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Abstract— In order to prevent issues such as cost escalation 

and efficiency reduction in industrial production caused by 

energy shortage, it becomes particularly critical to forecast 

energy consumption. This paper intends to adopt the classic 

model in time series analysis methods--Seasonal 

Auto-regressive Integrated Moving Average Model 

(SARIMA), considering the tendency and seasonality traits of 

energy consumption data. Through statistical analysis of the 

data, we identify whether there exists trend and seasonality 

and determine the parameters of the SARIMA model based 

on the results of data analysis for energy consumption data 

modeling and forecasting. Experiments were conducted with 

industrial energy consumption data and the results 

demonstrated that this method could effectively predict 

energy consumption. 

 

Index term—Industrial Energy Consumption Forecasting, 

Time Series Analysis, SARIMA 

I. INTRODUCTION 

Industrial production occupies an extremely important 

place in the economic and social development of a country 

and can have a huge impact on both economic growth and 

environmental change. Forecasting energy consumption 

helps industrial companies to better plan and adjust their 

production schedules and to manage and conserve energy 

more effectively[1]. Forecasting energy consumption also 

helps governments and related organizations to make 

decisions, such as adjusting energy policies in a timely 

manner and rationally allocating energy resources to meet 

the needs of different industries and regions. 

Since industrial energy consumption data are typically 

time-series data, time-series analysis methods are currently 

the main means of forecasting energy consumption data. 

Autoregressive Integrated Moving Average (ARIMA) 

model has been widely used as a typical time series model 

in various fields [2].  

In cases where the data behave as time series, ARIMA 

has an advantage over other similar methods by 

identifying the appropriate model to best fit the respective 

time series [3].  
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To recommend the nature of energy policies. Liu et al [4] 

used ARIMA model in wireless sensor information 

collection to save energy. Saab et al [5] used ARIMA model 

to predict monthly electricity consumption in Lebanon in 

one step. Contreras et al [6]used ARIMA model to predict 

the next day's electricity price. Pappas et al [7] proposed an 

ARIMA model for predicting Greek electricity 

consumption with an ARIMA model and compared the 

model with three analytical time series models, which 

showed that the ARIMA model is more effective than the 

other time series models. 

On the basis of the above research, this paper starts from 

the trend and seasonality of the industrial energy 

consumption data itself, decomposes and analyzes the data, 

and uses the time series analysis SARIMA model to model 

and forecast the data, and finds that the model can be well 

applied to this problem. 

II. PROBLEM DEFINITION 

A. Time series analysis methods 

This paper conducts research on industrial energy data 

using time series analysis methods. Time series analysis is a 

statistical technique used to process data generated by 

various observed items at successive points in time. These 

observational items can be stock prices, energy 

consumption, or any other data arranged in chronological 

order. This type of series is one of the most common forms 

of data and is characterized by the fact that each 

observation is recorded at a specific point in time and there 

is a temporal dependency between the data. The following 

are the general methods and steps involved in time series 

analysis, The process is shown in Figure 1: 

Understanding and Cleaning Data: The foremost step 

involves understanding and preprocessing the data. The 

correctness and completeness of data bear great 

significance to the precision of the analytical outcomes. 

Data cleaning encompasses processes such as outlier 

removal and missing data imputation. 

Data Exploration: In this phase, we venture to 

understand the fundamental characteristics and structure of 

the data, including its distribution, periodicity, and trends, 

among others. Tools such as STL((Seasonal and Trend 

decomposition using Loess)) decomposition and 

autocorrelation plots facilitate this exploratory process. 

Model Construction: Subsequent to the preliminary 

observations and analyses, we proceed to select an 

A Case Study of Industrial Time Series Analysis Methods 

and Simulation Experiment Design - An Example of 

Energy Consumption Data 

http://www.ijerm.com/


 

A Case Study of Industrial Time Series Analysis Methods and Simulation Experiment Design - An Example of 

Energy Consumption Data 

www.ijerm.com  30 

appropriate model, such as commonly employed ARMA 

or SARIMA models. 

Model fitting: Then, utilizing the optimal parameters, 

we execute software computations to yield the model and 

fit it to our data. 

Model Verification: After the model has been fitted, it's 

necessary to review the model for stability and validity. 

Common methods for this purpose include residual tests 

and white noise tests. 

Forecasting: The final step is using the model for 

forecasting, provided the model is compliant with the 

requisite statistical assumptions.

 
FIG 1.  Time series analysis process

B. Establishment of SARIMA model 

Energy consumption data possesses certain specific 

characteristics due to external influences. For example, 

energy demand in winter may be higher than in summer, 

leading to potential seasonal variations in energy 

consumption data. Furthermore, energy consumption data 

may exhibit long-term upward or downward trends due to 

policy influences. Addressing these characteristics is a key 

function of this model. The SARIMA model can be 

represented as SARIMA(p,d,q)(P,D,Q)s, where lowercase 

symbols represent the non-seasonal part of the model, with 

p denoting the autoregressive parameter, d denoting the 

differencing parameter, and q denoting the moving average 

parameter. Uppercase symbols represent the seasonal part 

of the model, indicating the number of periods for each 

season. For example, the annual cycle is represented by s = 

12. The mathematical formalization of SARIMA is shown 

in Equation (1). 

 φp(B)ψP(BS)∇d∇SDyt = θq(B)ΘQ(BS)εt             (1) 

 

For the prediction of natural gas consumption data, 

where B is the lag operator, p is the order of the regular AR 

polynomial, q is the order of the MA polynomial, P is the 

order of the seasonal AR polynomial, Q is the order of the 

seasonal MA polynomial, d is the non-seasonal differencing 

order, D is the seasonal differencing order, and εtrepresents 

the prediction error. The acquisition method of the 

SARIMA model can be summarized into four steps: 

identification, estimation, diagnostic checking, and 

prediction [8]. 

III. SIMULATION AND PREDICTION 

A.Data Set 

To effectively forecast energy consumption sequences in 

the industry using the SARIMA model, this section 

employs the monthly data of industrial sector natural gas 

consumption from the U.S. Energy Information 

Administration (EIA) spanning January 1, 2000, to August 

1, 2023. This dataset consists of 284 data points. Given that 

most regions worldwide sample energy consumption on a 

monthly, quarterly, or annual basis, the adoption of monthly 

data is pursued with the intent to maximize the size of the 

dataset and to ensure that the SARIMA model can capture 

an increased amount of information. Furthermore, it's 

considered that data prior to the year 2000 will not 

significantly affect the current predictions due to shifts in 

industrial development, economic policies, and 

environmental conditions. The methodology used in this 

study necessitates the chronological arrangement of the 

training set. Accordingly, the training and test sets are not 

arbitrarily divided but are partitioned based on their 

chronological sequence. The data from the final year is 

utilized as a test set to validate performance, while the 

remaining data forms the training set. 

B.Exploratory data analysis 

Before modeling and forecasting the energy consumption 

data, it is necessary to conduct an exploratory analysis of 

the data to understand the general situation of the data and 

analyze the trend and seasonality of the data, and the results 

of the data analysis will provide a reference for the 

construction of the subsequent model. The time series 

diagram of the natural gas consumption data is shown in 

Figure 2. 

 

 

FIG 2.  Natural Gas Consumption Sequence Diagram 

Intuitively observing the data, it can be seen that the 

consumption of industrial natural gas showed a continuous 

downward trend before 2010, and then continued to rise 

until 2023. And from the time series diagram, we can 

roughly see that there seems to be some regular fluctuations. 
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Before further decomposition analysis, we need to check its 

stationarity and whether it is a white noise sequence. 

In time series forecasting methods, conducting a 

stationarity test on the data is essential. This is not only 

because some time series models require data to be 

stationary, but also because stationarity testing can 

determine whether the data possesses stable statistical 

characteristics, i.e., whether the mean and variance of the 

data change over time. Stationary data exhibits favorable 

properties in time series analysis, enabling more accurate 

prediction and modeling. The Augmented Dickey-Fuller 

(ADF) test is a commonly used method for unit root testing, 

employed to examine whether time series data possesses a 

unit root (i.e., non-stationarity). The ADF test results for the 

two energy datasets are presented in Table1，Where CL 

represents Confidence level. 

Table 1 ADF test results  

T-test P-value 1% CL 5% CL 10% CL 

-0.58 0.876 -3.45 -2.87 -2.57 

From the results of the ADF test, it can be seen that the 

T-test values of the data are much greater than the 10% 

confidence level, indicating that they are non-stationary. 

This means that in the subsequent modeling and prediction 

process, it is necessary to use differential operations to 

make the data stationary. The ADF test results of the data 

after first-order difference operation are shown in Table 2. 

Table 2 

First-order differential sequence ADF test results  

T-test P-value 1% CL 5% CL 10% CL 

-3.97 0.0015 -3.45 -2.87 -2.57 

It can be seen that the differential sequence has already 

shown as a stationary sequence. In order to determine the 

research value of this stationary sequence, it is necessary to 

test whether it is a pure random sequence. The Ljung Box 

method is used for white noise testing, with orders set to 

6th and 12th, respectively. The results are shown in Table 3. 

Table 3 White Noise test results  

Lags Lb_stat Lb_Value 

6 83.75 5.98e-16 

12 295.24 4.68e-56 

It can be seen that the Lb_value values of both 6th and 

12th orders are far less than 0.05, indicating that they are 

non random sequences and can be modeled using the 

SARIMA method for research. 

In order to see the trends and seasonality in the data 

more clearly, we use the STL method to decompose the 

data into components such as trends, seasonality, and 

residuals, as shown in Figure 3. 

 

FIG 3.  SLT decomposition diagram of Natural Gas consumption  

Based on the results of STL analysis, natural gas 

consumption data shows significant periodicity in its 

seasonal curve, with a complete cycle occurring every 12 

months. The residual plot describes the difference between 

the data decomposed by section and trend and the original 

data, representing the unexplained portion remaining after 

removing trends and seasonality. From the graph, it can be 

seen that the residual lines of both datasets show slight 

fluctuations around the 0 value, indicating that if a model 

can fully extract the trend and seasonality of the data, it 

should be able to capture the key features of the data. 

ACF (Auto-correlation Function) and PACF (Partial 

Auto-correlation Function) plots are commonly used tools 

in auto-regressive analysis of time series, and they can be 

used to help us determine the best model for the time series, 

as well as to identify seasonality or outliers. The ACF，
PACF plots for the Natural gas consumption series are 

shown in Figure 4. 

 

FIG 4.  ACF and PACF of natural gas consumption. 

Periodic peaks can be seen in the ACF plot for Natural 

gas consumption series, which shows the seasonal cyclical 

variation present in the series. The blue shaded area 

indicates the 95% confidence interval, and if the auto 

correlation coefficient lies outside the confidence interval, 

it suggests that the lag term may not be due to random 

noise. The PACF plot, on the other hand, shows the 

correlation between a lag and the current value after 

controlling for the effects of other lags. Both the ACF and 

PACF plots show that data have some degrees of 

auto-correlation, which provides a theoretical basis for 

subsequent SARIMA modeling. 

C. Evaluation criteria 

In assessing the effectiveness of models, the magnitude 

of the error between predicted values and actual values, i.e., 
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accuracy, is undoubtedly the most important and 

convincing criterion. This study employs two statistical 

metrics, namely the Mean Absolute Percentage Error 

(MAPE) and the Root Mean Square Error (RMSE), to 

evaluate the model's performance, each defined by 

equations (2) and (3), respectively. 𝑀𝐴𝑃𝐸 = 1×100%𝑁 ∑ | 𝑃𝑎𝑖−𝑃𝑓𝑖𝑃𝑎𝑖 |𝑁𝑖=1                     (2) 

𝑅𝑀𝑆𝐸 = √1𝑁 ∑ (𝑃𝑎𝑖 − 𝑃𝑓𝑖)2𝑁𝑖=1                     (3) 

Pai and Pfi represent the actual and predicted values of 

coal consumption at time i, and N is the number of samples 

involved in the prediction. MAPE is an unbiased estimator 

used to evaluate the predictive ability of a model, widely 

applied due to its intuitive interpretation of relative errors. 

RMSE measures the difference between the values 

predicted by a model or estimator and the actual observed 

values[9, 10]. 

 

D. SARIMA modeling and prediction 

After exploratory data analysis of the data we started the 

prediction task. For the SARIMA model, according to the 

stationarity of the data, the number of differences d is set to 

1, and it is determined that the domain of values of the p,q 

parameters should be [0,5], the domain of values of the P,Q 

parameters should be [0,2], D should be [0,1], and s should 

be 12. A grid search is used to search the parameter space to 

determine the AIC and BIC information criterion as a 

measure of the strength of the parameter combinations. The 

two information criteria will find a balance between the 

model complexity and prediction accuracy, so that the 

model has a high accuracy while having the smallest 

possible complexity, and the expressions of the two 

information criteria are shown in equations (4), (5). 

 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿) (4) 

 𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿)                          (5) 

 

where n is the number of samples, k is the number of 

parameters, and L is the likelihood function. The optimal 

parameters of SARIMA for the Natural gas consumption 

data are shown in Table 4. 

 

Table 4 The optimal parameters of SARIMA  

Parameters AIC BIC 

SARIMA 

(1,1,1)*(1,1,1,12) 

2227.908 2245.693 

After finding the optimal parameters, we use the optimal 

model to fit the historical data and predict the next 12 time 

steps. The result is shown in Figure 5. 

 

FIG 5.  ACF and PACF of natural gas consumption 

The graph indicates that apart from an initial few outliers, 

the majority of the data points are well fitted. Furthermore, 

the predicted values are strikingly close to the actual values, 

signifying the model's ability to effectively forecast the 

consumption of industrial natural gas. The forecast MAPE 

and RMSE values are 1.4% and 17.61 respectively, 

demonstrating the model's high level of forecast accuracy. 

IV. CONCLUSION  

 

Industrial energy consumption data often exhibit 

complex trends and seasonal periodicities. This paper 

embarks on a predictive task using the time series analysis 

method, taking the consumption of industrial natural gas as 

a case study. An in-depth statistical analysis is initially 

carried out on the data to understand distinct features within. 

Subsequently, using the Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) model, data 

modelling is performed. Parameter tuning and forecasting 

are accomplished via a grid search algorithm and the 

Akaike Information Criterion (AIC) and Bayes Information 

Criterion (BIC) principles. Experimental results indicate 

that the SARIMA model is adept at fitting historical data 

and making precise predictions for future data points. 
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