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 
Abstract— CNN models are prevalent deep learning models 

utilized in the fields of machine learning. However, their 

implementation in hardware has encountered challenges, 

including high computational complexity, large storage 

requirements, memory bandwidth limitations, and difficulties 

with parallel computing. This study introduces a dedicated 

hardware accelerator designed to enhance the performance of 

convolutional neural networks, leveraging efficient 

computational units and memory hierarchy to attain 

accelerated processing. Initially proposed is an efficient and 

straightforward Img2Col method, through which convolutions 

can be unfolded into matrix computations from small size 3×3 

to more extensive 16×16. A customizable systolic array is 

subsequently designed to support the acceleration convolutions. 

Our well-designed accelerator has been implemented utilizing 

the hardware description language SpinalHDL and tested on 

the ZYNQ. The experimental results demonstrate that our 

accelerator showcases remarkable performances in both CNN 

and GEMM calculations, delivering up to 37.6 GOPS/W. 

 

Index Terms—Gemm, FPGA, Convolution, Systolic Array  

 

I. INTRODUCTION 

Nowadays, deep learning
[1][2]

has made significant progress 

in fields such as speech recognition, image recognition, and 

natural language processing. Among them, Convolutional 

Neural Networks (CNN)
[3] 

are commonly used deep learning 

algorithms that can effectively extract detailed features from 

images, rendering them extensively implemented in 

computer vision. Compared to CNN, Transformer exhibits 

several advantages in computer vision tasks, including the 

ability to model global visual information, powerful feature 

representation, scalability and generalization, multi-scale 

processing. The core idea of the Transformer[5] is to utilize 

self-attention mechanisms to model sequential data without 

relying on recurrence or convolutional operations. The 

self-attention mechanism allows the model to consider all 

positions in the sequence simultaneously, dynamically 
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assigning different weights to each position based on the 

context. 

The performance of CNN models is limited by the low 

throughput and computational power of CPU, as well as the 

low energy efficiency of GPU. Although 

Application-Specific Integrated Circuit (ASIC) can achieve 

low latency and high efficiency, they have poor 

reconfigurability. When there is a need to update the design, 

ASIC cannot be reconfigured. In contrast, 

Field-Programmable Gate Array (FPGA) are highly 

programmable and can be customized flexibly according to 

specific computational requirements. By writing Hardware 

Description Language (HDL) code on FPGA, hardware 

acceleration for specific algorithms and applications can be 

achieved. 

Currently, numerous hardware accelerators for CNN and 

GEMM have been proposed. However, due to significant 

differences in their computations, most current accelerators 

are designed to accelerate either CNN or GEMM separately. 

This raises a question: Can the acceleration of CNN and 

GEMM be unified using FPGA? So we propose to design and 

implement a novel hardware accelerator that can maximize 

the efficiency and performance of CNN and GEMM.  

Our contributions in this paper are the following： 

(1) A detailed Img2Col method is introduced to effectively 

map convolution operations to GEMM (General Matrix 

Multiplication) operations on the systolic array. enabling  the 

acceleration of convolutions ranging in size from 3×3 to 

16×16. 

(2) An efficient systolic array architecture with two 

different computing modes is proposed to support 

convolution and matrix multiplication computations. 

(3) The proposed accelerator demonstrates remarkable 

performance in both CNN (Convolutional Neural Network) 

and GEMM (General Matrix Multiplication) calculations, 

achieving an impressive efficiency of up to 37.6 GOPS/W 

(Giga Operations Per Second per Watt). 

II. RELATED WORKS 

A. Systolic Array 

A systolic array
[4]

represents a computational architecture 

characterized by a grid of processing elements (PE) 

interconnected in a systematic and structured manner. It is 

specifically designed to efficiently execute data-parallel 

algorithms by enabling data to flow through the array in a 

systolic manner, where each processing element operates on 

a portion of the data and passes it along to the next element in 

a pipelined fashion. Within a systolic array, the processing 

elements are typically organized in rows and columns, 
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forming a grid-like structure. Data is fed into the array and 

propagated through the PE in a synchronized and regular 

manner. The processing elements operate in a tightly-coupled 

fashion, performing computations and passing results to 

adjacent elements. This regular and efficient data flow 

enables high throughput and low-latency computations. 

 
Figure 1 Output-Stationary One-Dimensional Systolic 

Array 

 
Figure 2 Weight-Stationary One-Dimensional Systolic 

Array 

 

Systolic arrays generally come in two forms: 

output-stationary and weight-stationary, as depicted in Figure 

1 and Figure 2. For weight-stationary SA, weight parameters 

are preloaded into the processing elements (PE) while for 

output- stationary SA, the input data x moves in a consistent 

manner, shifting by one at each time step. However, unlike 

the weight-stationary SA, the weight parameters are not 

preloaded and stored statically, instead, they are streamed 

into the PE similar to the input data. 

Systolic array computing provides high-speed and 

efficient computational capability through parallel 

computing. It accelerates the processing speed of 

computational tasks, improves computational efficiency, and 

enhances energy efficiency. Systolic arrays exhibit excellent 

scalability and are applicable to various domains. They are 

particularly significant for handling large-scale data and 

complex models. 

B. GEMM 

General Matrix Multiplication (GEMM) involves 

transforming both the weights and feature data of 

convolutional calculations into matrix form using the 

img2col method
[6]

. The convolution operation is then 

converted into a matrix multiplication operation, benefiting 

from the well-established optimization techniques in the field 

of linear algebra for matrix multiplication. Therefore, 

utilizing GEMM for convolution operations offers significant 

advantages in terms of logical implementation. 

When performing convolution calculations using GEMM, 

the convolution kernel slides along the rows and columns of 

the input feature map based on the specified stride. The 

img2col method stores the feature data within the sliding 

window in sequential order in a row of the feature map matrix. 

Each sliding window operation generates a row of the feature 

map matrix. The convolution kernel is stored in the weight 

matrix in the corresponding order to the feature data, with 

multiple convolution kernels sequentially arranged in the 

columns of the weight matrix. The matrix multiplication 

operation is then performed between the feature map matrix 

and the weight matrix, transforming the convolution 

operation into a matrix multiplication operation. Therefore, 

efficient implementation of matrix operations leads to 

efficient convolution calculations. 

Both CPUs and GPUs provide libraries dedicated to matrix 

multiplication in their underlying logic, enabling efficient 

matrix computations. Hence, machine learning frameworks 

such as Caffe
[7]

 and MXNet
[8]

 utilize the img2col+GEMM 

method for convolution calculations on CPUs and GPUs. 

However, FPGAs do not offer built-in libraries for matrix 

multiplication, requiring custom implementation of all matrix 

operation logic. This undoubtedly increases the deployment 

complexity on FPGAs. Furthermore, implementing 

convolution calculations using the img2col+GEMM method 

on FPGAs requires abundant on-chip storage and 

computational resources, which are scarce on FPGAs. 

Therefore, employing GEMM for convolution calculations 

on FPGAs poses a significant challenge. 

III. ARCHITECTURE 

A. Overview Architecture 

 
Figure 3 Overview Architecture 

Figure 3 represents the overall architecture of the hardware 

accelerator, which includes an 8×8 systolic array. The 

architecture consists of two computation modes: Switch 

Mode for mapping convolutions to matrix multiplications, 

and Direct Mode for handling general matrix multiplication. 

The computational structure of the systolic array remains the 

same in both modes, with the only difference being the input 

format of matrix.  

B. Design and Implementation of  Systolic Array 

This article presents the design of an efficient array 

architecture, known as a systolic array, which adopts the 

Output Stationary (OS) computing mode. In this mode, each 

processing element (PE) completes one multiply-accumulate 

operation per cycle and stores the partial sum results until the 
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accumulation is completed, and only then outputs the final 

result. The systolic array serves as the core computational 

engine of an accelerator and includes modules for input data 

arrangement, input data buffering, and output data delay. Its 

main purpose is to accelerate matrix multiplication 

operations. 

Figure 4 illustrates a 3x3 output stationary systolic array 

architecture. The array consists of interconnected PEs, with 

each PE performing the basic multiply-accumulate operation. 

Each PE includes additional registers, such as 𝑅1 for storing 

partial sum results, 𝑅2  for storing B matrix data, 𝑅3  for 

storing A matrix data, and a selector that uses a Valid signal 

to determine whether accumulation is required. These added 

modules together form a processing element (PE) that 

combines storage and computation. 

To ensure that each point in a row of matrix A corresponds 

to the corresponding point in a column of matrix B and is 

processed by the correct PE in a specific cycle, the input data 

for the i-th row of the systolic array must be advanced by i+1 

rows for one cycle in advance. Similarly, the input data for 

the j-th column of the systolic array must be advanced by j+1 

columns for one cycle in advance. Additionally, since matrix 

A flows from left to right in the systolic array, and matrix B 

flows from top to bottom, each PE is connected in both 

horizontal and vertical directions, forming an output 

stationary systolic array. This way, the data from matrix A 

enters the array from the left side and the data from matrix B 

enters from the top, and each data point in matrices A and B is 

reused three times. 

 
Figure 4 Architecture of systolic array and processing 

elements 

Due to the flow of data from one PE to the adjacent PE in 

the systolic array, rather than broadcasting to all PEs 

simultaneously, the result of the matrix multiplication, C, is 

not obtained instantaneously. As shown in Figure 4, when the 

top-left PE completes its computation, the other PEs have not 

finished their accumulation and computation. Therefore, the 

output data selector only outputs the computation result from 

the top-left PE. In the next clock cycle, the PEs in the first 

row, second column, and second row, first column 

simultaneously complete their computations. The output data 

selector selects the computation results from these two PEs 

for output. This process continues, and it takes a total of 5 

cycles from the completion of the computation in the top-left 

PE to the completion of the entire computation for matrix C. 

Taking into account the time required for data input, which is 

the time for the last data point of matrix A or matrix B to 

reach the bottom-right PE, we can determine the total 

computation time for the matrix multiplication. 

Furthermore, due to the fixed size of the systolic array, the 

systolic array shown in Figure 4  can only compute three 

rows of matrix A and three columns of matrix B at a time, 

resulting in a 3x3 submatrix of matrix C. Further analysis 

reveals that a systolic array of size [𝑆𝐴ℎ, 𝑆𝐴𝑤] (Height or 

Width of Systolic Array) can only support computations for 𝑆𝐴ℎ  rows of matrix A and 𝑆𝐴𝑤  columns of matrix B at a 

time. Therefore, when the number of rows in matrix A or the 

number of columns in matrix B exceeds the supported range 

of the systolic array, the matrix multiplication needs to be 

performed in a blocked computation manner. 

 

 
Figure 5 Matrix block computation diagram. 

Figure 5 illustrates the blocked computation mode for 

matrix multiplication A×B=C, which involves two levels of 

looping. 

C. The relationship between convolution and matrix 

multiplication 

 
Figure 6 CNN mapped to matrix multiplication. 

Let the dimension of the input feature map be [𝐵, 𝐻, 𝑊, 𝐶] 
( assuming batch size is 1, shown as Fig. 8) , the dimension of 

the convolution weights be [𝐶′, 𝐻′, 𝑊′, 𝐶] and the dimension 

of the output feature map be [𝐵, 𝐻′, 𝑊′, 𝐶′], then the input 

feature map and convolution weights can be expanded into 

matrix 𝐴, 𝐴 ∈ 𝑅(𝑊′×𝐻′)×(𝐾2×𝐶) and matrix 𝐵,  𝐵 ∈𝑅(𝐾2×𝐶)×𝐶′
respectively. In addition, the final output feature 

map can also be represented by matrix 𝐶, 𝐶 ∈ 𝑅(𝑊′×𝐻′)×𝐶′
, 

which is the result of matrix multiplication: 𝐴 × 𝐵. Since the 

image storage format is [𝐵, 𝐻, 𝑊, 𝐶] , the weight of the 

convolution kernel and each sliding window will be 

expanded along the dimension of the channel, as shown in 

Fig. 9. By corresponding the three-dimensional convolution 

calculation with the expanded matrix multiplication, it is 

obvious that each row of matrix A represents the sliding 

window flattened in the input feature map, each column of 

matrix B corresponds to the convolutional weight of each 
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output channel flattened, and in addition, the row of matrix C 

corresponds to all channels of each pixel in the output feature 

map. For instance, the Embedding layer of VIT cuts the 

picture into 14×14 subgraphs through a 16×16 convolution 

with a step size of 16, and each subgraph will be input into the 

encoder as a token after flattening, where each token 

corresponds to each row in matrix C. 

 

Figure 7 A 3-D tensor is flattened along the channel 

dimension. 

When CNN is mapped to matrix multiplication, each row 

of matrix A is the flattened convolution sliding window, and 

the 𝑖𝑡ℎ  row of input matrix 𝐼ℎ×𝑊  is the input to the 𝑖 𝑚𝑜𝑑 𝑁, (𝑖 = 1,2 … ℎ) row of the 𝑁 × 𝑀 systolic array. As 

a result, when the convolution is mapped to a matrix 

multiplication on the systolic array, partial sums are 

accumulated within each PE while the weights and 

activations are flowing in the systolic array, whose benefit is 

that the weights and activations are multiplexed for M and N 

times respectively, so as that the parallel calculation of the 

data corresponding to N sliding windows and the data of M 

convolution kernel weights can be realized. 

D. Data storage and access method 

 
Figure 8 A commonly used hardware architecture for 

convolutional sliding window. 

 
Figure 9 Storage format 

The most complicated part of convolution computation is 

the overlap of sliding windows. As shown in Figure 9, in 

order to realize overlapping convolution sliding windows on 

FPGA, horizontal and vertical sliding of convolution is 

generally realized with (𝐾 − 1) end-to-head row caches and 𝐾 shift registers for 𝐾 × 𝐾 convolution, as shown in Figure 8, 

which is simple to implement but is of low flexibility. To this, 

this section will introduce a kind of different data storage 

format and way to access data. 

To enhance the computational flexibility and 

accommodate the calculations of the systolic array, let's 

consider the convolution operation with a kernel size of 𝐾 × 𝐾, a step size of 𝑆 (where 𝑆 ≤ 𝐾), and an input channel 

count of 𝐶. As shown in Figure 9, taking the first 𝐾 lines of 

the image, cached in the [𝐻, 𝑊, 𝐶] format, as an example, we 

can access the pixel 𝑃(0,0,0)of the first channel in the first 

column and first row of the image (depicted as the black cube 

in the figure) by configuring the read address to 0. Similarly, 

to retrieve the pixel 𝑃𝑖,𝑗,𝑘, the following address can be set to 𝑖 × 𝐶 × 𝑊 + 𝑗 × 𝐶 + 𝑘 − 1  or Row_Base_Addr + 

Col_Base_Addr + Channel_Index – 1 to  read the pixel 𝑃𝑖,𝑗,𝑘. It is evident that the horizontal movement of the sliding 

window can be accomplished by manipulating the value of 

Col_Base_Addr. For instance, to access the first pixel of the 

second sliding window (also considered as the first point in 

the second row of matrix A), denoted as  𝑃0,𝑆,0 , the read 

address should be set to 0 +  𝑆 ×  𝐶 –  1 . Similarly, the 

vertical displacement of the sliding window can be controlled 

by adjusting the value of Row_Base_Addr. 

Before commencing the computation, it is imperative to 

cache the initial K rows of the image data. Moreover, to 

obviate any disruption to the flow of computation, the 

ensuing S rows of data can be cached concomitantly with the 

computation. Therefore, the minimum storage capacity 

required should be (𝐾 + 𝑆) × 𝑊 × 𝐶. 

 

ColCtrl

FIFO1

FIFO2

Mem

Initial Row: 

0,1,2,� (K+S-1)

 
Figure 10 Dual FIFOs for the vertical and horizontal sliding 

of the sliding window. 

Owing to the restricted capacity of the on-chip memory, in 

order to optimize the repurposing of this storage area for 

vertical sliding of the sliding window, a pair of FIFOs (shown 

as Figure 10) have been implemented to cyclically update the 

row base address. The cache is evenly divided into K+S 

block storage space for storing K+S rows of the input image. 

At the same time, FIFO1 caches all 𝑅𝑜𝑤_𝐵𝑎𝑠𝑒_𝐴𝑑𝑑𝑟𝑠 

required for every computation, which are given by the set {𝑖 × 𝑊 × 𝐶|0 ≤ 𝑖 ≤ 𝐾 + 𝑆 − 1} , while FIFO2 selectively 

caches K Row_Base_Addrs. During the processing of row 0 

to k-1, FIFO2 only needs to cyclically retrieve 

Row_Base_Addr corresponding to these rows from its cache. 

E. Systolic Array Dataflow Based on Switch Mode 

Considering the strict formatting requirements of the 

systolic array for input data and the fact that the input data for 

the i-th (1 ≤  𝑖 ≤  𝑁 − 1) row of the array is delayed by one 

clock cycle compared to the (i-1)th row, it is necessary to 

delay the input data to meet the array's input requirements. 

For matrix multiplication, the matrix data can be directly 

input to the systolic array after being delayed by registers for 

the appropriate amount of time. However, for convolution, 
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selectors are needed to choose specific rows of the systolic 

array as inputs. 

To illustrate this, let's discuss the data flow format between 

the Img2Col module and the systolic array with the addition 

of selectors. For a systolic array with dimensions [𝑆𝐴ℎ, 𝑆𝐴𝑤], 
if the i-th row of the array is prepared with 𝑆𝐴𝑤 inputs every 

i-th cycle (where 𝑖 =  0, 1, 2, . . . , 𝑁 − 1), it can ensure that 𝑆𝐴ℎ × 𝑆𝐴𝑤 PEs can perform one valid multiply-accumulate 

operation every clock cycle after 𝑆𝐴𝑤 cycles. 

 

 
Figure 11 Data Flow of Switch-Based Systolic Array 

As shown in Figure 11, the dimensions of the systolic array 

are 3×3, the input matrix A has dimensions 3×6, and the input 

matrix B has dimensions 6 × 𝑚 (𝑚 ≥  1). In the first cycle, 

we only need to fetch the first three points of the first row of 

matrix A and convert the parallel data into three valid 

continuous data in a serial manner when inputting to the first 

row of the systolic array. In the second cycle, the first three 

points of the second row of matrix A (highlighted in red) are 

converted into serial data and input to the second row of the 

systolic array. This process continues, and when the fourth 

cycle arrives, the top-left PE of the systolic array has 

consumed three valid data points from matrix A. At this 

point, we only need to feed the last three data points of the 

first row of matrix A to the first row of the array to ensure that 

the PE's calculations are valid and the data flow is 

uninterrupted. This process continues... 

It is evident that after the fifth cycle (clk4), each PE in the 

systolic array can perform one calculation per clock cycle, 

and each input is reused 𝑚𝑖𝑛(𝑚, 𝑆𝐴𝑤) times. 

F. Computational Complexity Analysis 

For an systolic array of size 𝑆𝐴ℎ × 𝑆𝐴𝑤 , the systolic is 

capable of calculating the NM submatrix in output matrix C 

every (𝐶 × 𝐾2 +  𝑆𝐴𝑤 − 1) cycles. As a result, based on the 

current computing architecture, the computational cost of the 

convolution shown in Figure 1, when mapped to the systolic 

array, can be expressed as follows: ⌈ 𝐻′𝑆𝐴ℎ⌉ × ⌈ 𝑊′𝑆𝐴𝑤⌉ × (𝐶 × 𝐾2 + 𝑆𝐴𝑤 − 1)#(1.)  

G. Storage Space Analysis 

To implement the convolutional sliding window, 

commonly applied architecture requires a minimum storage 

space of (𝐾 − 1)𝑊 × 𝐶, wherein head-to-end row cache is 

employed for vertical sliding. While its storage space is 

comparatively smaller than the proposed systolic array 

architecture, it falls short in terms of adaptability. For 

instance, the systolic array architecture can effortlessly 

accommodate input channels of 3 × 3 or 4 × 4 convolution 

for 5×5 convolution without necessitating any supplementary 

step processing modules, thereby, making it worth increasing 

the storage space by a small margin to attain greater 

flexibility. 

IV. EXPERIMENT AND RESULT 

In this section, we will present the outcomes of a matrix 

computation conducted on systolic arrays. The size of the 

systolic array is set to be 8×8 and the power consumption of 

the systolic arrays is 0.67w, running 200MHZ on the 

Zedboard(xc7z020)
[9]

. 

Table 1 Hardware utilization of several crucial modules. 

 LUT FF BRAM DSP 

Available 277400 554800 755 2020 

8×8 SA 5356 41909 0 64 

Img2Col 969 503 38 0 

GEMM_Cache 614 228 32 0 

Weight_Cache(8×8) 407 147 32 0 

Output Arrange 953 838 32 0 

As shown in Table 1, the systolic array is the main module 

that occupies most resources. This is because the data needs 

to be managed accurately, and the data needs to flow 

continuously in the systolic array in an orderly manner, 

accumulate in each PE, and output the correct result at the 

right time, as a result, this part requires more logical 

resources. For the resource usage of the on-chip memory, the 

cache space is occupied by three cache modules at the 

periphery of the array: GEMM_Cache in Direct mode for 

matrix multiplication calculation, Img2col module for 

convolutional mapping, and WeightCache module for weight 

caching. These cache modules efficiently store data on the 

chip, rapidly supplying data to the systolic array and 

minimizing the additional overhead of frequent data retrieval 

from external storage. Of course, if the size of the picture is 

larger and there are more input and output channels, the 

overhead of storage resources will increase. In addition, it is 

also necessary to simply rearrange the output data of the 

pulsating array: the general idea is to collect N rows of data 

and then output these collected data line by line, so as to meet 

the data format required for the next calculation. 

 

 
Figure 12 Support for convolution with different sizes and 

strides. 

http://www.ijerm.com/


 

Design and Implementation of Systolic Array-based Accelerator for Convolutional Neural Networks 

                                                                                              16                                                                                  www.ijerm.com  

 

 

In addition, to verify the support for convolutions, multiple 

tests on convolutions ranging from 3x3 to 16x16 were 

conducted, examining their performance with different 

strides. The input image size was set to 480, with 8 input 

channels and 256 output channels. By appropriately 

configuring the register file, the accelerator efficiently 

completes the computation tasks as shown in Figure 12. From 

the graph, it can be observed that as the size of the 

convolutional kernel increases, the computational workload 

also increases, ranging from 26G for a 3×3 convolution to 

680G for a 16×16 convolution. Additionally, with an 

increased stride, the computational workload for the 

same-sized convolution decreases. 

Experimental results demonstrate that, the Img2Col 

module can map convolutions of different sizes and strides to 

matrix multiplications on the systolic array. Whether it is a 

small-sized 3×3 convolution or a larger 16×16 convolution, 

the accelerator efficiently completes the computational tasks 

without significant performance degradation caused by 

variations in the convolution kernel size and stride. 

Furthermore, the proposed systolic array not only 

facilitates convolution mapping to matrix calculations but 

also supports basic matrix computations. Table 2 

demonstrates the execution of matrix multiplications with 

different dimensions using an 8 × 8 systolic array. It is worth 

mentioning that matrix A is cached in a row-by-row fashion, 

allowing for flexible expansion of its row count up to 10000. 

However, due to resource limitations on the chip, if matrix B 

becomes excessively large, it needs to be partitioned. In such 

cases, each resulting submatrix is multiplied with matrix A to 

obtain the final solution. 

 

Table 2 Performance of Matrix multiplication on systolic 

array 

MatrixA MatrixB Compute Time(ms) 

[4096,256] [256,256] 21.7 

[8192,512] [512,256] 85.6 

[1024,256] [256,256] 5.41 

[2048,1024] [1024,128] 21.3 

[4096,512] [512,256] 42.62 

[197,384] [384,192] 1.16 

[10000,384] [384,192] 58.73 

V. CONCLUSION 

This study aims to introduce a hardware accelerator that 

can enhance the performance of CNN models by leveraging 

efficient computational units and memory hierarchy to attain 

accelerated processing. The implementation of CNN models 

in hardware has encountered several challenges, including 

high computational complexity, large storage requirements, 

memory bandwidth limitations, and difficulties with parallel 

computing. To address these challenges, an efficient and 

straightforward Img2Col method was proposed through 

which convolutions can be unfolded into matrix 

computations from small size 1×1 to more extensive 16×16. 

The experiment results demonstrated that the accelerator 

delivered remarkable performances in both CNN 

calculations, delivering up to 37.6 GOPS/W. This study's 

contribution is significant in enhancing the performance of 

CNN and by addressing the challenges encountered in their 

hardware implementation. The hardware accelerator can be 

employed in various machine learning and natural language 

processing applications to enhance their speed and 

efficiency. Further research can explore the scalability of the 

hardware accelerator to handle more complex tasks and 

models. 
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