. 

Therefore, accurate cardinality estimation is extremely 

important for the query optimizer, as it is directly linked to the 

optimization of database query performance and the efficient 

use of system resources. 

However, achieving accurate cardinality estimation has 

been a longstanding challenge in the field of query 

optimization. Traditional methods such as histograms and 

sampling, while computationally simple and efficient, often 

struggle to accurately handle data skew and correlations 

between attributes in complex queries. In recent years, with 

the rise of machine learning, its powerful ability to model 

complex relationships between data has led researchers to 

turn their attention to the field where machine learning and 

cardinality estimation intersect, giving birth to learning-based 

cardinality estimation methods. These methods use machine 

learning models to learn the intrinsic relationships between 

data, providing more accurate cardinality estimates and 

assisting the query optimizer in making better decisions. 

Compared to traditional methods, the advantage of 

learning-based cardinality estimation methods lies in their 

robust modeling capabilities for data distribution and 

correlations between attributes. This not only makes the 

estimates more accurate but also enhances the ability to 

handle complex query scenarios, thereby effectively 

supporting the query optimizer in making more reasonable 

decisions. 

II. RELATED WORK 

A. Query Drive 

Query-driven cardinality estimation methods typically use 

records of historical query requests and the results of 

executing these requests to train models. These methods 

extract features from historical queries, including the 

structure of the queries, predicates, and execution plans. By 

fitting a mapping relationship between these features and the 

actual results, they capture the cardinality distribution under 

specific query patterns.  

For example, the LWGT model[7] proposed by Dutt et al. 

uses both neural networks[8] and XGBoost[9] methods to 

achieve this fitting. The advantage of such methods is their 
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ability to optimize for specific database workloads. For 

instance, if a database system primarily handles a certain type 

of query, the query-driven model can learn the patterns of 

these queries to provide more accurate estimates. However, 

this characteristic also requires a large amount of historical 

query data to train effective models, and the model's 

generalization ability becomes very limited for new or 

uncommon query patterns. Based on a similar idea, Kipf et al. 

implemented the MSCN model[10] based on a multi-set 

convolutional neural network, which represents queries as 

feature vectors containing three modules (table, join, and 

predicate modules). Each module is a two-layer neural 

network, and the outputs of different modules are connected 

and fed into the final output network, which is also a two-layer 

neural network. This complex model improves the model's 

estimation accuracy and generalization to some extent but 

also increases the difficulty of training. 

Hayek proposed a method to improve estimation accuracy by 

learning the containment rate between queries. The 

"containment rate" refers to the proportion of one query result 

set within another query result set. To achieve this, they 

developed a deep learning model called CRN[11], which can 

represent query features in the form of sets and vectors. In the 

CRN model, the query pair (q1, q2) is first transformed into a 

vector representation, mainly involving the transformation of 

the original query's tables, joins, and column predicates into 

set forms. Then, through a neural network MLPi, the obtained 

vectors are transformed into a unique representative vector. 

Finally, the model uses these two vectors to predict the 

containment rate between queries. 

In 2023, Kipf et al. from MIT, the team behind MSCN, 

proposed an improved Robust MSCN[12] to overcome the 

issue of MSCN's heavy reliance on workload stability. This 

method first simulates workload drift in queries involving 

unseen tables or columns by randomly masking parts of table 

or column features during the training process, forcing the 

model to rely on more stable features based on the latest 

database statistics for prediction. Secondly, it introduces a 

join bitmap, a technique that extends feature-based sampling 

through the idea of lateral information transfer to ensure 

feature consistency in join operations. This method improves 

the generalization ability of query-driven methods to some 

extent but still requires a large amount of query workload for 

training, and the difficulty of obtaining training data remains 

high. 

Also from 2023, BICE[13], proposed by a team from the 

University of Electronic Science and Technology of China in 

collaboration with Aalborg University and the Huawei 

database team, designed a feature extractor with four 

sub-encoders to extract different types of information from 

the query plan tree. It uses graph embedding methods to 

encode joins and designs a parallel network for filters to 

improve encoding efficiency, and employs a compressor 

based on bidirectional LSTM to learn the encoded output and 

reduce the learning difficulty of the estimation model. 

B. Data Driven 

Data-driven cardinality estimation methods directly learn the 

probability distribution of these attributes from the data in the 

database. By transforming cardinality estimation into a 

problem of estimating the probability of attributes under 

specific predicates, they complete cardinality estimation. 

Their advantage is that they do not require input historical 

query workloads and can more comprehensively capture the 

potential relationships and distribution characteristics 

between data. Since they do not rely on historical query 

records, they can better generalize to new queries, especially 

in scenarios where data relationships are complex or data 

distribution changes frequently. However, these methods 

usually involve constructing complex machine learning 

models, such as deep neural networks, which means that 

data-driven methods generally have more complex models 

and higher training costs.  

In 2019, Yang et al. proposed a novel cardinality estimation 

method using a deep autoregressive model to capture the 

multivariate distribution of relational tables to improve the 

accuracy of cardinality estimation[14]. The core advantage of 

this method is its unsupervised learning ability, which can 

accurately capture the relationships between column 

attributes in the database without the need for data labels, 

including range queries. To effectively handle 

multidimensional range queries, the study incorporated 

Monte Carlo integration techniques, which can effectively 

handle high-dimensional range queries. 

In 2020, Hilprecht et al. proposed DeepDB[15], which 

includes the development of a new deep probabilistic 

model—Relational Sum-Product Networks (RSPNs). This 

model is capable of capturing the joint probability distribution 

of data in databases, reflecting correlations between attributes 

as well as the data distribution of individual attributes. The 

design of RSPNs allows it to provide answers for various user 

tasks at runtime, such as query answering and cardinality 

estimation. DeepDB also supports direct updates to the 

database, meaning that insert, update, and delete operations 

can be directly reflected in the model without the need for 

retraining. This update capability gives DeepDB a significant 

advantage in handling dynamically changing data. 

NeuroCard[16] is also a learning-based cardinality estimation 

method based on a deep autoregressive model. It originates 

from Naru and extends it to multi-table join scenarios, 

developed by Yang Zongheng and his team at the University 

of California, Berkeley. It can capture the correlations 

between all tables in the database without relying on 

independence assumptions between tables or columns. The 

biggest feature of NeuroCard is that it covers the entire 

database with a single neural density estimator, using 

sampling from joins rather than computing complete joins to 

address the high training cost problem. With lossless column 

factorization technology, it decomposes columns into 

multiple sub-columns to reduce the size of the autoregressive 

model, allowing the model to remain practical even when 

facing columns with a large number of different values. 

FACE[17] is a novel cardinality estimator proposed by Li 

Guoliang's team from Tsinghua University at the VLDB 

conference in 2022. It is based on the Normalizing Flow 

model and can effectively learn the joint distribution of data in 

relational databases without being limited by the query 

workload. A notable feature of FACE is its ability to simplify 

complex probability distributions into manageable forms, 

such as multivariate normal distributions, through continuous 

joint distribution transformations. This allows it to use 

probability density to accurately estimate the cardinality of 

SQL queries. Additionally, FACE effectively handles discrete 

and string data by designing de-quantization methods and 

string data encoding techniques. 
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III. RELATED TECHNOLOGIES 

A. Sum-Product Networks 

Sum-Product Networks (SPNs[18]n innovative deep learning 

architecture that combines the representational power of 

neural networks with the inferential efficiency of probabilistic 

graphical models. SPNs construct a directed acyclic graph 

where nodes can be either sum nodes or product nodes, 

representing complex probability distributions. This structure 

allows SPNs to handle high-dimensional data while 

maintaining model complexity and enabling efficient 

inference. In SPNs, sum nodes mix (i.e., weighted sum) the 

outputs from lower-level nodes, which can be seen as a 

mixture over variable sets, similar to mixture models in 

probabilistic models. Product nodes, on the other hand, 

represent the independence between variables through 

multiplication operations, which helps simplify the model's 

complexity and improve computational efficiency. The core 

advantage of SPNs lies in their ability to learn complex 

structures in the data without the need for intricate feature 

engineering. 

B. Sampling Joins 

Sampling Joins[19] a technique used in database queries to 

quickly estimate the cardinality of the result of a join 

operation. This method involves drawing a sample from the 

tables involved in the join and then performing the join 

operation on these samples to approximate the entire dataset's 

join result. Since only a subset of the data is processed, 

sampling joins can significantly reduce the use of 

computational resources and speed up query response times, 

making them particularly suitable for handling large datasets 

and complex queries. 

In the context of cardinality estimation, sampling joins allow 

database systems to quickly obtain an approximation of a join 

result without sacrificing too much accuracy. The key to this 

method is how to draw a representative sample from the 

dataset and how to infer the join cardinality of the entire 

dataset based on the results of the sample join. To control the 

estimation error, specific sampling techniques and statistical 

methods may need to be employed. 

The efficiency and accuracy of sampling joins depend on the 

sample selection strategy and the characteristics of the dataset. 

In practice, this method can be part of the database optimizer, 

helping the optimizer balance speed and accuracy in the 

selection of execution plans. Although sampling joins may 

not provide completely accurate cardinality estimates, they 

offer a practical compromise in many situations, enabling 

database systems to respond to user queries more quickly 

while maintaining relative accuracy in the estimated results. 

IV. LIGHTWEIGHT DATA-DRIVEN LEARNING CARDINALITY 

ESTIMATION METHOD 

A. cardninality estimation based on sum-product 

networks 

In the database context, we can consider the attributes of a 

data table as random variables, with each row of data 

representing the concrete values of these random variables. 

Based on this, we can use Sum-Product Networks (SPNs) to 

establish a database cardinality estimation model. When this 

model receives a query request, it can identify the attributes 

and predicates involved in the query, and the cardinality 

estimation for this query can be transformed into estimating 

the joint probability of these variables satisfying all 

predicates. 

 

B. Building sum-product networks from data tables 

Data Preparation: First, perform uniform sampling on tables 

with large data volumes to reduce the scale of the data table, 

thereby indirectly reducing the size of the final model and 

speeding up the modeling process. 

Recursive Data Partitioning: Start by creating an empty 

Sum-Product Network structure with a root node set as either 

a sum or product node. From the root node, recursively 

partition the dataset and assign the resulting subsets to all 

child nodes of that node.For sum nodes, use clustering 

algorithms such as K-Means to divide the dataset into 

multiple clusters, with each cluster corresponding to a subtree, 

and calculate the weight of its corresponding subtree based on 

the proportion of the cluster to compute the mixture 

probability. For child nodes of sum nodes, if they do not meet 

the conditions for constructing leaf nodes, set them as product 

nodes.For product nodes, determine how to divide all 

attributes into several sets with low correlation by calculating 

the random dependency coefficients between attributes, and 

based on the attribute division, divide the data into multiple 

subsets and assign them to all child nodes of that node. For 

child nodes of product nodes, if they do not meet the 

conditions for constructing leaf nodes, set them as sum nodes. 

Learning Variable Probability Distributions at Leaf Nodes: If 

a node in the above partitioning process corresponds to a data 

subset that meets the conditions for forming a leaf node, set it 

as a leaf node. In this study, the condition is: the data subset 

has fewer rows than a threshold T and has 1 attribute. The 

purpose of this setting is to fully divide the data into several 

low-correlation and suitable data subsets during the recursive 

partitioning process, making it easier to learn the probability 

distribution of the attribute on that subset. 

For the tool to learn the probability distribution of single 

variables, this study chooses to implement it through 

histograms, as histograms can model both continuous and 

discrete variables, which is more suitable for scenarios with 

diverse data types like databases. Moreover, histograms have 

a faster modeling speed, aligning with the goal of this study to 

build a lightweight model. 

 

C. Sampling connectivity combined with a 

learning-based approach 

Bernoulli Sampling: Bernoulli sampling uniformly samples 

all tuples in the original table with the same probability. In 

Bernoulli sampling, the original table is sampled with a fixed 

probability 𝑝, and if two data tables are separately Bernoulli 

sampled and then joined, it may lead to a quadratic reduction 

in the number of rows in the joined table. That is, if each 

uniform sample occupies 1/𝑝 of the original table, then the 

number of rows in their joined table is only 1/𝑝^2 of the 

original joined table. 

Universe Sampling: Universe sampling maps tuples in the 

table to the [0,1] interval using a hash function ℎ and decides 
whether a row is included in the sample based on the sampling 

rate 𝑝. If the hash value is less than 𝑝, the row is included in 

the sample. This method can avoid the quadratic reduction in 

the number of output, and the sampled table using universe 

sampling often contains more correlations, which may lead to 
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uneven sampling. Universe sampling is particularly useful in 

equi-joins because it ensures that if a row in one table is 

sampled, then the row with the same join key in the other table 

will also be sampled. 

Stratified Sampling: The goal of stratified sampling is to 

ensure that the sample table does not miss minority groups, in 

other words, rows with fewer occurrences of a certain feature 

are not completely un-sampled. It defines groups (or strata) 

based on one or more columns (called stratification columns) 

and ensures that at least 𝑘 rows are uniformly and randomly 

drawn from each group. When the number of rows in a group 

is less than 𝑘, all rows are retained. This method helps to 

maintain the diversity and representativeness of data in join 

queries. 

Since different sampling methods have different suitable 

scenarios, relying solely on one sampling method may lead to 

unbalanced sampling results. Therefore, this paper chooses a 

hybrid sampling method SUBS[20]which combines the three 

sampling methods mentioned above into a hierarchical 

structure. The workflow is as follows: (1) For a data table 𝑇, 

first divide it into 𝑘 groups: {𝐺1, 𝐺2, … 𝐺𝑘}, select a column 

from the table (usually the join key), and a set of parameters  

 
Fig.1 Sum-product network after combining sampled 

connections 

{𝑝1, 𝑝2, … 𝑝𝑘, 𝑞1, 𝑞2, … 𝑞𝑘}, and then define a hash 

function ℎ: 𝑈 →  [0,1]. (2) For each group, 𝐺𝑖, sample using its 

corresponding universe sampling rate 𝑝𝑖. (3) Apply the 

Bernoulli sampling rate 𝑞𝑖 to the sampling results from step 

(2). 

When using Sum-Product Network models, we can pre-scan 

the metadata information of the database to obtain the 

dependency relationships between tables and perform the 

above hybrid sampling join on both sides of the dependency 

relationship, thus obtaining a smaller and more accurate 

joined table. Subsequently, build Sum-Product Network 

models on all single data tables and the sampled joined table. 

The overall workflow is shown in Figure 1, which illustrates a 

database with 3 data tables, where T1 and T2 have a foreign 

key dependency. Therefore, when creating the Sum-Product 

Network model, pre-sampling join was performed on T1 and 

T2 before entering the modeling stage. For the Sum-Product 

Network before joining the sampling, the strategy was to 

pre-create an anti-normalization join table, and if the size of 

the join table exceeded a certain threshold, it would be 

randomly sampled. After incorporating hybrid sampling join 

technology in this section, both the establishment time of the 

anti-normalization join table and the model construction time 

will be shortened, and naturally, the total volume of the model 

will also decrease. 

V. EXPERIMENT 

A. Test Benchmarks 

This study adopts Synthetic as the test benchmark, which was 

initially derived from IMDB-JOB but was later modified by 

Kipf et al. The modifications included the removal of 

complex requests involving cyclic joins and string predicates, 

which are difficult for learning-based cardinality estimation to 

handle. A large number of query statements were randomly 

generated using templates, and this benchmark has since been 

widely used for benchmark testing in learning-based 

cardinality estimation. The benchmark utilizes the real-world 

IMDB dataset, which contains 5,000 query statements, with 

the majority of predicates being equality predicates and range 

predicates. The number of tables joined in join queries varies 

from 0 to 2. 

B. subject of comparison 

This research selected a mix of traditional and learning-based 

methods for comparison. The traditional method used is 

PostgreSQL version 13.1, while the learning-based methods 

include recent representatives of query-driven and 

data-driven approaches, such as Robust MSCN, BICE, 

DeepDB, and FLAT. 

PostgreSQL: A representative of traditional cardinality 

estimation methods, PostgreSQL is a widely popular 

open-source database system that uses histograms and 

independence assumptions for cardinality estimation. 

Robust MSCN: A query-driven learning-based cardinality 

estimation method, it is an improvement proposed by the 

MSCN authors to address the original method's inability to 

handle workload drift, which led to weak generalization 

capabilities. It is based on multi-set neural networks and 

incorporates techniques such as random query feature 

masking and join bitmaps during the training process. 

BICE: A query-driven learning-based cardinality estimation 

method that employs four sub-encoders to extract features 

from the query plan tree and uses graph embedding and 

parallel networks for efficient encoding of joins and filters. It 

learns the encoder output of the feature extractor based on a 

bidirectional LSTM. 

DeepDB and FLAT: Both are data-driven learning-based 

cardinality estimation methods with a core idea based on 

Sum-Product Networks. They propose RSPN and FSPN 

models, respectively, targeting multi-table join problems and 

strong attribute correlation problems. 

C. Result analysis 

1) Build efficiency 

Table1 Build time comparison 

modle total preparation training 

PostgreSQL 2min 0 2min 

Robust MSCN 1687min 1630min 57min 

BICE 1668min 1630min 38min 

DeepDB 68min 17min 51min 

FLAT 57min 12min 45min 

SimpleBuild(ours) 40min 12min 28min 

We posits that data importation should not be included in the 

data preparation phase of the model. Therefore, for 
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PostgreSQL, its modeling process can begin with the 

initiation of the ANALYZE command request and end upon 

the completion of the statement execution. During this 

process, PostgreSQL constructs multiple histograms at the 

system level to simulate the probability distribution of the 

data tables. Since it does not involve any complex 

calculations and only requires simple binning processing, the 

speed is very fast. 

For Robust MSCN and BICE, both of which are data-driven 

learning-based methods, this study includes the training data 

preparation phase in the total duration of model construction. 

Both adopt the atomic MSCN training data generation scheme, 

obtaining query workload and actual cardinality as training 

data by executing 100K randomly generated query statements 

in PostgreSQL. Therefore, they require a lengthy data 

preparation process. However, thanks to the data-driven 

methods not needing to simulate the probability distribution 

of data, and both models using lightweight neural networks 

and LSTM, the training duration is relatively short. 

As for DeepDB and FLAT, both are based on Sum-Product 

Networks, but DeepDB has a longer data preparation time 

because its RSPN model creates a large number of 

anti-normalization join tables during the preparation period to 

handle multi-table join requests. FLAT has a shorter training 

time compared to DeepDB, which is due to FLAT's leaf nodes 

not corresponding to just one attribute. To accelerate 

modeling, FLAT chooses to combine multiple related 

variables to jointly build multi-column histograms. 

Regarding the SimpleBuild proposed in this study, since it 

simplifies the construction algorithm of the Sum-Product 

Network, it directly omits a large amount of clustering 

computation during the modeling process, significantly 

improving the modeling speed compared to DeepDB and 

FLAT, which also use Sum-Product Networks. In terms of 

total duration, the method proposed in this study is nearly 40 

times faster in modeling speed compared to Robust MSCN 

and BICE, 1.7 times faster than DeepDB, and 1.43 times 

faster than FLAT. 

CONCLUSION 

This study begins by clarifying the problem definition of 

cardinality estimation and analyzes the strengths and 

weaknesses of traditional cardinality estimation methods as 

well as existing learning-based cardinality estimation 

methods. It concludes that the main work of this research is to 

propose a lightweight data-driven learning-based cardinality 

estimation method that can overcome the deficiencies in 

construction efficiency and access efficiency of data-driven 

learning-based cardinality estimation. 
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