
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 37 www.ijerm.com

Abstract—Neural networks have been widely applied in

industrial production and daily life. However, the constraints of

the production environment make it difficult to deploy neural

networks to the unified devices. In this paper, we present a

neural network accelerator generator that can generate

different accelerators based on different parameters. Different

from the existing mainstream neural network accelerators, we

utilize the novel SpinalHDL language to design the generator to

achieve the balance between performance and flexibility. To

facilitate the deployment of neural networks in the production

environment, we propose a comprehensive toolchain including a

TVM-based compiler and a SystemC-based simulator. The

compiler optimizes the network operators and generates

configuration instructions. The simulator is employed for

algorithm modeling and system simulation, which establishes a

versatile framework for neural network acceleration. We

demonstrate the effectiveness of our approach by testing it on

chips such as XCVU9P-2FSGD2104E using neural networks

such as YOLOv4-Tiny and YOLOX. We perform accelerator

validation on both single-core and multi-core architectures,

which demonstrated favorable acceleration performance.

Index Terms—A framework for neural network acceleration,

Hardware-software co-design, Hardware accelerator generator,

Field-programmable gate array (FPGA)

I. INTRODUCTION

 Data, algorithms and computing power are the three keys

that are behind the advancement of deep learning. In the

recent years, deep learning has achieved remarkable success

in various fields. However, the superior performance of deep

learning faces to the expense of significant computational

resources. Nevertheless, the growth rate of computational

resources in chips is far away from the computational

demands of algorithms. Although many neural network

accelerators have been developed[1]-[12], their speed is also

far behind the requirement of neural network algorithms. As a

result, many researchers made efforts to construct a

comprehensive suite of design tools for neural network

accelerators. To expedite accelerator development, an agile

development process is employed in accelerator design.

Currently, FPGA-based neural network accelerators are often

designed to accelerate specific neural network models and

necessitate a redesign of the accelerator when a new model

needs to be accelerated. Additionally, the absence of a

comprehensive toolchain poses a significant challenge to the

deployment of neural network accelerators.

This paper proposes a neural network accelerator generator

Manuscript received April 16, 2024

 Zhuangwen Yang, School of computer science and technology,

Tiangong University, Tianjin, China.

based on SpinalHDL[13]. SpinalHDL enables the agile

design of

Figure 1 The overall framework for neural network

acceleration

a generic neural network accelerator generator. By selecting

different configuration parameters during Verilog generation,

a specialized neural network accelerator can be produced to

meet different requirements. The advancement of neural

network algorithms has been remarkably swift, which enables

the efficient deployment of newly released networks onto

existing neural network generators. This paper proposes a

TVM-based[14] compiler and a SystemC-based simulator for

the deployment of neural network algorithms. The compiler

optimizes the network operators and generates configuration

instructions. The simulator is employed for algorithm

modeling and system simulation. The toolchain facilitates the

agile implementation of neural network algorithms as it is

illustrated in Figure 1.

The major contributions of our work are summarized as the

following:

(1) This paper proposes a comprehensive toolchain

comprising a SpinalHDL-based generator, a TVM-based

compiler and a SystemC-based simulator. These establishes

an automated customizable framework for neural network

acceleration.

(2) The application of agile development and

An Automated Customizable Framework for Neural

Network Acceleration on FPGAs

Zhuangwen Yang

http://www.ijerm.com/

An Automated Customizable Framework for Neural Network Acceleration on FPGAs

 38 www.ijerm.com

hardware-software co-design has resulted in a balanced

performance-flexibility trade-off for the accelerator.

II. BACKGROUND AND RELATED

WORK

A. Agile Design

The expeditious pace of development in neural network

algorithms demands the neural network accelerators to

facilitate swift iteration and development. FPGA is a

well-suited acceleration platform in this regard. Currently,

three principal methodologies exist in FPGA development.

The first one involves employing hardware description

languages such as Verilog and VHDL. The second one

involves utilizing high-level synthesis languages, such as

AMD XILINX's HLS. The third one employs

domain-specific language tools specifically designed for the

field, such as SpinalHDL and Chisel[15]. While existing HDL

languages such as Verilog achieve widespread adoption,

SpinalHDL outperforms them with advanced error detection

capabilities and shorter development cycles, making

SpinalHDL more conducive to agile design. Another

approach generates the accelerator automatically based on

pre-written code using template matching[16]-[18]; however,

compared to SpinalHDL, it exhibits diminished flexibility.

The adoption of HLS accelerates development cannot

precisely control area and timing, resulting in suboptimal

quality of generated RTL code that fails to meet performance

requirements.

SpinalHDL is a novel hardware description language based

on the extension of Scala. Compared to Verilog, it supports a

broader range of object-oriented programming features and

more advanced parameterization. Consequently, it offers

more convenient and efficient capabilities and can adapt to

the rapid iteration of neural networks. Currently, SpinalHDL

supports simulation with various tools for simulation such as

Verilator, VCS, and Vivado's XSIM. In summary,

SpinalHDL has strong engineering development capabilities,

making it highly suitable for agile design of neural network

accelerators.

B. Model Quantization

Quantization involves converting the original

floating-point model into alternative data formats for storage.

There are currently two types of methods for compressing

deep learning models. The first one involves constructing a

lightweight network model, such as MobileNet[19]. The

second one involves compressing the model through

operations such as quantization and pruning. Quantizing

models can reduce the data bit-width, thereby reducing

computational complexity. For instance, quantizing 32-bit

floating-point data to 8-bit integers can significantly reduce

energy consumption according to Horowitz[20]. However,

reducing the data bit-width too much results in accuracy

issues with the model. Google's 2018 white paper on

quantization showed that 8-bit quantization brings almost no

loss in accuracy[21]. Therefore, we adopt 8-bit quantization

in this paper.

III. A FRAMEWORK FOR NEURAL

NETWORK ACCELERATION

A. Hardware-Software Co-Design

The overall framework for neural network acceleration

proposed in this paper is illustrated in Figure 1. This

framework includes five fundamental components: algorithm

training, simulator design, compiler design, generator design

and on-board deployment. In the first step, a neural network is

trained, and the trained weight data is obtained. In the next

step, the design space is explored using the simulator to

identify the optimal configurations. The third step involves

generating the neural network accelerator using the generator.

In the fourth step, the compiler extracts the computation graph

of the neural network and generates instructions. Finally, the

design is deployed to an FPGA board. It should be noted that

the exploration of the design space, generation of the

accelerator and extraction of the computation graph by the

compiler are not sequential processes. These three

components require data interaction, such as the compiler

providing the computation graph to the simulator. If the

simulator identifies that the neural network needs to be

segmented, the compiler must re-segment the neural network

and construct a new computation graph. The new computation

graph is then provided to the simulator for a new round of

simulation.

Numerous studies have been conducted on the

hardware-software co-design in the neural network

acceleration field. For instance, Ahmed Nasser et al[22].

proposed a convolutional neural network accelerator

framework that generates neural network operators via Perl

scripts and creates the corresponding accelerator by varying

neural network parameters. Nonetheless, this approach

suffers from limited flexibility. In contrast, the framework

proposed in this paper provides higher flexibility. The

framework can be divided into two parts: software and

hardware. The software portion consists of three components:

a compiler, simulator, and trainer. The hardware portion is a

generator. In the proposed neural network acceleration

framework, a single language was not chosen for development.

Instead, Python and SystemC are utilized for the software

portion, while SpinalHDL and Verilog are employed for

hardware description. Information exchange between the

software and hardware portions was implemented in the

JSON format. This approach was selected to maximize the

performance advantages provided by each individual

component.

When conducting hardware-software co-design, one of the

primary concerns is ensuring coordination between different

modules. When it comes to information exchange between the

compiler and simulator, the neural network model is the

primary piece of data that needs to be transmitted. This can be

achieved through the use of a trained PTH file, with only the

quantized model needing to be transferred to the compiler. To

explore the design space, the compiler and simulator need to

be coordinated. The simulator requires information such as

the neural network's parameters, weights, and initial FPGA

design architecture. The compiler also needs the same

information. The compiler obtains the weights of the current

neural network from the trainer and then optimizes them

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 39 www.ijerm.com

before passing them to the simulator. Once the design space

exploration is complete, the FPGA design architecture is

determined. After completing the design space exploration,

the FPGA design architecture is determined. Once all

parameters are finalized, the hardware accelerator can be

generated. The generator, simulator, and compiler exchange

data in JSON format. The generator generates corresponding

RTL code and TCL files for synthesis, layout, and other

operations in Vivado. After generating the bitstream, the

Table Ⅰ
Configurable parameters of the generator

Param Type Parameters Values Default Value

General parameters data bit width 4 8 16 32 4

image type RGB Gray Gray

convolution type 320 416 640 640

operator type 1x1(8x) 1x1(4x) 1x1(2x) 1x1 1x1(8x)

operator selection Focus enable no

activation function type Leaky Relu Relu Leaky Relu

on-chip cache size(MiB) 1 2 4 1

 off-chip storage size(GiB) 1 2 4 4

Performance

parameters

computational parallelism 4x4 8x8 8x16 16x1

6

8x8

maximum parallelism 16x16 32x32 16x16

number of computing cores 1 2 3 4 1

burst transfer size(B) 16 32 64 32

dedicated IP enable yes no yes

Optimization

parameters

DSP frequency multiplication 1x 2x 1x

DSP multiplexing 1x 2x 2x

URAM enable yes no yes

delay of multipliers 3 4 5 6 3

delay of adders 1 2 3 1

delay of cache units 1 2 3 4 2

timing optimization enable yes no yes

weight and instruction files generated by the compiler need to

be read on the host computer.

B. Generator Design

The neural network generator proposed in this paper

incorporates a series of configuration statements, which

facilitate the creation of different accelerator configurations

as it is shown in Table Ⅰ. This approach minimizes resource

Fig. 2. Generator design

consumption as the generator avoids producing redundant

operators that do not require acceleration. The choice of

FPGAs as the hardware platform was motivated by their

http://www.ijerm.com/

An Automated Customizable Framework for Neural Network Acceleration on FPGAs

 40 www.ijerm.com

reconfigurable nature. Apart from accelerating various

operators based on the neural network model, the proposed

accelerator can generate distinct neural network accelerator

architectures automatically that depends on the available

FPGA chip resources. In addition, Table Ⅱ provides a

comprehensive description of how the instruction register set

controls the computational process, facilitates the transfer of

network parameters, and enables the transmission of data.

Figure 2 illustrates the hardware acceleration diagram of

the convolutional neural network accelerator proposed in this

paper. It comprises three modules: the Conv module,

responsible for convolution computation; the Instruction

module, which controls functionality; the Shape module,

which modifies the feature map dimensions. Both the Conv

module and the Shape module can receive data from external

storage modules and exchange data with each other, reducing

the need for external memory access, improving

computational speed, and minimizing power consumption.

Table Ⅱ

Instruction Register Set

Instruction Type Register Address Field Description

Control

Computation

Conv StateReg [31:0] State of the convolution

ControlReg [31:0] Control of the convolution

Shape StateReg [31:0] State of the shape

ControlReg [31:0] Control of the shape

Network

Parameters

Conv ImageSizeReg [31:22] Number of input channels

[21:11] Number of input columns

[10:0] Number of input rows

ParamReg [31] Stride enable

[30:23] Z3

[22:20] Number of Z1

[19:12] Z1

[11] Activation enable

[10] Padding enable

[9:0] Number of output channels

ConvTypeReg [31:16] First layer

[15:0] Convolution type

ParamCountReg [31:16] Number of quantified params

[15:0] Number of weight params

AmendmentReg [31:0] Amendment

Shape DataSizeReg [31:22] Number of input channel 1

[21:11] Number of input columns

[10:0] Number of input rows

C2Reg [31:0] Number of input channel 2

S1Reg [31:0] Scale 1

S2Reg [31:0] Scale 2

Z1Reg [31:0] Zero 1

Z2Reg [31:0] Zero 2

Data Transfer Conv WAddrReg [31:0] DMA write address

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 41 www.ijerm.com

WLenReg [31:0] DMA write length

RAddrReg [31:0] DMA read address

RLenReg [31:0] DMA read length

Shape WAddrReg [31:0] DMA write address

WLenReg [31:0] DMA write length

RAddrReg [31:0] DMA read address

RLenReg [31:0] DMA read length

In the field of neural networks, convolutional layers constitute

the majority of the computational workload. Thus, optimizing

the performance of these layers is critical. Conversely,

operations that alter the feature map dimensions, such as

pooling, upsampling, concatenation, addition and splitting

occur infrequently. To efficiently manage these operations,

they are grouped together into a module named Shape. The

Instruction module is responsible for selecting and switching

between different computation modes within the Conv

module and Shape module.

The convolution acceleration module can be partitioned

into several sub-modules, including the cache module for

weight and feature maps, the convolution computation

module and the quantization module, as it is illustrated in

Figure 2. In particular, the convolution computation module

employs the reuse and clock frequency doubling of DSP units

to improve the accelerator's performance.

AMD XILINX's FPGA chips provide a range of DSP units

such as DSP48 and DSP58. DSP48E1 and DSP48E2 can

perform multiplications of 25 × 18 and 27 × 18 bits,

respectively, while the DSP58 can perform multiplications of

27×24 bits. Since 8-bit quantization technology is employed

in this paper, using a DSP unit solely with an 8-bit

multiplication would result in a significant waste of DSP

resources. Therefore, we employ DSP multiplexing

technology[23]. Taking DSP48E1 as an example. DSP48E1

offers a calculation mode of (A+D) × B, which enables the

conversion of A×B and D× B to (A+D) × B. Consequently,

two 8-bit multiplications can be computed directly through

this single DSP unit. Using DSP multiplexing technology can

reduce DSP usage by half with the same level of parallelism

configuration, which means that the computing power can be

doubled within the same FPGA chip.

The DSP computation unit undertakes the execution of

multiplication and accumulation operations within

convolution processes, occupying a crucial position along the

critical path of convolution calculations. When employing an

FPGA as a carrier for neural network acceleration, the

operating frequency is typically set to 200MHz or lower,

which limits the DSP frequency to only 15 % to 30 % of the

maximum frequency, thereby wasting DSP resources[24].

This is because leakage power is independent of clock

frequency. As a result, the power consumption of the DSP is

mostly wasted. Therefore, the computing power can be

further enhanced by setting the DSP frequency to twice the

clock frequency.

The Shape module includes functional modules such as

MaxPooling, UpSampling and Concat. These modules reuse

the same set of external data, which is distributed to the

corresponding working modules via the Switch module after

entering the Shape module. Once the computation is

completed, the Switch module collects the results and sends

them to the external storage unit. The functional modules can

be pruned based on the requirements of the neural network

algorithm, thereby they enable the resulting neural network

accelerator to achieve resource minimization.

To increase the computational performance in such

architectures, parallelism of the convolutional unit is often

augmented. However, this brute-force parallelism

augmentation is commonly limited by bandwidth, causing

suboptimal acceleration results. Therefore, this paper

proposes a multi-core architecture design. The design

methodology of integrating multiple processing units on a

single processor has been widely employed in CPU design

and has been implemented in the proposed neural network

accelerator.

This paper presents an analysis of the data flow in a

multi-core architecture accelerator, using SqueezeNet as a

case study. SqueezeNet mainly consists of Fire layers as it is

illustrated in Figure 3(a). In the Fire layer, two convolutional

layers share the same input. In a typical neural network

accelerator, one convolutional layer is computed firstly,

which is followed by the other and leads to redundant reads by

the same input data from external storage and resulting in time

and power wastage. To address this issue, our proposed

multi-core architecture connects both input channels of

Conv2 and Conv3 to the output channel of Conv1, as shown

in Figure 3(a). This optimization allows the simultaneous

calculation of both convolutional layers, resulting in a

significant improvement in computational efficiency. The

multi-core acceleration architecture diagrams of YOLOv4

and YOLOX are shown in Figure 3(b) and Figure 3(c),

respectively.

http://www.ijerm.com/

An Automated Customizable Framework for Neural Network Acceleration on FPGAs

 42 www.ijerm.com

Fig. 3. Multi-core acceleration architecture

C. Toolchain Design

A well-designed toolchain can facilitate the transformation

of a neural network accelerator from a mere functional unit to

an efficient computing system. In this paper, we present a

compiler and simulator designed for the deployment of neural

network models. The compiler is an essential component of

neural network acceleration. The compiler implemented in

this paper focuses on quantization, optimization, and mapping

of the model.

TVM is an end-to-end compilation and optimization stack

that enables the deployment of neural network models

generated by PyTorch, TensorFlow, and other frameworks

onto various hardware platforms. In this paper, we extend the

compiler based on TVM. The extended compiler efficiently

map the neural network model onto the hardware architecture.

In order to better support custom hardware, it is sometimes

necessary to define custom operations. Therefore, TVM

supports the use of custom passes to achieve this goal.

Depending on the amount of FPGA resources available, a

convolution operator can be split into multiple convolutions

and concatenation operations, enabling large neural networks

to be deployed on smaller FPGAs. The acceleration

capabilities of the accelerator platform can be fully utilized.

As it is shown in Figure 4, a convolution operator is split into

four convolutions and three concatenation operations. This

paper presents a compiler that extracts parameters, optimizes

computation graphs and schedules instructions for

deployment. By utilizing this compiler, neural networks can

be automatically deployed while concealing

hardware-specific parameters from software engineers,

streamlining the process of neural network deployment.

Fig. 4. A customized pass

The conventional approach to chip development often

separates software and hardware development, leading to

limited collaboration between software and hardware

engineers. To solve this problem, SystemC was developed as

a C++ library that enables software developers to rapidly

construct hardware designs. SystemC extends C++ by

providing functions and classes for hardware modeling with a

simulation kernel that allows modeling from the Register

Transfer Level to the system level. By utilizing SystemC,

engineers can perform system-level modeling, conduct swift

simulations and verifications, explore and evaluate various

design architectures during the early development stages, and

compare functional simulations with RTL descriptions during

the later stages of development. Thus, SystemC promotes

collaborative design between software and hardware

engineers. In this paper, we utilize the SystemC simulator to

explore the design space that encompasses power analysis and

resource utilization across different architectures. Early

adoption of SystemC for simulation modeling can alleviate

the pressure of using RTL design for accelerator

implementation in the later stages. Moreover, it is essential to

maintain consistency between the simulation model and the

RTL implementation. It enables exploration of new design

iterations on the simulation model and delaying RTL design

until the design has matured, which results in accelerated

development speed and reduced costs.

IV. EXPERIMENTAL RESULTS

To demonstrate the superior performance and ease of

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 43 www.ijerm.com

deployment of the proposed accelerator generator on different

FPGA platforms, we conducted a series of experiments on a

range of FPGA platforms, including AMD XILINX's

XCVU9P-2FSGD2104E, XC7K325T-FFG900I, and

XC7Z100-2FFG900I. YOLOv4-Tiny and YOLOX-S were

selected for evaluation using the VOC2007 dataset, which

were trained and quantized by using the PyTorch 1.7.

Table Ⅲ presents a comparison of the acceleration

performance of our work with existing works. Considering

multiple aspects such as speed, accuracy, and power

consumption. Our work exhibits an attractive performance.

Despite the lower power consumption of Jetson Nano

compared to our design, our achieved frames per second (FPS)

significantly surpass it. Consequently, when evaluating the

ratio of FPS to power consumption, our design still

demonstrates superior performance. Table Ⅳ and V present

comprehensive data on resource utilization, power

consumption, and other relevant metrics for both single-core

and multi-core architectures, respectively. These tables

demonstrate the experimental results of the proposed neural

network accelerator generator in this paper under single-core,

multi-core architectures, and different clock frequencies,

which comprehensively show the superior performances

compared with other ones.

Table Ⅲ

Performance comparison of YOLOv4-Tiny acceleration on various platforms

 R7-5800

H

RTX 3070 Jetson Nano XCKU040[25

]

VU9P[26

]

VU9P(Our

)

Platform CPU GPU GPU FPGA FPGA FPGA

Clock Frequency(GHz) 3.2 1.5 0.922 0.143 0.2 0.2

Data Type FP32 FP32 FP32 FP16 INT8 INT8

FPS 19.53 131.98 14.26 31.20 49.38 102.75

mAP 78.60% 78.60% 78.60% / 81.54% 76.40%

Power(W) 45 220 10 / 12.689 14.360

Table Ⅳ

Resource Utilization and Acceleration Performance of Single-Core Architecture under different parallelism, FPGA chips, and clock

frequencies

 325T 7100 VU9P VU9P(dsp2x

)

VU9P(Our)

Compute Channel In 8 8 4 8 8 16 16

Compute Channel Out 8 8 4 8 8 8 16

Resource LUT 66920 41201 5841

9

74914 102071 94511 13309

5

LUT RAM 10107 6055 6867 9565 9709 13095 19173

FF 10120

6

70700 8163

8

11276

0

224601 15364

4

22784

6

BRAM 266.5 243 120 164 164 232.5 244.5

URAM 0 0 37 73 73 145 290

DSP 474 474 173 477 333 885 1525

NPU Power(W) 4.527 4.478 0.761 1.953 4.835 3.521 6.8

Total Power(W) 10.768 8.176 7.802 9.015 11.971 10.636 13.958

YOLOv4-Tiny FPS 22.22 24.06 6.56 23.04 / 45.81 87.58

http://www.ijerm.com/

An Automated Customizable Framework for Neural Network Acceleration on FPGAs

 44 www.ijerm.com

Performance(GOP/s) 152.52 165.1

5

45.03 158.15 / 314.44 601.15

Energy Efficiency(GOPS/W) 14.164 20.19

9

5.772 17.543 / 29.564 43.068

YOLOX-S FPS 15.09 16.07 3.94 15.14 / 29.07 54.92

Performance(GOP/s) 172.20 183.3

9

44.96 172.78 / 331.78 626.69

Energy Efficiency(GOPS/W) 15.992 22.43

0

5.763 19.166 / 31.194 44.898

Table V

Resource utilization and acceleration performance of multi-core architecture under different numbers of cores and FPGA chips

 7100 VU9P

Core Number 1 2 1 2 3 4

Resource LUT 41201 65475 74914 10198

0

12840

8

15593

1

LUT RAM 6044 9700 9565 13284 16999 20712

FF 70700 12041

5

11276

0

15905

9

20561

2

25168

7

BRAM 243 459.5 164 229 294 359

URAM 0 0 73 146 219 292

DSP 474 827 477 830 1183 1536

NPU Power(W) 4.478 8.338 1.953 3.576 5.317 7.042

Total Power(W) 8.176 12.167 9.015 10.700 12.572 14.360

YOLOv4-Tiny FPS 24.06 55.82 23.04 53.91 78.80 102.75

Performance(GOP/s) 165.1

5

383.15 158.15 370.04 540.88 705.28

Energy Efficiency(GOPS/W) 20.19

9

31.491 17.543 34.583 43.02 49.11

YOLOX-S FPS 16.07 37.12 15.14 35.28 49.81 66.92

Performance(GOP/s) 183.3

9

423.61 172.78 402.62 569.57 763.69

Energy Efficiency(GOPS/W) 22.43

0

34.816 19.166 37.628 45.305 53.182

V. CONCLUSION

In this paper, a high-performance neural network

accelerator generator is presented, which is implemented by

SpinalHDL. This generator can adapt to various FPGA chips,

generating specialized accelerators optimized for energy

efficiency or universal neural network accelerators capable of

supporting multiple neural network algorithms. Additionally,

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-04, April 2024

 45 www.ijerm.com

a comprehensive toolchain is proposed. The compiler extracts

the computation graph and neural network parameters, splits

the neural network model and generates instructions to

control accelerator operations. The simulator is responsible

for functional simulation, design space exploration, resource

and power estimation. The generator, compiler, and simulator

collectively constitute a neural network acceleration

framework. Through hardware-software co-design and agile

design, our proposed neural network accelerator can quickly

and easily deploy different neural networks to various FPGA

chips. Finally, we conducted experiments to implement

YOLOv4-Tiny and YOLOX-S on the 325T, 7100, and VU9P

chips. We performed accelerator validation on both

single-core and multi-core architectures, which demonstrates

the better acceleration performance compared with other

ones.

REFERENCES

[1] Islam M N, Shrestha R, Chowdhury S R, “A New Hardware-Efficient

VLSI-Architecture of GoogLeNet CNN-Model Based Hardware

Accelerator for Edge Computing Applications,'' 2022 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI). IEEE, 2022: 414-417.

[2] Zhang J, Yang T, Li Q, et al, “An FPGA-Based Neural Network

Overlay for ADAS Supporting Multi-Model and Multi-Mode,'' 2021

IEEE International Symposium on Circuits and Systems (ISCAS).

IEEE, 2021: 1-5.

[3] Liu X, Yang J, Zou C, et al. “Collaborative edge computing with

FPGA-based CNN accelerators for energy-efficient and time-aware

face tracking system,'' IEEE Transactions on Computational Social

Systems, 2021, 9(1): 252-266.

[4] Zacchigna F G, ``Methodology for CNN Implementation in

FPGA-based Embedded Systems,'' IEEE Embedded Systems Letters,

2022.

[5] Neris R, Rodríguez A, Guerra R, et al, “FPGA-Based Implementation

of a CNN Architecture for the On-Board Processing of Very

High-Resolution Remote Sensing Images,'' IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 2022, 15:

3740-3750.

[6] Zhang G, Zhao K, Wu B, et al, “A RISC-V based hardware accelerator

designed for Yolo object detection system,'' 2019 IEEE International

Conference of Intelligent Applied Systems on Engineering (ICIASE).

IEEE, 2019: 9-11.

[7] Nguyen D T, Nguyen T N, Kim H, et al, “A high-throughput and

power-efficient FPGA implementation of YOLO CNN for object

detection,'' IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2019, 27(8): 1861-1873.

[8] Chen Y H, Fan C P, Chang R C H, “Prototype of low complexity CNN

hardware accelerator with FPGA-based PYNQ platform for dual-mode

biometrics recognition,'' 2020 International SoC Design Conference

(ISOCC). IEEE, 2020: 189-190.

[9] Jiang C, Ojika D, Patel B, et al, “Optimized fpga-based deep learning

accelerator for sparse cnn using high bandwidth memory,'' 2021 IEEE

29th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE, 2021: 157-164.

[10] Colleman S, Verhelst M, “High-utilization, high-flexibility depth-first

CNN coprocessor for image pixel processing on FPGA,'' IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2021,

29(3): 461-471.

[11] Shaydyuk N K, John E B, “FPGA Implementation of MobileNetV2

CNN Model Using Semi-Streaming Architecture for Low Power

Inference Applications,'' 2020 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing,

Sustainable Computing & Communications, Social Computing &

Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2020:

160-167.

[12] Desavathu P B, Raja A R, Patra S, et al, “Design and Implementation

of CNN-FPGA accelerator based on Open Computing Language,''

2022 First International Conference on Electrical, Electronics,

Information and Communication Technologies (ICEEICT). IEEE,

2022: 1-4.

[13] Papon C, “SpinalHDL: An alternative hardware description language,''

FOSDEM. 2017.

[14] Chen T, Moreau T, Jiang Z, et al, “TVM: An automated End-to-End

optimizing compiler for deep learning,'' 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). 2018:

578-594.

[15] Bachrach J, Vo H, Richards B, et al, “Chisel: constructing hardware in

a scala embedded language,'' DAC Design automation conference

2012. IEEE, 2012: 1212-1221.

[16] Zhang X, Wang J, Zhu C, et al, “DNNBuilder: An automated tool for

building high-performance DNN hardware accelerators for FPGAs,''

2018 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD). IEEE, 2018: 1-8.

[17] Yazdanbakhsh A, Brzozowski M, Khaleghi B, et al, “Flexigan: An

end-to-end solution for fpga acceleration of generative adversarial

networks,'' 2018 IEEE 26th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). IEEE,

2018: 65-72.

[18] Jahanshahi A, Sharifi R, Rezvani M, et al, “Inf4edge: Automatic

resource-aware generation of energy-efficient cnn inference

accelerator for edge embedded fpgas,'' 2021 12th International Green

and Sustainable Computing Conference (IGSC). IEEE, 2021: 1-8.

[19] Howard A G, Zhu M, Chen B, et al, “Mobilenets: Efficient

convolutional neural networks for mobile vision applications,'' arXiv

preprint arXiv:1704.04861, 2017.

[20] Horowitz M, “Computing's energy problem (and what we can do about

it),'' 2014 IEEE International Solid-State Circuits Conference Digest of

Technical Papers (ISSCC). IEEE, 2014: 10-14.

[21] Krishnamoorthi R, “Quantizing deep convolutional networks for

efficient inference: A whitepaper,'' arXiv preprint arXiv:1806.08342,

2018.

[22] Nasser A, Fadel K A, Abbas K O, et al, “An Automated Flow for

Configuration and Generation of CNN based AI accelerators for HW

Emulation & FPGA Prototyping,'' 2021 28th IEEE International

Conference on Electronics, Circuits, and Systems (ICECS). IEEE,

2021: 1-7.

[23] Fu Y, Wu E, Santhaseelan V, et al, “Embedded vision with int8

optimization on Xilinx devices,'' WP490 (v1. 0.1), Apr, 2017, 19: 15.

[24] Wu E, Zhang X, Berman D, et al, “A high-throughput reconfigurable

processing array for neural networks,'' 2017 27th International

Conference on Field Programmable Logic and Applications (FPL).

IEEE, 2017: 1-4.

[25] Pestana D, Miranda P R, Lopes J D, et al, “A full featured configurable

accelerator for object detection with YOLO,'' IEEE Access, 2021, 9:

75864-75877.

[26] Song Q, Zhang J, Sun L, et al, “Design and Implementation of

Convolutional Neural Networks Accelerator Based on Multidie,'' IEEE

Access, 2022, 10: 91497-91508.

http://www.ijerm.com/

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	A. Agile Design
	B. Model Quantization

	III. A Framework for Neural Network Acceleration
	A. Hardware-Software Co-Design
	B. Generator Design
	C. Toolchain Design

	IV. Experimental results
	V. Conclusion
	References

