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Abstract— Recently, many deep learning-based deraining 

networks have been proposed, which directly extract rain 

streaks from the rainy images and subtract them to obtain 

deraining results. These methods often suffer from insufficient 

or excessive extraction of rain streaks, resulting in residual rain 

streaks or the loss of texture information in the deraining 

images. A Dual-stage Spatial-Frequency Domain Deraining 

Network Based on Fast Fourier Transform (FFT-DDN) is 

proposed, embedding the Fourier transform into the neural 

network. We divides the deraining task into two networks, 

namely the Image Deraining Network (IDN) and the 

Background Extraction Network (BEN). A Spatial-frequency 

domain Fourier Phase Enhancement Block (SFPEB) is designed 

as the fundamental block in both deraining networks, achieving 

parallel processing and fusion of the Fourier and spatial 

domains. Between the two networks, a Detail Attention Block 

(DAB) is designed to mine the intrinsic connection between 

background information and rain streak features, to restore 

richer texture information. Moreover, to fully utilize the 

complementary information between the spatial and frequency 

domains, a Feature Fusion Block (FFB) is designed to further 

enhance the overall performance of the network. Experimental 

results on synthetic and real datasets demonstrate that the 

proposed method achieves superior deraining effects both 

subjectively and objectively 

 
Index Terms— Image deraining, Fourier transform, 

Attention mechanism.  

 

I. INTRODUCTION 

Images captured during rainy conditions often suffer from 

significantly reduced visibility, posing substantial challenges 

to various outdoor visual tasks such as image 

segmentation[1], object detection[2], and video 

surveillance[3]. The objective of image deraining technology 

is to eliminate rain streaks from these images, thereby 

enhancing their quality and suitability as a preprocessing step 

for advanced computer vision applications. Despite its critical 

importance, the task of image deraining is an ill-posed 

problem that remains inadequately resolved, attracting 

considerable ongoing research attention. This persisting 

interest underscores the complexity and the essential nature of 

improving image clarity under adverse weather conditions, 

highlighting its pivotal role in the seamless execution of 

outdoor visual tasks[4]. 

To address these issues, we proposes a Dual-stage 

Spatial-Frequency Domain Deraining Network Based on Fast 

Fourier Transform (FFT-DDN). Unlike previous methods 
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that only process features in the spatial domain, this network 

uses a multi-branch structure to decompose the image into the 

image  

 

spatial domain and the image Fourier frequency domain, fully 

utilizing the frequency differences between the original and 

degraded images for deraining. Features are extracted by 

processing the phase spectrum in the Fourier domain because 

the phase spectrum represents the phase information of 

various frequency components in the image, which to some 

extent reflects the image's local structure, texture, edges, and 

other features, determining the image's relative position and 

shape in the frequency domain. And rain streaks are 

distributed throughout the image in different shapes and 

directions. Therefore, we propose the Spatial-Frequency 

Domain Fourier Phase Convolutional Block (SFPconv), 

which processes features in different domains through 

different branches. In the spatial branch, a Multi-Scale 

Convolutional Block (MSconv) is designed to extract spatial 

features of the image at different scales, and three learnable 

parameters are used to adjust the corresponding weights for 

specific scales. In the Fourier branch, features are extracted 

and integrated after Fourier decomposition and phase 

spectrum processing, and then, after inverse Fourier 

transform, they are input into the feature fusion attention 

module to dynamically select the information-rich frequency 

domain. Two Spatial-Frequency Domain Fourier Phase 

Convolution Blocks stacked with residual structures construct 

the Spatial-Frequency Domain Fourier Phase Enhancement 

Block (SFPEB) as the basic module of the network. 

Furthermore, we explore the intrinsic correlation between 

the background layer and the rain streak layer, dividing the 

network into two parts: the Image Deraining Network (IDN) 

and the Background Extraction Network (BEN). Between the 

two networks, a Detail Information Attention Block (DAB) is 

proposed, which can generate degradation priors and generate 

degradation masks according to the rain streak distribution 

map predicted by the image deraining network, and then, 

through global correlation calculation, extract 

information-rich and complementary components from the 

rain streak image with degradation masks, thus mining the 

intrinsic connection between the background and rain streak 

layer to help achieve more accurate texture restoration. To 

further enhance deraining performance, we adopt a dense 

connected method to fully utilize shallow features from front 

to back to restore more background information. The main 

contributions of this method are summarized as follows: 

1) A dual-stage image deraining architecture is proposed, 

including image deraining and background refinement 

stages. Guided by the coarsely separated rain streak layer 

Dual-stage Spatial-Frequency Domain Deraining 

Network based on Fast Fourier Transform 
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learned, this architecture can recover rain-free images 

with richer information. 

2) A spatial-frequency domain deraining network is 

proposed, which automatically decomposes feature maps 

into the spatial and frequency domains through a 

multi-scale feature extractor and Fourier phase 

convolution, and dynamically selects the domain 

containing effective information for image deraining, 

preserving more texture information. 

3) A detail information attention module is proposed to 

explore and uncover the potential correlation between the 

rain streak layer and the background layer, significantly 

reducing the learning burden and promoting the 

restoration of detail textures. 

4) Extensive experiments prove that the proposed 

FFT-DDN achieves more advanced performance levels 

compared to some existing deraining methods on both 

synthetic and real datasets. 

II. RELATED WORK 

A. Optimization-based Deraining Methods 

In the realm of traditional deraining approaches, the process is 

often conceptualized as a signal decomposition task, 

transforming it into an optimization challenge with the goal of 

deriving rain-free images. Notably, Li et al.[5] introduced a 

methodology predicated on a Gaussian mixture model trained 

on image patches, aimed at enhancing the quality of the 

segregated images. Similarly, Luo et al.[6] advanced a 

method employing discriminative sparse coding to distinguish 

between rain layers and background layers within rainy 

images. Employing dictionary learning, Kang et al.[7] 

succeeded in obtaining rain-free images by extracting rain 

components from the images’ high-frequency parts. 

Furthermore, Gu et al.[8] proposed a joint convolutional 

analysis and synthesis (JCAS) sparse representation 

framework, merging analysis sparse representation (ASR) 

and synthetic sparse representation (SSR), to dissect rainy 

images. These methods, grounded on the linear model, strive 

to efficaciously remove rain streaks. However, the actual 

degradation process experienced by images under rainfall 

conditions cannot be accurately described by a simple 

additive relationship between rain layers and background 

layers, thus limiting the effectiveness of these strategies in 

eradicating rain content and achieving clear, rain-free images.  

B. Deep Learning-Based Methods 

The emergence of deep learning technologies has given rise 

to a new generation of deraining algorithms, marking notable 

progress in the field. Li et al.[9] proposed a recurrent 

squeeze-and-excitation context aggregation network that 

leverages recurrent neural networks to remove rain streaks. 

Yang et al.[10] have developed a multi-task network designed 

to simultaneously detect and eliminate rain streaks. Through 

the deployment of prior knowledge, Fu et al.[11] have crafted 

a deep detail network capable of extracting more accurate rain 

streak information while minimizing background 

disturbances. A density-aware multi-stream CNN introduced 

by Zhang et al.[12] utilizes autonomous detection of rain 

density to efficiently remove rain streaks based on the 

detected rain density. Recognizing the importance of 

interaction between different processing stages, Ren et al.[13] 

constructed a simple yet effective progressive recurrent 

network for the phased removal of rain streaks. Further, Zamir 

et al.[14] have developed a multi-stage framework that 

progressively learns the mapping function from degraded 

inputs to reconstruct pristine rain-free images. Wang et al. 

[15]have innovated a rain convolutional dictionary network, 

employing the proximal gradient descent technique to 

formulate an optimization strategy for the model. 

Despite the advancements these deep learning methods 

offer over optimization-based approaches, many still rely on 

the principle of linear image decomposition and the learning 

of residual mappings for the separation of rain streaks from 

the images. This approach can lead to the retention of residual 

rain streak information or its excessive removal, resulting in 

blurred edges and artifacts in the final deraining images.  

III. PROPOSED METHOD 

This chapter introduces a Dual-stage Spatial-Frequency 

Domain Deraining Network based on Fast Fourier Transform, 

dividing the network into two main parts: the Image Deraining 

  

Figure 1: The architecture of the proposed FFT-DDN.  
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Network (IDN) and the Background Extraction Network 

(BEN), as illustrated in Figure 1. 

Within the Image Deraining Network, we stack four 

Spatial-Frequency Domain Fourier Phase Enhancement 

Blocks (SFPEB) as a group, supplemented by a convolution 

block for extracting shallow features, constituting the core 

part of the network. The role of the Image Deraining Network 

is to produce a coarse deraining result, guiding the subsequent 

background refinement process. The Background Extraction 

Network utilizes three sets of Spatial-Frequency Domain 

Fourier Phase Enhancement Blocks for step-by-step 

background refinement, ultimately yielding a high-quality, 

rain-free background. Each Spatial-Frequency Domain 

Fourier Phase Enhancement Block comprises two 

Spatial-Frequency Domain Fourier Phase Convolution 

Blocks layered with a residual structure. Moreover, to achieve 

enhanced deraining effects, the network employs multi-level 

skip connections to integrate and utilize features from all 

levels optimally. The specific operational flow is as follows: 

For a degraded image I of dimensions H × W × 3 , where 3 

represents the channel number and H × W denotes the spatial 

coordinates, the degraded image serves as the input to the 

deraining network. It first passes through a 3 × 3 convolution 

layer to extract shallow features of the rainy image, obtaining 

a feature map of dimensions H × W × C. These features then 

go through a set of Spatial-Frequency Domain Fourier Phase 

Enhancement Blocks to generate a coarse derained result B1. 

Subsequently, the degraded image I minus the result B1 

produces a rain streak map R, and then I, R, B1 serve as inputs 

to the Detail Attention Block, which establishes an intrinsic 

connection between rain streaks and the background. After 

passing through an image fusion module to enhance the 

features of the derained result B1, the enhanced features are 

fed into the Background Extraction Network. This network, 

through three sets of Spatial-Frequency Domain Fourier 

Phase Enhancement Blocks and a 3 × 3 convolution layer, 

generates the final restored image B. Throughout the 

deraining process, the output of each set of Spatial-Frequency 

Domain Fourier Phase Enhancement Blocks serves as the 

input for the next set, while the output features of each group 

are concatenated to produce a clearer background image. The 

entire network process can be described as follows: 

 

 
 

 represents the Image Deraining Network,  

represents the Background Refinement Network, I denotes 

the input rainy image, B is the rain-free image restored by the 

Background Refinement Network, B1 is the coarse rain-free 

image recovered by the Image Deraining Network, and  

represents the image features reweighted and distributed after 

processing by the Detail Attention Block. 

A. Spatial-Frequency Domain Fourier Phase 

Enhancement Block (SFPEB) 

The Spatial-Frequency Domain Fourier Phase 

Enhancement Block (SFPEB) comprises a spatial branch and 

a Fourier branch. After an image undergoes Fourier transform, 

it yields amplitude and phase spectra. The amplitude 

spectrum represents the brightness information of each pixel  

 

Figure 2: The architecture of FFB.  

in the image, while the phase spectrum represents the spatial 

structure information of the image. To obtain derained images 

with more complete textures and richer details, this chapter 

processes the phase spectrum after Fourier transformation, 

making full use of the phase spectrum information of the 

features. 

To integrate Fourier transform into the convolutional 

network, this chapter designs a Spatial-Frequency Domain 

Fourier Phase Enhancement Block. Since convolution 

operations are conducted in the spatial domain, directly 

operating on the amplitude or phase spectrum would alter the 

spatial structure of the image information. To prevent 

convolution operations from distorting the information 

characteristics of the amplitude and phase spectra, a 

multi-branch structure is introduced to refine the features after 

Fourier transformation. A Spatial-Frequency Domain Fourier 

Convolution Block is also designed to extract features from 

the phase spectrum, as shown in Figure 1. 

In the spatial branch, this chapter uses three different scales 

of dilated convolution to extract spatial features, which can be 

represented as: 

 
where  denotes the channel-wise concatenation 

operation.  represents a dilated convolution with 

kernel size x and dilation rate  y. In the Fourier branch, spatial 

features  first pass through Fast Fourier 

Transform to obtain the corresponding amplitude spectrum A 

and phase spectrum P, then the amplitude spectrum is input 

into two 1 × 1 convolutions to obtain the refined phase 

spectrum P, followed by calculating the corresponding 

features through Inverse Fast Fourier Transform. The 

Spatial-Frequency Domain Fourier Phase Convolution Block 

can be represented as: 
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where A represents the amplitude spectrum, P represents the 

phase spectrum,  represents the Spatial-Frequency 

Domain Fourier Phase Convolution Block, FFT represents 

Fast Fourier Transform,   represents Inverse Fast 

Fourier Transform, and  represents the Feature Fusion 

Module. 

 

The Spatial-Frequency Domain Fourier Phase 

Enhancement Block connects two blocks in series with a 

residual connection, which can be represented as: 

 

Table 1: Quantitative comparison on synthetic datasets (Red: rank 1st; Blue: rank 2nd) 

Datasets Rain100H Rain200H Rain200L Rain800 Average 

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

RESCAN
 
 28.82 0.867 27.95 0.862 39.43 0.982 28.36 0.872 31.14 0.896 

SIRR 22.03 0.714 22.17 0.726 32.21 0.931 22.73 0.762 24.79 0.783 

PReNet 30.31 0.910 29.47 0.907 37.93 0.983 26.82 0.888 31.13 0.922 

JORDER-E 30.22 0.898 29.23 0.894 39.13 0.985 27.92 0.883 31.63 0.915 

RCDNet 31.26 0.912 30.18 0.909 39.49 0.986 28.66 0.893 32.40 0.925 

BRN 31.32 0.924 30.27 0.919 38.86 0.985 28.31 0.896 32.19 0.931 

MPRnet 31.71 0.917 30.62 0.914 40.68 0.988 28.78 0.887 32.95 0.927 

ECNet 31.43 0.921 30.22 0.912 39.72 0.987 29.26 0.905 32.66 0.931 

FFT-DDN 32.42 0.933 31.24 0.928 40.53 0.989 30.12 0.907 33.58 0.939 

 

 

Figure 3: Visual comparisons on Rain100H dataset. 

 

Figure 4: Visual comparisons on Rain800 dataset. 
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where  represents the input features, and represents 

the Rectified Linear Unit activation function. 

B. Detail Information Attention Block (DAB) 

To better explore the complementary relationship between 

the rain streak and background layers, this chapter designs a 

Detail Information Attention Block. It generates degradation 

priors and performs attention operations on features based on 

the distribution of rain streaks, thus extracting complementary 

features from the background and rain streak layers to further 

optimize the texture details of the derained image. The 

specific structure is shown in Figure 1. Unlike standard 

self-attention modules that take the same feature as input, 

DAB takes the rain streak distribution map R, the coarse 

derained image B1, and the rainy image I as inputs, first 

learning their local context features, then projecting the 

features as Q, K, and V, respectively. Unlike the spatial 

attention that yields a feature map of size HW×HW, we 

reshape the projection maps of Q and K, generating a feature 

attention map of size C × C through the pointwise interaction 

between features, as shown in Figure 1. The attention map 

guides the network in extracting background detail and 

texture information from rainy image features. The process of 

the Detail Information Attention Block can be represented as: 

 
 

where respectively denote the 

embedding equations used to generate the projection 

mappings. (·) denotes the dot product operation, and FFB 

represents the Feature Fusion Module, integrating the 

attention-focused features  and background image 

features  to achieve a background representation with 

richer details. 

C. Feature Fusion Module (FFB) 

In consideration of the redundancy and information 

differences between features across different domains, this 

chapter designs a Feature Fusion Block (FFB) to better 

integrate features from the Fourier and spatial domains. 

Specifically, the feature fusion module employs depth-wise 

separable convolutions and channel attention mechanisms to 

selectively aggregate features from different frequency 

domains across spatial and channel dimensions. This can be 

represented as: 

 
where  denotes depth-wise separable convolution, 

CA represents the channel attention module, and   

represent the two inputs to the feature fusion module. 

Compared to simple skip connections or convolutional 

fusion methods, the feature fusion module designed in this 

chapter is more flexible and effective. The specific 

architecture is shown in Figure 2. 

D. Loss Function 

In the image deraining network, a coarse derained image 

B1 needs to be generated, whose texture structure should be 

consistent with that of the real rain-free image. The deraining 

result output by the Background Refinement Network needs 

Table 2. Comparison of NIQE on the real dataset Internet-Data (red for optimal; Blue is suboptimal). 

↓ Indicates that the lower the value, the better the rain removal effect 

 RESCAN PReNet BRN RCDNet ECNet MPRNet Ours 

NIQE↓ 4.2963 4.1043 3.9758 3.8423 3.8592 3.9813 3.8252 

 

  

Figure 5: Visual comparisons on real-world dataset.  
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to be consistent with the real rain-free image. Therefore, this 

chapter employs mean squared error loss and structural 

similarity loss to supervise the network, facilitating the 

training of the image network. The definitions of the two loss 

terms can be represented as: 

 
 

where  and   represent the loss items for the image 

deraining network and the background refinement network, 

respectively, SSIM(·) denotes the operation for computing 

structural similarity, and  represents the L2 loss.   

and   are two balancing parameters. 

The dual-stage network is not trained separately for its two 

sub-networks; hence, we define a joint constraint loss to 

enhance the compatibility between the deraining model and 

background restoration. The total loss function can be 

represented as: 

 
where    and    are the balancing parameters for the loss 

function. 

IV. EXPERIMENTS 

A. Dataset and Implementation Details 

This chapter evaluates the proposed method on four 

synthetic datasets: Rain100H[16], Rain200L[16], 

Rain200H[16], and Rain800[17]. Rain100H contains 1800 

training images and 100 testing images. Rain200L/H each 

contain 1800 training images and 200 testing images. 

Rain800 contains 700 training images and 100 testing images. 

To test the method's performance in real scenarios, we utilized 

the Internet-Data[18] dataset, which includes 147 real-world 

rainy images. 

Our network runs on a single NVIDIA 3090 GPU in a 

Pytorch environment. Network parameters are optimized 

using the Adam optimizer with settings: 

. The learning rate is initially set to 

1×10
-3

, decaying to one-fifth of the current rate every 25 

epochs. The model is trained on image blocks of size 96 × 96, 

with a batch size of 16, for a total of 100 epochs. The 

parameters λ1 and λ2 in equation (14) are set to 0.5 based on 

experience.  and  are both set to 10 to ensure the 

magnitude consistency of loss function terms. The 

performance of various comparison methods is quantitatively 

evaluated using PSNR and SSIM. Following the evaluation 

metrics used in previous deraining methods, PSNR[19] and 

SSIM[20].metrics are calculated on the Y channel in YCbCr 

space. 

B. Comparative Experiment Results on Synthetic and Real 

Datasets 

To verify the effectiveness of the proposed FFT-DDN, we 

conducted quantitative comparisons with several 

state-of-the-art methods, including RESCAN[9], SIRR[18], 

PReNet[13], JORDER-E[10], RCDNet[15], BRN[21], 

ECNet[22], and MPRNet[20]. For these representative 

methods, where the authors provided pre-trained models, we 

directly used these models for testing. Otherwise, based on 

their provided codes, we retrained these models to ensure 

fairness in comparison. Table 1 lists the quantitative 

evaluation results for PSNR and SSIM. PSNR measures the 

content difference between rainy and rain-free images, while 

SSIM measures the structural similarity. Higher values of 

PSNR and SSIM indicate greater similarity. As can be seen 

from the table, our network outperforms other methods on 

average, demonstrating its strong adaptability across various 

rainy scenes. 

To assess our method's applicability in real scenarios, we 

used the Rain100H dataset as the training set for our network 

and evaluated the performance of model on the Internet-Data 

real dataset. The real dataset contains real-world images in a 

rainfall environment, but lacks the corresponding rain-free 

images. In order to quantify the rain removal performance in 

the real world, this paper adopts the non-reference index 

NIQE [23]. The results are shown in Table 2. Our method 

obtains the best indicators, which indicates that the  

Table 3 Results of ablation experiments  

on the Rain800 dataset 

FFT-DDN PSNR SSIM 

w/o DAB 29.32 0.903 

w/o SFPEB 29.04 0.889 

w/ Amp 29.83 0.907 

w/ Amp and Pha 29.51 0.907 

w/o FFB 30.06 0.904 

Ours 30.12 0.907 

 

performance of the proposed method is superior to other 

comparison methods. Therefore, FFT-DDN also has good 

generalization for rain stripe removal in real environments. 

Figure 3 and Figure 4 show the visual deraining results of 

various comparison methods on three images in the Rain100H 

and Rain800 datasets, respectively. As can be seen from the 

figure, compared with other methods, the results of the 

method in this paper have clearer edges and richer details. 

However, more texture information is lost in the results of 

other comparison methods, and obvious artifacts appear in the 

rain pattern area. Figure 5 shows the results of the visual 

comparison of rain removal on the real rain images in the 

Internet-Data dataset. It can be seen that other methods of 

removing rain can restore part of the details of the image, but 

there are still problems of image blur and residual rain streaks, 

while the rain removal results of this method can hardly see 

residual rain lines, and the reconstructed details are more 

realistic and the edges of objects are sharper, which indicates 

that the method proposed in this paper is significantly 

superior to other methods. 

C. Ablation Study 

In this section, we examine the impact of each module on 

the network and validate the effectiveness of the Fourier and 

spatial domain fusion mechanism and dense connections. All 

ablation experiments are conducted on the Rain800 dataset, 
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using the quantitative metrics PSNR and SSIM for 

performance evaluation. The results are shown in Table 3 and 

Figure 6. 

(1) Effectiveness of the Detail Attention Block (DAB) 

The Detail Attention Block enhances the overall 

performance of the network by exploring the complementary 

relationship between the rain streak and background layers in 

images. In our experiments, we removed the DAB module 

and directly connected the IDN and BEN networks. The 

results, as shown in the 'w/o DAB' row of Table 3, indicate a 

decrease in PSNR by 0.8dB and SSIM by 0.004. This 

suggests that the DAB module indeed enhances the 

connection between the two models, improving the overall 

network performance. 

(2) Effectiveness of the Spatial-Frequency Domain Fourier 

Phase Enhancement Block (SFPEB) 

The SFPEB, being the core part of the network, effectively 

extracts and integrates features from the Fourier and spatial 

domains continuously. To validate the role of SFPEB, we 

designed three different experiments. First, SFPEB was 

replaced with traditional Resblocks to quantify its 

contribution, as shown in the 'w/o SFPEB' row. Then, we 

tested two different settings of SFPEB: (1) 'w/ Amp' – 

 
Figure 6 Comparison of deraining results of ablation 

experiment 

Table.4 Quantitative comparison of parameters, FLOP and 

Runtime 

Method BRN PReNet RCDNet MPRNet ECNet Ours 

#Params(M) 0.375 0.169 2.958 3.637 14.998 1.475 

FLOPs(G) 98.2 66.2 194.5 548.6 559.4 94.9 

Runtime(s) 0.038 0.024 0.099 0.113 0.125 0.128 

processing only the amplitude spectrum after Fourier  

decomposition, and (2) 'w/ Amp and Pha' – alternately 

processing the amplitude and phase spectra. In this setting, 

convolutional blocks in SFPEB alternately process only 

amplitude or phase spectrum information. According to Table 

3, the current structure of solely processing the phase 

spectrum achieved the highest PSNR and SSIM values, 

proving its suitability for deraining tasks. The reduction in 

PSNR by 1.08dB after removing SFPEB highlights its 

effectiveness in mining features across different frequency 

domains. 

(3) Effectiveness of the Feature Fusion Module (FFB) 

We designed experiments to verify the role of the FFB. By 

replacing FFB with concatenation operations and 1×1 

convolutions, the 'w/o FFB' row in Table 3 shows the results 

of the network without FFB. The slight decrease in PSNR and 

more significant drop in SSIM indicate that FFB plays a major 

role in maintaining background structure, enhancing the 

structural similarity of images. 

D. Model Complexity and Inference Time 

To verify the efficiency of our method, we tested the 

FLOPs and inference time on an Nvidia 3090 GPU using 100 

images of size 3 × 256 × 256. The inference time is the 

average testing time for these 100 images. Comparative 

results for FLOPs and running time are shown in Table 4. The 

results demonstrate that our proposed FFT-DDN can achieve 

efficient inference computation with less inference time. 

E. Model Application 

Eliminating the degrading effects of rain in rainy 

conditions while preserving reliable texture details is crucial 

for higher-level visual tasks, such as enhancing the accuracy 

of object recognition tasks. To further demonstrate the 

effectiveness of our proposed network, we used various 

deraining methods on the BDD350[24] dataset and performed 

object detection using YOLOv3[25]. The visual results are 

 

Figure 7 Deraining and object detection on BDD350 dataset. 
 

shown in Figure 7. Our method in the FFT-DDN deraining 

detection  

results identified more vehicles and pedestrians compared to  

other methods. The rain-free images reconstructed by other 

methods contained more rain streaks, leading to lower 

accuracy in object recognition and instances of 

misidentification. Therefore, our proposed FFT-DDN is more 

beneficial for advanced computer vision tasks. 

V. CONCLUSION 

To address the issue of poor deraining performance of 

current networks in real rainy environments, we propose a 

Dual-stage Spatial-Frequency Domain Deraining Network, 

utilizing a dual-stage architecture and Detail Attention Block 

(DAB) to achieve dual objectives of rain streak removal and 

background refinement. It enhances learning capabilities and 

explores the intrinsic connection between the image deraining 

and background refinement stages. By embedding Fourier 

transform into the neural network, we designed the 

Spatial-Frequency Domain Fourier Phase Enhancement 

Block (SFPEB), enabling the network to fuse features from 

multiple frequency domains for better generalization. 

Furthermore, we developed a Feature Fusion Module (FFB) 

to enhance feature fusion. Extensive experiments on synthetic 
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and real datasets demonstrate that our method can restore 

rain-free images with richer content and details, 

outperforming some of the current advanced methods. 
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