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 
Abstract—Aiming at the difficulty of hyper-parameter tuning 

commonly found in traditional machine learning algorithms. 

Combine the Slime Mould Algorithm with traditional machine 

learning algorithms. Use XGBoost algorithm to construct a 

concrete compressive strength prediction model, use different 

algorithms to optimize the parameters, the experimental results 

show that the SMA algorithm performs well in optimizing the 

XGBoost parameters, the established concrete strength 

prediction model is highly efficient, the prediction accuracy is 

improved significantly, and the complex problem of concrete 

compressive strength prediction is solved. 

 
Index Terms—Intelligent optimization algorithm; Slime 

Mould Algorithm; Concrete; Quality prediction; XGBoost  

 

I. INTRODUCTION 

  The compressive strength of concrete is a key indicator of 
its quality, and the accuracy of compressive strength is 
directly related to the safety and stability of buildings. 
Traditional concrete compressive strength prediction 
methods mainly rely on empirical formulas and statistical 
analysis, but these methods are often limited by the amount 
and complexity of data, and it is difficult to accurately reflect 
the intrinsic laws of concrete quality. 

In contrast, machine learning, as a data-driven technology, 
can mine the potential characteristics and laws of concrete 
quality from a large amount of historical data, and then build 
accurate concrete strength prediction models. These models 
can not only give the prediction results in a short time, but also 
dynamically adjust according to real-time data, which greatly 
improves the accuracy and timeliness of prediction [1][2]. 

K. Güçlüer et al [3] addressed the key problem of concrete 
compressive strength prediction, aiming to shorten the 
experimental period and reduce the cost, by using machine 
learning algorithms to replace the traditional means of 
laboratory determination. Four algorithms, namely, artificial 
neural network, decision tree, support vector machine and 
linear regression, were compared and analyzed for the 
prediction of compressive strength of concrete samples at 7 
and 28 days of curing in order to find the optimal prediction 
model. The experiments show that the decision tree algorithm 
has the best prediction performance and shows the lowest 
prediction error and the highest prediction accuracy for the 
compressive strength prediction of concrete samples cured for 
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28 days. Farroq et al [4] used machine learning algorithms 
such as Random Forest and Gene Expression Programming, 
combined with statistical evaluation methods, to effectively 
predict the compressive strength of high-strength concrete, 
and a comparative analysis shows the superiority of their 
model in predicting the mechanical properties of concrete. 
model outperforms decision trees and artificial neural 
networks in predicting the mechanical properties of concrete. 
Debaditya's team [5] successfully constructed a concrete 
compressive strength prediction model using XGBoost 
technique and achieved excellent performance with fine 
tuning. Afshin Marani et al [6] conducted a study of various 
machine learning algorithms including Random Forest, 
Extremely Random Tree, Gradient Boosting Decision Tree 
and XGBoost and tuned various machine learning algorithms 
and evaluated their prediction accuracy using several metrics. 
Experimentally, the prediction accuracy of these models was 
found to be very high. Tuan Nguyen-Sy et al [7] analyzed the 
performance of three machine learning methods, XGBoost, 
ANN, and SVM, in predicting the compressive strength of 
concrete, and found that the XGBoost method outperforms 
ANN and SVM in terms of accuracy, training speed, and 
robustness. 

The current study shows that machine learning techniques 
have shown their great potential in predicting concrete 
strength and have achieved impressive preliminary results 
[8]-[11]. However, traditional machine learning algorithms 
generally suffer from the problem of complex and 
cumbersome hyperparameter tuning process. 
Hyperparameters refer to some parameters that need to be set 
before the start of model training; they are not automatically 
acquired through the training process, but directly affect the 
learning process and final performance of the model. Since 
the choice of hyperparameters is often decisive for the 
performance of the model, failure to set them appropriately 
may lead to underfitting or overfitting of the model, which 
seriously affects the prediction accuracy and generalization 
ability. 
To overcome this challenge, academia and industry have 
turned to the use of intelligent optimization algorithms to 
assist and improve the hyperparameter tuning process. Such 
optimization algorithms, such as genetic algorithms, particle 
swarm optimization, simulated annealing, Bayesian 
optimization, etc., are able to find the optimal or near-optimal 
solutions in large-scale or even high-dimensional 
hyperparameter spaces by virtue of their highly efficient 
global search strategies and adaptive tuning mechanisms, 
which greatly reduce the heavy burden of manually tuning the 
hyperparameters and help to explore the potential 
performance of the models. Therefore, combining intelligent 
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optimization algorithms with traditional machine learning 
algorithms can not only effectively solve the complexity of 
hyperparameter settings, but also significantly improve the 
predictive ability and stability of the model, and thus promote 
machine learning to achieve more desirable results in various 
practical applications [12]-[15].  

II. SLIME MOULD ALGORITHM 

Slime Mould Algorithm (SMA), as one of the emerging 
swarm intelligence optimization algorithms in recent years, 
was proposed by Shimin Li et al. [16] in 2020. The Slime 
Mould Algorithm is inspired by the growth and reproduction 
behaviors of Slime Mould Algorithm in nature and has high 
parallelism and adaptability. Compared with other swarm 
intelligence optimization algorithms, the Slime Mould 
Algorithm has the advantages of fewer parameters, greater 
parallelism, and stronger global optimization finding ability, 
and can be used to solve different types of optimization 
problems [17]-[20]. 

The Slime Mould Algorithm mainly simulates the foraging 
behavior and state changes of Physarum polycephalum in 
nature under different food concentrations. Slime Mould 
Algorithm is based on the biological oscillator and uses 
adaptive weights to simulate the positive and negative 
feedback processes generated by the slime molds during the 
foraging process, resulting in different morphologies. 

When the slime bacteria approach the food, the slime 
bacteria will determine the direction of the food according to 
the concentration of the food, which in turn leads to the 
generation of stronger waves by the biological oscillator, and 
the mathematical model that simulates the foraging behavior 
of the slime bacteria is represented in equation (1): 
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Where t  is the current iteration number,  bX t  is the 

optimal position of the slime mould individual at the current 
iteration number,  A

X t  and  BX t  are the positions of two 

randomly selected slime mould individuals,  as a control 

parameter takes the value in the range of [-a, a], 
c
v  is the 

parameter that decreases linearly from 1 to 0, and  is the 
random value between[0,1]. W is the quality of the slime 
mould, which represents the fitness weights z is the 
probability of a mucilage isolate individual searching for 
other food sources, i.e., the probability of generating variation, 
which according to the experimental study can be obtained at 
0.03 for a good balance between the exploitation phase and 
the exploration phase. UB and LB denote the upper and lower 
bounds of the decision space, respectively. 

The mathematical model equations for the control variable 

p and parameter 
b
v  are as follows: 

 
   tanh p S i DF  (2) 
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S(i) is the fitness value of the i th individual, and DF is the 

optimal fitness value in all iterations. The calculation formula 
of a is shown in Equation (4): 
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The fitness weight W is shown in Equation (5): 
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where r is a random value between [0,1], S is the overall set 

of fitness values (calculated by the objective function), S(i) is 
the fitness value of the i th individual, bF denotes the best 
fitness value currently obtained, and wF denotes the worst 
fitness value obtained in the current iteration. When updating 
the weights, the updating formulas are different for different 
individuals, where condition denotes the slime mould 
individual with the first half of the fitness value. From the 
formula, it can be seen that the weights of the better part of the 
individuals take larger values within [1,1.3], and the better the 
individual's weights take values closer to 1; the worse part of 
the individuals take values within [0.7,1], and the worse the 
individual's weights are closer to 0.7. 

III. MODEL BUILDING  

XGBoost (Extreme Gradient Boosting) is a powerful 
machine learning algorithm mainly used for classification and 
regression tasks, developed by Tianqi Chen et al. [21] It is 
popular in data science and machine learning competitions 
due to its efficient performance and excellent prediction 
ability, and has achieved remarkable results in practical 
applications.The XGBoost algorithm is based on the gradient 
boosting Decision Tree (GBDT) algorithm, which has been 
heavily optimized and extended. 

In the XGBoost model, hyperparameter optimization plays 
a crucial role; these parameters are not automatically learned 
by the training process, but need to be set manually according 
to the specific problem domain characteristics and data 
properties. Appropriate selection of hyperparameters can 
significantly improve the predictive performance of the model, 
reduce the risk of overfitting, and increase the generalization 
ability of the model. These parameters include max_depth 
(maximum depth of each decision tree), learning_rate (step 
size per iteration), n_estimators (number of trees in the 
ensemble), gamma (minimum loss reduction required to split 
a node), min_child_weight (minimum permissible weight for 
instances in the leaves), subsample (fraction of samples used 
per tree construction), and colsample_bytree (subsampling 
rate of columns), among others. 

In order to improve the performance and generalization 
ability of the concrete compressive strength prediction model, 
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this study proposes to use two optimization algorithms, WOA 
and SMA, to optimize the key parameters of XGBoost, 
respectively. Meanwhile, four machine learning algorithms, 
namely SVR algorithm, decision tree algorithm, random 
forest algorithm and XGBoost algorithm, are used to 
construct concrete compressive strength prediction models as 
comparison models, respectively. 

For the optimization model, firstly, we formalize the 
optimization problem as follows: by adjusting the 
hyperparameters mentioned above, we search for the optimal 
combination that can maximize the prediction accuracy of the 
model. In the implementation of each algorithm, all methods 
adopted the same optimization objective, i.e., based on the 
performance metrics obtained from cross-validation as the 
value of the fitness function. 

In the implementation stage, each algorithm follows its 
standard procedure, and the initial parameters and the number 
of iterations are reasonably set to ensure a fair assessment of 
the optimization effect of each algorithm. 

The dataset used in this paper comes from the UCI 
Machine Learning Database, which contains 1030 sets of 
measured data values under nine parameters: cement, blast 
furnace slag, fly ash, water, high-efficiency water reducer, 
coarse aggregate, fine aggregate, age and concrete 
compressive strength. When constructing the initial index 
system of the concrete compressive strength prediction 
model, we choose the first eight parameters as input variables, 
and the ninth parameter, concrete compressive strength, as the 
output variable. 

The XGBoost model was optimized by the above two 
algorithms, and the concrete compressive strength prediction 
experiment was completed. By comparing and analyzing the 
predictive performance indexes obtained by each prediction 
model, we aim to reveal and evaluate the practical efficacy 
and applicability of these different optimization strategies in 
solving the problem of tuning the concrete compressive 
strength prediction model. 

SMA-XGBoost algorithm steps: 
Step 1: Initialization phase. First set the key parameters of 

the algorithm, including the population size N, the maximum 
number of iterations T, the dimension D of the problem to be 
optimized, and the upper limit UB and lower limit LB of the 
search space. 

Step 2: Adaptation evaluation. Under the condition of the 
current iteration number t<T, the initialized corresponding 
position parameters of the slime mold individuals are applied 
to the XGBoost model for training, and the fitness values of 
the individuals are calculated based on the performance 
metrics on the training set. In this process, the optimal fitness 
DF and the worst fitness wF in the current population are 
recorded. 

Step 3: Dynamic weight adjustment and parameter update. 
Update the adaptation weight matrix W and control 

parameters 
c
v , 

b
v , p. 

Step 4: Position update. Based on the updated state 
variables, iteratively update the position of each slime mold 
within the population. 

Step 5: Iteration termination determination. Check whether 
the current iteration number t reaches the preset maximum 

number of iterations T. If the maximum number of iterations 
t>T has been reached, output the optimal positional solution 
and its corresponding optimal fitness value in the current 
population of slime molds; if the maximum number of 
iterations t<T has not been reached, go back to Step 2, and 
continue to carry out the optimization process in the next 
iteration cycle. 

Step 6: Optimal solution application. After completing all 
the iterations, the optimal location solution found by the SMA 
algorithm is used as the final hyperparameter configuration of 
the XGBoost model, and the XGBoost model is retrained 
using this configuration to obtain optimal performance. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

Experiments on concrete compressive strength prediction 
were carried out for each model. The experimental results are 
shown in Fig. 1, which illustrates the accuracy of the predicted 
values of the different models in determining the compressive 
strength of concrete in the form of a scatter plot. 

 

 
Figure 1 Scatterplot of unoptimized model predictions 

 
In scatterplot analysis, the centerline symbolizes the ideal 

state in which the predicted compressive strength values 
exactly match the actual measured values, which means that 
the closer the data points are to the centerline, the higher the 
prediction accuracy will be. Observing Fig. 1, it can be seen 
that among the models without optimization treatment, the 
random forest and the original XGBoost models present 
excellent prediction efficacy, and they are highly represented 
in terms of accuracy and stability. In contrast, the decision 
tree model is slightly less effective in prediction, suggesting 
that deep optimization or fine tuning of parameters may need 
to be implemented to enhance the prediction accuracy. As for 
the SVR model, its performance is the weakest this time. 
Although it has some prediction function, there is a large 
deviation between the predicted data points and the real 
values. 
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Figure 2 Optimized Scatterplot of Model Predictions 

 
As shown in Fig. 2, In the optimized model camp, the 

graphical trends of SMA-XGBoost and WOA-XGBoost 
show an improvement, and both of them show better 
prediction performance than the unoptimized model. Among 
them, the SMA-XGBoost model has the most outstanding 
performance, as its data points are evenly distributed on both 
sides of the center line without obvious anomalies, which 
strongly indicates that the predicted concrete compressive 
strength values of the model are highly close to the actual 
values, and that the overall model fitting effect and prediction 
accuracy are excellent. 

In order to further evaluate the superiority of the 
SMA-XGBoost model for the prediction of concrete 
compressive strength, the performance evaluation indexes of 
each prediction model were calculated on the basis of the 

same dataset as follows: coefficient of determination (
2
R ), 

mean square error (MSE), mean absolute error (MAE), and 
average absolute error (AAE). error, MAE). Among them, 

2
R  judges the feasibility and linear relationship of the model; 
MSE reflects the expectation of the squared difference 
between the predicted value and the actual value; MAE 
reflects the average of the absolute value of the error between 
the predicted value and the actual value. The prediction 
performance evaluation indexes of each model are calculated 
as shown in Table 1. 

 
 

Table1 The performance criteria values of the models 

Method 
Testing set 

 MSE MAE 

XGBoost 
0.92

2 
4.56

3 
2.96

0 

Random Forest 
0.911 4.86

2 
3.60

3 

Decision Tree 
0.85

2 
6.28

3 
4.22

9 

SVR 
0.71

0 
8.78

8 
6.99

3 

WOA-XGBoost 
0.94

2 
3.88

5 
2.79

3 

SMA-XGBoost 
0.94

7 
3.74

8 
2.60

6 
 
Based on the performance index values shown in Table 1, it 

can be clearly observed that in the test set, the newly proposed 
SMA-XGBoost model in this study shows more excellent 
performance compared with the traditional XGBoost, 

WOA-XGBoost and other similar models. The 
2
R  score of 

the SMA-XGBoost model is as high as 0.947, which is a good 
validation of the goodness of fit of the model. SMA-XGBoost 

model has a high 
2
R  score of 0.947, which is a strong proof 

of the model's goodness of fit. 
Compared with other models, SMA-XGBoost achieves a 

significant decrease of 30.9%, 5.6%, 10.1% and 9.9% in the 
MSE of the test set, which clearly demonstrates the advantage 
of the model in terms of prediction accuracy. In addition, 
SMA-XGBoost also achieved the optimal level of MAE on 
the test set, which further confirms the accuracy and 
effectiveness of the model in predicting the compressive 
strength of concrete. 

Taken together, the experimental results clearly reveal the 
remarkable effectiveness of the SMA algorithm in optimizing 
the XGBoost parameter settings. By using the optimized 
SMA-XGBoost model of the SMA algorithm to construct an 
efficient and accurate concrete strength prediction tool, the 
prediction accuracy has been substantially improved. This 
definitely proves the unique superiority of the SMA-XGBoost 
model proposed in this study in dealing with the complex task 
of concrete compressive strength prediction. 

V. CONCLUSION 

In this paper, to address the challenges of traditional 
machine learning algorithms in hyper-parameter tuning, 
Slime Mould Algorithm (SMA) is introduced to integrate 
with the classical XGBoost algorithm with a view to 
enhancing the performance of concrete compressive strength 
prediction model. It is demonstrated through experiments that 
the optimization of XGBoost parameters by SMA not only 
effectively solves the hyperparameter tuning challenge, but 
also significantly improves the performance of the prediction 
model.  
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