
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 11 www.ijerm.com


Abstract— CNN models are prevalent deep learning models

utilized in the fields of machine learning. However, their

implementation in hardware has encountered challenges,

including high computational complexity, large storage

requirements, memory bandwidth limitations, and difficulties

with parallel computing. This study introduces a dedicated

hardware accelerator designed to enhance the performance of

convolutional neural networks, leveraging efficient

computational units and memory hierarchy to attain

accelerated processing. Initially proposed is an efficient and

straightforward Img2Col method, through which convolutions

can be unfolded into matrix computations from small size 3×3

to more extensive 16×16. A customizable systolic array is

subsequently designed to support the acceleration convolutions.

Our well-designed accelerator has been implemented utilizing

the hardware description language SpinalHDL and tested on

the ZYNQ. The experimental results demonstrate that our

accelerator showcases remarkable performances in both CNN

and GEMM calculations, delivering up to 37.6 GOPS/W.

Index Terms—Gemm, FPGA, Convolution, Systolic Array

I. INTRODUCTION

Nowadays, deep learning
[1][2]

has made significant progress

in fields such as speech recognition, image recognition, and

natural language processing. Among them, Convolutional

Neural Networks (CNN)
[3]

are commonly used deep learning

algorithms that can effectively extract detailed features from

images, rendering them extensively implemented in

computer vision. Compared to CNN, Transformer exhibits

several advantages in computer vision tasks, including the

ability to model global visual information, powerful feature

representation, scalability and generalization, multi-scale

processing. The core idea of the Transformer[5] is to utilize

self-attention mechanisms to model sequential data without

relying on recurrence or convolutional operations. The

self-attention mechanism allows the model to consider all

positions in the sequence simultaneously, dynamically

Manuscript received April 03, 2024

 Yao Dai, School of computer science and technology, Tiangong

University, Tianjin, China

Lingchao Bu, School of computer science and technology, Tiangong

University, Tianjin, China.

Mingwei Xu, School of computer science and technology, Tiangong

University, Tianjin, China

assigning different weights to each position based on the

context.

The performance of CNN models is limited by the low

throughput and computational power of CPU, as well as the

low energy efficiency of GPU. Although

Application-Specific Integrated Circuit (ASIC) can achieve

low latency and high efficiency, they have poor

reconfigurability. When there is a need to update the design,

ASIC cannot be reconfigured. In contrast,

Field-Programmable Gate Array (FPGA) are highly

programmable and can be customized flexibly according to

specific computational requirements. By writing Hardware

Description Language (HDL) code on FPGA, hardware

acceleration for specific algorithms and applications can be

achieved.

Currently, numerous hardware accelerators for CNN and

GEMM have been proposed. However, due to significant

differences in their computations, most current accelerators

are designed to accelerate either CNN or GEMM separately.

This raises a question: Can the acceleration of CNN and

GEMM be unified using FPGA? So we propose to design and

implement a novel hardware accelerator that can maximize

the efficiency and performance of CNN and GEMM.

Our contributions in this paper are the following：

(1) A detailed Img2Col method is introduced to effectively

map convolution operations to GEMM (General Matrix

Multiplication) operations on the systolic array. enabling the

acceleration of convolutions ranging in size from 3×3 to

16×16.

(2) An efficient systolic array architecture with two

different computing modes is proposed to support

convolution and matrix multiplication computations.

(3) The proposed accelerator demonstrates remarkable

performance in both CNN (Convolutional Neural Network)

and GEMM (General Matrix Multiplication) calculations,

achieving an impressive efficiency of up to 37.6 GOPS/W

(Giga Operations Per Second per Watt).

II. RELATED WORKS

A. Systolic Array

A systolic array
[4]

represents a computational architecture

characterized by a grid of processing elements (PE)

interconnected in a systematic and structured manner. It is

specifically designed to efficiently execute data-parallel

algorithms by enabling data to flow through the array in a

systolic manner, where each processing element operates on

a portion of the data and passes it along to the next element in

a pipelined fashion. Within a systolic array, the processing

elements are typically organized in rows and columns,

Design and Implementation of Systolic Array-based
Accelerator for Convolutional Neural Networks

Yao Dai, Lingchao Bu, Mingwei Xu

http://www.ijerm.com/

Design and Implementation of Systolic Array-based Accelerator for Convolutional Neural Networks

 12 www.ijerm.com

forming a grid-like structure. Data is fed into the array and

propagated through the PE in a synchronized and regular

manner. The processing elements operate in a tightly-coupled

fashion, performing computations and passing results to

adjacent elements. This regular and efficient data flow

enables high throughput and low-latency computations.

Figure 1 Output-Stationary One-Dimensional Systolic

Array

Figure 2 Weight-Stationary One-Dimensional Systolic

Array

Systolic arrays generally come in two forms:

output-stationary and weight-stationary, as depicted in Figure

1 and Figure 2. For weight-stationary SA, weight parameters

are preloaded into the processing elements (PE) while for

output- stationary SA, the input data x moves in a consistent

manner, shifting by one at each time step. However, unlike

the weight-stationary SA, the weight parameters are not

preloaded and stored statically, instead, they are streamed

into the PE similar to the input data.

Systolic array computing provides high-speed and

efficient computational capability through parallel

computing. It accelerates the processing speed of

computational tasks, improves computational efficiency, and

enhances energy efficiency. Systolic arrays exhibit excellent

scalability and are applicable to various domains. They are

particularly significant for handling large-scale data and

complex models.

B. GEMM

General Matrix Multiplication (GEMM) involves

transforming both the weights and feature data of

convolutional calculations into matrix form using the

img2col method
[6]

. The convolution operation is then

converted into a matrix multiplication operation, benefiting

from the well-established optimization techniques in the field

of linear algebra for matrix multiplication. Therefore,

utilizing GEMM for convolution operations offers significant

advantages in terms of logical implementation.

When performing convolution calculations using GEMM,

the convolution kernel slides along the rows and columns of

the input feature map based on the specified stride. The

img2col method stores the feature data within the sliding

window in sequential order in a row of the feature map matrix.

Each sliding window operation generates a row of the feature

map matrix. The convolution kernel is stored in the weight

matrix in the corresponding order to the feature data, with

multiple convolution kernels sequentially arranged in the

columns of the weight matrix. The matrix multiplication

operation is then performed between the feature map matrix

and the weight matrix, transforming the convolution

operation into a matrix multiplication operation. Therefore,

efficient implementation of matrix operations leads to

efficient convolution calculations.

Both CPUs and GPUs provide libraries dedicated to matrix

multiplication in their underlying logic, enabling efficient

matrix computations. Hence, machine learning frameworks

such as Caffe
[7]

 and MXNet
[8]

 utilize the img2col+GEMM

method for convolution calculations on CPUs and GPUs.

However, FPGAs do not offer built-in libraries for matrix

multiplication, requiring custom implementation of all matrix

operation logic. This undoubtedly increases the deployment

complexity on FPGAs. Furthermore, implementing

convolution calculations using the img2col+GEMM method

on FPGAs requires abundant on-chip storage and

computational resources, which are scarce on FPGAs.

Therefore, employing GEMM for convolution calculations

on FPGAs poses a significant challenge.

III. ARCHITECTURE

A. Overview Architecture

Figure 3 Overview Architecture

Figure 3 represents the overall architecture of the hardware

accelerator, which includes an 8×8 systolic array. The

architecture consists of two computation modes: Switch

Mode for mapping convolutions to matrix multiplications,

and Direct Mode for handling general matrix multiplication.

The computational structure of the systolic array remains the

same in both modes, with the only difference being the input

format of matrix.

B. Design and Implementation of Systolic Array

This article presents the design of an efficient array

architecture, known as a systolic array, which adopts the

Output Stationary (OS) computing mode. In this mode, each

processing element (PE) completes one multiply-accumulate

operation per cycle and stores the partial sum results until the

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 13 www.ijerm.com

accumulation is completed, and only then outputs the final

result. The systolic array serves as the core computational

engine of an accelerator and includes modules for input data

arrangement, input data buffering, and output data delay. Its

main purpose is to accelerate matrix multiplication

operations.

Figure 4 illustrates a 3x3 output stationary systolic array

architecture. The array consists of interconnected PEs, with

each PE performing the basic multiply-accumulate operation.

Each PE includes additional registers, such as 𝑅1 for storing

partial sum results, 𝑅2 for storing B matrix data, 𝑅3 for

storing A matrix data, and a selector that uses a Valid signal

to determine whether accumulation is required. These added

modules together form a processing element (PE) that

combines storage and computation.

To ensure that each point in a row of matrix A corresponds

to the corresponding point in a column of matrix B and is

processed by the correct PE in a specific cycle, the input data

for the i-th row of the systolic array must be advanced by i+1

rows for one cycle in advance. Similarly, the input data for

the j-th column of the systolic array must be advanced by j+1

columns for one cycle in advance. Additionally, since matrix

A flows from left to right in the systolic array, and matrix B

flows from top to bottom, each PE is connected in both

horizontal and vertical directions, forming an output

stationary systolic array. This way, the data from matrix A

enters the array from the left side and the data from matrix B

enters from the top, and each data point in matrices A and B is

reused three times.

Figure 4 Architecture of systolic array and processing

elements

Due to the flow of data from one PE to the adjacent PE in

the systolic array, rather than broadcasting to all PEs

simultaneously, the result of the matrix multiplication, C, is

not obtained instantaneously. As shown in Figure 4, when the

top-left PE completes its computation, the other PEs have not

finished their accumulation and computation. Therefore, the

output data selector only outputs the computation result from

the top-left PE. In the next clock cycle, the PEs in the first

row, second column, and second row, first column

simultaneously complete their computations. The output data

selector selects the computation results from these two PEs

for output. This process continues, and it takes a total of 5

cycles from the completion of the computation in the top-left

PE to the completion of the entire computation for matrix C.

Taking into account the time required for data input, which is

the time for the last data point of matrix A or matrix B to

reach the bottom-right PE, we can determine the total

computation time for the matrix multiplication.

Furthermore, due to the fixed size of the systolic array, the

systolic array shown in Figure 4 can only compute three

rows of matrix A and three columns of matrix B at a time,

resulting in a 3x3 submatrix of matrix C. Further analysis

reveals that a systolic array of size [𝑆𝐴ℎ, 𝑆𝐴𝑤] (Height or

Width of Systolic Array) can only support computations for 𝑆𝐴ℎ rows of matrix A and 𝑆𝐴𝑤 columns of matrix B at a

time. Therefore, when the number of rows in matrix A or the

number of columns in matrix B exceeds the supported range

of the systolic array, the matrix multiplication needs to be

performed in a blocked computation manner.

Figure 5 Matrix block computation diagram.

Figure 5 illustrates the blocked computation mode for

matrix multiplication A×B=C, which involves two levels of

looping.

C. The relationship between convolution and matrix

multiplication

Figure 6 CNN mapped to matrix multiplication.

Let the dimension of the input feature map be [𝐵, 𝐻, 𝑊, 𝐶]
(assuming batch size is 1, shown as Fig. 8) , the dimension of

the convolution weights be [𝐶′, 𝐻′, 𝑊′, 𝐶] and the dimension

of the output feature map be [𝐵, 𝐻′, 𝑊′, 𝐶′], then the input

feature map and convolution weights can be expanded into

matrix 𝐴, 𝐴 ∈ 𝑅(𝑊′×𝐻′)×(𝐾2×𝐶) and matrix 𝐵, 𝐵 ∈𝑅(𝐾2×𝐶)×𝐶′
respectively. In addition, the final output feature

map can also be represented by matrix 𝐶, 𝐶 ∈ 𝑅(𝑊′×𝐻′)×𝐶′
,

which is the result of matrix multiplication: 𝐴 × 𝐵. Since the

image storage format is [𝐵, 𝐻, 𝑊, 𝐶] , the weight of the

convolution kernel and each sliding window will be

expanded along the dimension of the channel, as shown in

Fig. 9. By corresponding the three-dimensional convolution

calculation with the expanded matrix multiplication, it is

obvious that each row of matrix A represents the sliding

window flattened in the input feature map, each column of

matrix B corresponds to the convolutional weight of each

http://www.ijerm.com/

Design and Implementation of Systolic Array-based Accelerator for Convolutional Neural Networks

 14 www.ijerm.com

output channel flattened, and in addition, the row of matrix C

corresponds to all channels of each pixel in the output feature

map. For instance, the Embedding layer of VIT cuts the

picture into 14×14 subgraphs through a 16×16 convolution

with a step size of 16, and each subgraph will be input into the

encoder as a token after flattening, where each token

corresponds to each row in matrix C.

Figure 7 A 3-D tensor is flattened along the channel

dimension.

When CNN is mapped to matrix multiplication, each row

of matrix A is the flattened convolution sliding window, and

the 𝑖𝑡ℎ row of input matrix 𝐼ℎ×𝑊 is the input to the 𝑖 𝑚𝑜𝑑 𝑁, (𝑖 = 1,2 … ℎ) row of the 𝑁 × 𝑀 systolic array. As

a result, when the convolution is mapped to a matrix

multiplication on the systolic array, partial sums are

accumulated within each PE while the weights and

activations are flowing in the systolic array, whose benefit is

that the weights and activations are multiplexed for M and N

times respectively, so as that the parallel calculation of the

data corresponding to N sliding windows and the data of M

convolution kernel weights can be realized.

D. Data storage and access method

Figure 8 A commonly used hardware architecture for

convolutional sliding window.

Figure 9 Storage format

The most complicated part of convolution computation is

the overlap of sliding windows. As shown in Figure 9, in

order to realize overlapping convolution sliding windows on

FPGA, horizontal and vertical sliding of convolution is

generally realized with (𝐾 − 1) end-to-head row caches and 𝐾 shift registers for 𝐾 × 𝐾 convolution, as shown in Figure 8,

which is simple to implement but is of low flexibility. To this,

this section will introduce a kind of different data storage

format and way to access data.

To enhance the computational flexibility and

accommodate the calculations of the systolic array, let's

consider the convolution operation with a kernel size of 𝐾 × 𝐾, a step size of 𝑆 (where 𝑆 ≤ 𝐾), and an input channel

count of 𝐶. As shown in Figure 9, taking the first 𝐾 lines of

the image, cached in the [𝐻, 𝑊, 𝐶] format, as an example, we

can access the pixel 𝑃(0,0,0)of the first channel in the first

column and first row of the image (depicted as the black cube

in the figure) by configuring the read address to 0. Similarly,

to retrieve the pixel 𝑃𝑖,𝑗,𝑘, the following address can be set to 𝑖 × 𝐶 × 𝑊 + 𝑗 × 𝐶 + 𝑘 − 1 or Row_Base_Addr +

Col_Base_Addr + Channel_Index – 1 to read the pixel 𝑃𝑖,𝑗,𝑘. It is evident that the horizontal movement of the sliding

window can be accomplished by manipulating the value of

Col_Base_Addr. For instance, to access the first pixel of the

second sliding window (also considered as the first point in

the second row of matrix A), denoted as 𝑃0,𝑆,0 , the read

address should be set to 0 + 𝑆 × 𝐶 – 1 . Similarly, the

vertical displacement of the sliding window can be controlled

by adjusting the value of Row_Base_Addr.

Before commencing the computation, it is imperative to

cache the initial K rows of the image data. Moreover, to

obviate any disruption to the flow of computation, the

ensuing S rows of data can be cached concomitantly with the

computation. Therefore, the minimum storage capacity

required should be (𝐾 + 𝑆) × 𝑊 × 𝐶.

ColCtrl

FIFO1

FIFO2

Mem

Initial Row:

0,1,2,� (K+S-1)

Figure 10 Dual FIFOs for the vertical and horizontal sliding

of the sliding window.

Owing to the restricted capacity of the on-chip memory, in

order to optimize the repurposing of this storage area for

vertical sliding of the sliding window, a pair of FIFOs (shown

as Figure 10) have been implemented to cyclically update the

row base address. The cache is evenly divided into K+S

block storage space for storing K+S rows of the input image.

At the same time, FIFO1 caches all 𝑅𝑜𝑤_𝐵𝑎𝑠𝑒_𝐴𝑑𝑑𝑟𝑠

required for every computation, which are given by the set {𝑖 × 𝑊 × 𝐶|0 ≤ 𝑖 ≤ 𝐾 + 𝑆 − 1} , while FIFO2 selectively

caches K Row_Base_Addrs. During the processing of row 0

to k-1, FIFO2 only needs to cyclically retrieve

Row_Base_Addr corresponding to these rows from its cache.

E. Systolic Array Dataflow Based on Switch Mode

Considering the strict formatting requirements of the

systolic array for input data and the fact that the input data for

the i-th (1 ≤ 𝑖 ≤ 𝑁 − 1) row of the array is delayed by one

clock cycle compared to the (i-1)th row, it is necessary to

delay the input data to meet the array's input requirements.

For matrix multiplication, the matrix data can be directly

input to the systolic array after being delayed by registers for

the appropriate amount of time. However, for convolution,

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 15 www.ijerm.com

selectors are needed to choose specific rows of the systolic

array as inputs.

To illustrate this, let's discuss the data flow format between

the Img2Col module and the systolic array with the addition

of selectors. For a systolic array with dimensions [𝑆𝐴ℎ, 𝑆𝐴𝑤],
if the i-th row of the array is prepared with 𝑆𝐴𝑤 inputs every

i-th cycle (where 𝑖 = 0, 1, 2, . . . , 𝑁 − 1), it can ensure that 𝑆𝐴ℎ × 𝑆𝐴𝑤 PEs can perform one valid multiply-accumulate

operation every clock cycle after 𝑆𝐴𝑤 cycles.

Figure 11 Data Flow of Switch-Based Systolic Array

As shown in Figure 11, the dimensions of the systolic array

are 3×3, the input matrix A has dimensions 3×6, and the input

matrix B has dimensions 6 × 𝑚 (𝑚 ≥ 1). In the first cycle,

we only need to fetch the first three points of the first row of

matrix A and convert the parallel data into three valid

continuous data in a serial manner when inputting to the first

row of the systolic array. In the second cycle, the first three

points of the second row of matrix A (highlighted in red) are

converted into serial data and input to the second row of the

systolic array. This process continues, and when the fourth

cycle arrives, the top-left PE of the systolic array has

consumed three valid data points from matrix A. At this

point, we only need to feed the last three data points of the

first row of matrix A to the first row of the array to ensure that

the PE's calculations are valid and the data flow is

uninterrupted. This process continues...

It is evident that after the fifth cycle (clk4), each PE in the

systolic array can perform one calculation per clock cycle,

and each input is reused 𝑚𝑖𝑛(𝑚, 𝑆𝐴𝑤) times.

F. Computational Complexity Analysis

For an systolic array of size 𝑆𝐴ℎ × 𝑆𝐴𝑤 , the systolic is

capable of calculating the NM submatrix in output matrix C

every (𝐶 × 𝐾2 + 𝑆𝐴𝑤 − 1) cycles. As a result, based on the

current computing architecture, the computational cost of the

convolution shown in Figure 1, when mapped to the systolic

array, can be expressed as follows: ⌈ 𝐻′𝑆𝐴ℎ⌉ × ⌈ 𝑊′𝑆𝐴𝑤⌉ × (𝐶 × 𝐾2 + 𝑆𝐴𝑤 − 1)#(1.)

G. Storage Space Analysis

To implement the convolutional sliding window,

commonly applied architecture requires a minimum storage

space of (𝐾 − 1)𝑊 × 𝐶, wherein head-to-end row cache is

employed for vertical sliding. While its storage space is

comparatively smaller than the proposed systolic array

architecture, it falls short in terms of adaptability. For

instance, the systolic array architecture can effortlessly

accommodate input channels of 3 × 3 or 4 × 4 convolution

for 5×5 convolution without necessitating any supplementary

step processing modules, thereby, making it worth increasing

the storage space by a small margin to attain greater

flexibility.

IV. EXPERIMENT AND RESULT

In this section, we will present the outcomes of a matrix

computation conducted on systolic arrays. The size of the

systolic array is set to be 8×8 and the power consumption of

the systolic arrays is 0.67w, running 200MHZ on the

Zedboard(xc7z020)
[9]

.

Table 1 Hardware utilization of several crucial modules.

 LUT FF BRAM DSP

Available 277400 554800 755 2020

8×8 SA 5356 41909 0 64

Img2Col 969 503 38 0

GEMM_Cache 614 228 32 0

Weight_Cache(8×8) 407 147 32 0

Output Arrange 953 838 32 0

As shown in Table 1, the systolic array is the main module

that occupies most resources. This is because the data needs

to be managed accurately, and the data needs to flow

continuously in the systolic array in an orderly manner,

accumulate in each PE, and output the correct result at the

right time, as a result, this part requires more logical

resources. For the resource usage of the on-chip memory, the

cache space is occupied by three cache modules at the

periphery of the array: GEMM_Cache in Direct mode for

matrix multiplication calculation, Img2col module for

convolutional mapping, and WeightCache module for weight

caching. These cache modules efficiently store data on the

chip, rapidly supplying data to the systolic array and

minimizing the additional overhead of frequent data retrieval

from external storage. Of course, if the size of the picture is

larger and there are more input and output channels, the

overhead of storage resources will increase. In addition, it is

also necessary to simply rearrange the output data of the

pulsating array: the general idea is to collect N rows of data

and then output these collected data line by line, so as to meet

the data format required for the next calculation.

Figure 12 Support for convolution with different sizes and

strides.

http://www.ijerm.com/

Design and Implementation of Systolic Array-based Accelerator for Convolutional Neural Networks

 16 www.ijerm.com

In addition, to verify the support for convolutions, multiple

tests on convolutions ranging from 3x3 to 16x16 were

conducted, examining their performance with different

strides. The input image size was set to 480, with 8 input

channels and 256 output channels. By appropriately

configuring the register file, the accelerator efficiently

completes the computation tasks as shown in Figure 12. From

the graph, it can be observed that as the size of the

convolutional kernel increases, the computational workload

also increases, ranging from 26G for a 3×3 convolution to

680G for a 16×16 convolution. Additionally, with an

increased stride, the computational workload for the

same-sized convolution decreases.

Experimental results demonstrate that, the Img2Col

module can map convolutions of different sizes and strides to

matrix multiplications on the systolic array. Whether it is a

small-sized 3×3 convolution or a larger 16×16 convolution,

the accelerator efficiently completes the computational tasks

without significant performance degradation caused by

variations in the convolution kernel size and stride.

Furthermore, the proposed systolic array not only

facilitates convolution mapping to matrix calculations but

also supports basic matrix computations. Table 2

demonstrates the execution of matrix multiplications with

different dimensions using an 8 × 8 systolic array. It is worth

mentioning that matrix A is cached in a row-by-row fashion,

allowing for flexible expansion of its row count up to 10000.

However, due to resource limitations on the chip, if matrix B

becomes excessively large, it needs to be partitioned. In such

cases, each resulting submatrix is multiplied with matrix A to

obtain the final solution.

Table 2 Performance of Matrix multiplication on systolic

array

MatrixA MatrixB Compute Time(ms)

[4096,256] [256,256] 21.7

[8192,512] [512,256] 85.6

[1024,256] [256,256] 5.41

[2048,1024] [1024,128] 21.3

[4096,512] [512,256] 42.62

[197,384] [384,192] 1.16

[10000,384] [384,192] 58.73

V. CONCLUSION

This study aims to introduce a hardware accelerator that

can enhance the performance of CNN models by leveraging

efficient computational units and memory hierarchy to attain

accelerated processing. The implementation of CNN models

in hardware has encountered several challenges, including

high computational complexity, large storage requirements,

memory bandwidth limitations, and difficulties with parallel

computing. To address these challenges, an efficient and

straightforward Img2Col method was proposed through

which convolutions can be unfolded into matrix

computations from small size 1×1 to more extensive 16×16.

The experiment results demonstrated that the accelerator

delivered remarkable performances in both CNN

calculations, delivering up to 37.6 GOPS/W. This study's

contribution is significant in enhancing the performance of

CNN and by addressing the challenges encountered in their

hardware implementation. The hardware accelerator can be

employed in various machine learning and natural language

processing applications to enhance their speed and

efficiency. Further research can explore the scalability of the

hardware accelerator to handle more complex tasks and

models.

REFERENCES

[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015,

521(7553): 436-444.

[2] Menghani G. Efficient deep learning: A survey on making deep

learning models smaller, faster, and better[J]. ACM Computing

Surveys, 2023, 55(12): 1-37.

[3] Albawi S, Mohammed T A, Al-Zawi S. Understanding of a

convolutional neural network[C]//2017 international conference on

engineering and technology (ICET). Ieee, 2017: 1-6.

[4] Kung H T, Leiserson C E. Systolic arrays (for VLSI)[C]//Sparse

Matrix Proceedings 1978. Philadelphia, PA, USA: Society for

industrial and applied mathematics, 1979, 1: 256-282.

[5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].

Advances in neural information processing systems, 2017, 30.

[6] San Juan P, Castelló A, Dolz M F, et al. High performance and portable

convolution operators for multicore processors[C]//2020 IEEE 32nd

International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD). IEEE, 2020: 91-98.

[7] Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture

for fast feature embedding[C]//Proceedings of the 22nd ACM

international conference on Multimedia. 2014: 675-678.

[8] Chen T, Li M, Li Y, et al. Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems[J]. arXiv

preprint arXiv:1512.01274, 2015.

[9] Deulkar A S, Kolhare N R. Fpga implementation of audio and video

processing based on zedboard[C]//2020 International Conference on

Smart Innovations in Design, Environment, Management, Planning

and Computing (ICSIDEMPC). IEEE, 2020: 305-310.

http://www.ijerm.com/

	I. INTRODUCTION
	II. RELATED WORKS
	A. Systolic Array
	B. GEMM

	III. Architecture
	A. Overview Architecture
	B. Design and Implementation of Systolic Array
	C. The relationship between convolution and matrix multiplication
	D. Data storage and access method
	E. Systolic Array Dataflow Based on Switch Mode
	F. Computational Complexity Analysis
	G. Storage Space Analysis

	IV. Experiment And Result
	V. Conclusion
	References

