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 
Abstract—In recent years, the detection of targets by 

unmanned aerial vehicles (UAVs) has gained significant 

attention in research. However, aerial photography with 

drones often presents challenges such as object occlusion, 

large-scale transformations, and the detection of small 

objects. These difficulties pose significant obstacles for 

existing deep learning-based target detection algorithms. 

To address these issues, we propose a novel object 

detection algorithm called YOLOX-SNH. This algorithm 

builds upon the transformer structure of the core 

component, which effectively mitigates object occlusion 

and preserves essential global context information. 

Additionally, we have incorporated a specialized 

detection head to enhance the detection performance for 

small objects. To evaluate the effectiveness of 

YOLOX-SNH, we conducted experiments on the 

VisDrone2021 dataset, comparing it with state-of-the-art 

object detection methods such as ViT-YOLO. The results 

demonstrate that YOLOX-SNH outperforms these 

existing methods, achieving an impressive interpretability 

in drone capture scenarios. Specifically, when applied to 

the VisDrone2021 dataset, YOLOX-SNH achieved an 

average accuracy of 67.00%, surpassing the ViT-YOLO 

method by 1.11%. 

 

 
Index Terms—Object detection;YOLO;Visdrone 

 

I. INTRODUCTION 

      With the advancement of convolutional neural networks 

(CNNs
[1]

), CNN-based algorithms have emerged as popular 

approaches for object detection. Notable examples include 

R-CNN, Fast-RCNN
[2],

 YOLO series, and SSD. However, 

when it comes to images captured by drones, general CNN 

object detection algorithms face challenges in achieving 

satisfactory results. 

One of the primary difficulties arises from the clustering 

characteristics of tiny objects and the high resolution of 

drone-captured images. Factors such as flight height and focal 

length contribute to smaller object sizes in these images. For 

instance, in the VisDrone2021
[6]

 dataset, approximately 10% 

of the objects have resolutions within 100 pixels. Moreover, 

variations in flying height and shooting angle result in 

significant scale transformations for the same object. 

Additionally, occlusion occurs when objects of interest 
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overlap or when objects of interest and non-interest overlap. 

The large size of the images further compounds the detection 

challenges, as drones capture images with higher resolutions. 

In the VisDrone2021 dataset, the maximum resolution can 

reach 2000 x 1500 pixels. However, when these images are 

scaled down to fit the detector and network, the resolution of 

smaller objects is further reduced. 

Currently, object detection algorithms can be broadly 

categorized into two types: single-stage and multi-stage. 

Multi-stage algorithms, such as R-CNN, Fast-RCNN, and 

Faster-RCNN
[3]

, typically involve two independent steps: 

candidate frame extraction and subsequent classification and 

regression. While these algorithms exhibit high accuracy, 

their complex network structures and cumbersome detection 

steps result in slower detection speeds, making them 

unsuitable for real-time performance. In contrast, single-stage 

object detection algorithms, including SSD, RetinaNet, and 

the YOLO
[4] 

series, perform object detection with a single 

feature extraction step on the detection object. These 

algorithms are widely used in various domains due to their 

simplicity and fast detection. 

 

II. RELATED WORK 

A. YOLOX 

The YOLO series is a well-known family of one-stage 

object detection algorithms. YOLOX
[7]

 represents the latest 

advancement in this series and introduces several novel 

structures, including Focus, Spatial Pyramid Pooling (SPP), 

PANet, and residual networks. The largest YOLOX model 

achieves an impressive mean Average Precision (mAP) of 

69.6% on the MS COCO dataset, while maintaining a fast 

detection speed of 57.8 frames per second (FPS) on the Tesla 

V100. 

YOLOX offers six different options for network width 

and depth, namely YOLOX-nano, YOLOX-tiny, YOLOX-s, 

YOLOX-m, YOLOX-l, and YOLOX-x. As an enhancement 

over YOLOV3
[5]

, YOLOX utilizes the CSP-Darknet as its 

backbone, which consists of multiple residual blocks. The 

feature fusion layer incorporates the Path Aggregation 

Network (PANet) to combine feature information effectively. 

In the prediction stage, YOLOX employs three separate heads 

for classification and regression tasks, unlike previous YOLO 

versions where these tasks were combined within a single 

convolution. This separation of classification and regression 

in the YOLOX Head yields improved predictions by avoiding 

potential negative effects on network recognition that may 

arise from the joint implementation of these tasks. 
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B. Vision Transformer 

In 2017, a transformer model was introduced by V. 

Aswani et al., primarily used for machine translation and later 

applied to natural language processing (NLP). This model 

demonstrated significant advancements in language-related 

tasks. In 2020, the Google team introduced the Vision 

Transformer (ViT), which extended the transformer 

architecture to the field of computer vision. ViT processed 

image inputs as patches and achieved remarkable 

performance in various vision tasks. In the same year, the 

Facebook team presented a comprehensive object detection 

algorithm called TransformerDETR
[9]

. Based on the 

transformer encoder-decoder structure, DETR made 

predictions by analyzing object relationships and global 

background information. Building upon previous literature, 

ViT-YOLO drew inspiration from these developments and 

incorporated the multi-head self-attention mechanism from 

the transformer architecture into the YOLO framework. This 

integration aimed to enhance the performance of object 

detection tasks by leveraging the powerful attention 

mechanisms of the transformer. 

C. Multi-scale feature fusion 

In the context of object detection, feature fusion plays a 

vital role. When utilizing convolutional neural networks 

(CNNs) for computation, the extracted features exhibit 

variations in scale and depth within the network. By solely 

relying on deep-level features, we risk losing valuable 

information and encountering challenges in detecting small 

objects. To enhance the efficiency and effectiveness of object 

detection models, it is essential to leverage features of 

different scales for prediction. 

Currently, the mainstream approach for multi-scale feature 

fusion is the Feature Pyramid Network (FPN), which adopts a 

top-down architecture based on a feature pyramid structure. 

Building upon this concept, PANet
[8]

 introduced an additional 

bottom-up path aggregation network on top of FPN to further 

improve feature fusion.This enables the model to determine 

the relative importance of different content regions and 

enhances the effectiveness of feature fusion.  

III. DATASET ANALYSIS 

In this study, we utilized the VisDrone2021 UA V 

dataset, which was curated by the AISKYEYE team at Tianjin 

University in China. The dataset comprises 6,471 images in 

the training set, 548 images in the validation set, and 3,190 

images in the test set. Each image in the dataset is annotated 

with labels from 10 different categories. However, the objects 

captured by the drones exhibit variations in size and occlusion 

due to differences in flying heights and focal lengths during 

data collection. To gain a comprehensive understanding of the 

VisDrone2021 dataset, we conducted a thorough analysis and 

identified three key issues associated with it. 

A. Many small goals 

Upon analyzing the training set, we conducted a 

comprehensive data analysis that resulted in a distribution 

map showcasing the sizes of all labeled objects. The map, 

depicted in Figure 1(a), represents the width and height of the 

label boxes using horizontal and vertical coordinates, 

respectively. Notably, the map reveals a higher density of 

points in the lower left corner. This indicates that the 

VisDrone2019 dataset predominantly consists of small 

objects. 

Furthermore, Figure 1(b) illustrates the distribution of 

object pixels, indicating that 60% of the pixels fall within the 

range of 1000, while the remaining 40% exceed this 

threshold. This finding further emphasizes the prevalence of 

small objects within the dataset. To visually support this 

observation, Figure 1(c) presents an example highlighting the 

abundance of small objects in the dataset. 

 

B. Objects occlude each other 

During UAV flights at high altitudes, occlusion between 

objects can occur due to the flight height and shooting angle. 

Three individuals sitting in an awning-tricycle are marked 

within the red box, and they occlude each other. Additionally, 

there is occlusion between the awning tricycle and the people. 

To address this challenge, our study examines the 

occurrences of occlusion among all objects in the training set.  

Remarkably, occluded objects make up 61.4% of the entire 

dataset. This significant presence of occluded objects poses a 

challenge for YOLO series networks in accurately identifying 

them. During the non-maximum suppression (NMS) process, 

severe occlusion can result in missed or falsely detected 

objects. 

 

C. Large scale transformation between objects 

When employing drones for image capture, the size of 

objects of the same type can vary significantly due to 

variations in flight height. For example, a pedestrian captured 

in a close-up shot may appear to be similar in size to a car 

captured in a long-range shot.  In close-up views, cars may 

appear as large objects, whereas they appear much smaller in 

long-range views. 

This substantial variation in object scale and size presents a 

challenge when extracting features with the model. The 

extracted features differ due to these variations, making it 

difficult to effectively fuse features for multi-scale feature 

fusion. This poses significant challenges in achieving 

accurate and robust object detection across different scales. 

 

Figure 1. Visdrone data 
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IV. METHODS 

A. Transformer-Darknet 

The scenes captured by UA Vs often exhibit complex 

environments and dense distributions of objects. However, 

traditional convolutional neural networks (CNNs) can suffer 

from limitations in capturing both global and local context 

information due to their convolutional operations. To address 

this issue, a recent paper (Paper 22) proposed the use of a 

transformer model for object detection, which has shown 

superior performance in scenarios with high-density severe 

occlusion and disturbance compared to CNN-based models. 

The transformer model replaces the convolutional network 

with a transformer architecture, which provides more 

informative object information. The key advantage of the 

transformer lies in its self-attention mechanism. This 

mechanism allows the model to assign varying degrees of 

attention to each pixel in the image, enabling it to focus more 

on important pixels and reduce the impact of occluded objects 

on the model's performance. In the implementation, the input 

image is divided into small tiles, and the self-attention 

mechanism calculates the relationships and similarities 

between these tiles. Based on these calculations, a weight 

matrix is generated. The model then applies this weight matrix 

to weight and aggregate the information from each tile, 

resulting in a vector representing the entire image. This vector 

can be utilized for tasks such as classification and object 

detection. 

To balance the trade-off between network depth and 

preserving global information, the transformer is incorporated 

into the last Resblock body, rather than using it throughout the 

entire network. Each Transformer Encoder module consists of 

a multi-head attention mechanism and a feedforward neural 

network (MLP) connected by residuals. This design reduces 

computational complexity compared to convolutional 

networks. Additionally, the Transformer Encoder module 

enables the model to focus on different aspects of 

information, resulting in a more informative and feature-rich 

network architecture. 

 

B. YOLO Head 

In this study, a thorough analysis of the VisDrone 2021 

dataset was conducted. The statistical analysis revealed the 

presence of a significant number of small targets within the 

dataset, some of which may be challenging to detect visually. 

To address this challenge, the paper adopts the 

TPH-YOLOv5
[12]

 approach (Paper 23), which introduces a 

specialized prediction head that is highly sensitive to tiny 

objects. This prediction head operates on a low-level, 

high-resolution feature map, allowing for improved detection 

of small targets. By incorporating four prediction heads, the 

approach mitigates the negative effects of drastic changes in 

object scale, enabling better detection of targets of different 

sizes. 

It is important to note that the introduction of the 

prediction head does increase computational effort and the 

number of model parameters. However, the enhanced 

detection of small targets achieved through this approach 

justifies these additional costs. 

 

 

 

Figure 2. YOLO-SNH 
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V. EXPERIMENT 

A. Experiment Details 

The experimental setup for this study involved using 

Ubuntu 18.04.5 LTS as the operating system. The hardware 

configuration consisted of an Intel(R) Xeon(R) CPU E5-2698 

v4 @ 2.20GHz processor and an NVIDIA Tesla A100 GPU. 

The network analysis was performed using the PyTorch 

framework (version 1.8.0) with CUDA version 10.2 for GPU 

acceleration. 

To expedite the training process, the paper utilized 

pre-trained weights from YOLOX-l during the training phase. 

Since YOLOX-SNH and YOLOX share a significant portion 

of their backbone architecture, many of the weights from 

YOLOX-l could be transferred to YOLOX-SNH, reducing 

the need for extensive re-training. 

A series of validation experiments were conducted on 

publicly available aerial remote sensing data sets. This dataset 

VisDrone2021 is specially designed for UAV vision tasks, 

providing a variety of image and video data suitable for 

training and evaluation of target detection, target tracking, 

and behavior analysis tasks. 

B. General Performance 

The qualitative experiments presented in Figure 2 

showcase the performance of the proposed framework on the 

VisDrone dataset. The results demonstrate that our method 

outperforms other models in terms of target classification and 

regression. Notably, our model exhibits exceptional 

capability in accurately identifying small targets even in 

scenarios where occlusion occurs, surpassing the 

performance of alternative models. These figures serve as 

visual evidence that our method achieves superior accuracy in 

object positioning. 

C. Experimental results on Visdrone 

Due to the unavailability of the evaluation server, we 

followed the established practice of utilizing the validation set 

for performance evaluation. Table 1 showcases the test results 

obtained by our proposed approach on the VisDrone2021 

validation set. Notably, among the various state-of-the-art 

object detection algorithms assessed, the ones belonging to 

the YOLO series demonstrate exceptional performance. 

Specifically, our YOLOX-SNH model achieves a mean 
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Average Precision (mAP) of 67.00%, which represents a 

significant improvement of 5.47% compared to the baseline 

model. These results highlight the effectiveness and 

superiority of our approach in object detection tasks. 

 

Table1. Comparison of model performance on Visdrone2021 

dataset 

Method Years mAP（%） 

YOLOv5 2020 55.33 

Cascade R-CNN 
[11]

 2018 37.84 

DPNetv3 2020 62.05 

Swin-T 2021 63.91 

VIT-Adapter 2022 62.50 

           YOLOX-L 2021 61.53 

VIT-YOLO
[10]

 2022 65.89 

YOLO-SNH(ours) 2024 67.00 

 

Table2. Ablation experiment 

Method mAP 

YOLOX 60.86 

 + Swin 64.27 

+ Swin + head 67.00 

 

VI. CONCLUSION 

This paper tackles the problem of low detection accuracy 

for small objects in unmanned aerial vehicles (UAVs) using 

conventional algorithms. To address this issue, a 

comprehensive examination of the VisDrone2021 dataset is 

conducted, which sheds light on the prevalence of small 

objects and object occlusion within the dataset. In order to 

overcome these challenges, a novel feature pyramid structure 

is devised, and the transformer encoder and detection head are 

seamlessly integrated into this model for independent 

learning. This innovative approach aims to enhance the 

detection performance specifically for small objects in UAV 

imagery. 
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