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Abstract—Neural networks have been widely applied in 

industrial production and daily life. However, the constraints of 

the production environment make it difficult to deploy neural 

networks to the unified devices. In this paper, we present a 

neural network accelerator generator that can generate 

different accelerators based on different parameters. Different 

from the existing mainstream neural network accelerators, we 

utilize the novel SpinalHDL language to design the generator to 

achieve the balance between performance and flexibility. To 

facilitate the deployment of neural networks in the production 

environment, we propose a comprehensive toolchain including a 

TVM-based compiler and a SystemC-based simulator. The 

compiler optimizes the network operators and generates 

configuration instructions. The simulator is employed for 

algorithm modeling and system simulation, which establishes a 

versatile framework for neural network acceleration. We 

demonstrate the effectiveness of our approach by testing it on 

chips such as XCVU9P-2FSGD2104E using neural networks 

such as YOLOv4-Tiny and YOLOX. We perform accelerator 

validation on both single-core and multi-core architectures, 

which demonstrated favorable acceleration performance. 

 
Index Terms—A framework for neural network acceleration, 

Hardware-software co-design, Hardware accelerator generator, 

Field-programmable gate array (FPGA)  

 

I. INTRODUCTION 

  Data, algorithms and computing power are the three keys 

that are behind the advancement of deep learning. In the 

recent years, deep learning has achieved remarkable success 

in various fields. However, the superior performance of deep 

learning faces to  the expense of significant computational 

resources. Nevertheless, the growth rate of computational 

resources in chips is far away from the computational 

demands of algorithms. Although many neural network 

accelerators have been developed[1]-[12], their speed is also 

far behind the requirement of neural network algorithms. As a 

result, many researchers made efforts to construct a 

comprehensive suite of design tools for neural network 

accelerators. To expedite accelerator development, an agile 

development process is employed in accelerator design. 

Currently, FPGA-based neural network accelerators are often 

designed to accelerate specific neural network models and 

necessitate a redesign of the accelerator when a new model 

needs to be accelerated. Additionally, the absence of a 

comprehensive toolchain poses a significant challenge to the 

deployment of neural network accelerators.  

This paper proposes a neural network accelerator generator 
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based on SpinalHDL[13]. SpinalHDL enables the agile 

design of  

 
Figure 1 The overall framework for neural network 

acceleration 

a generic neural network accelerator generator. By selecting 

different configuration parameters during Verilog generation, 

a specialized neural network accelerator can be produced to 

meet different requirements. The advancement of neural 

network algorithms has been remarkably swift, which enables 

the efficient deployment of newly released networks onto 

existing neural network generators. This paper proposes a 

TVM-based[14] compiler and a SystemC-based simulator for 

the deployment of neural network algorithms. The compiler 

optimizes the network operators and generates configuration 

instructions. The simulator is employed for algorithm 

modeling and system simulation. The toolchain facilitates the 

agile implementation of neural network algorithms as it is 

illustrated in Figure 1.  

The major contributions of our work are summarized as the 

following: 

(1) This paper proposes a comprehensive toolchain 

comprising a SpinalHDL-based generator, a TVM-based 

compiler and a SystemC-based simulator. These establishes 

an automated customizable framework for neural network 

acceleration. 

(2) The application of agile development and 
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hardware-software co-design has resulted in a balanced 

performance-flexibility trade-off for the accelerator. 

II. BACKGROUND AND RELATED 

WORK 

A. Agile Design 

The expeditious pace of development in neural network 

algorithms demands the neural network accelerators to 

facilitate swift iteration and development. FPGA is a 

well-suited acceleration platform in this regard. Currently, 

three principal methodologies exist in FPGA development. 

The first one involves employing hardware description 

languages such as Verilog and VHDL. The second one 

involves utilizing high-level synthesis languages, such as 

AMD XILINX's HLS. The third one employs 

domain-specific language tools specifically designed for the 

field, such as SpinalHDL and Chisel[15]. While existing HDL 

languages such as Verilog achieve widespread adoption, 

SpinalHDL outperforms them with advanced error detection 

capabilities and shorter development cycles, making 

SpinalHDL more conducive to agile design. Another 

approach generates the accelerator automatically based on 

pre-written code using template matching[16]-[18]; however, 

compared to SpinalHDL, it exhibits diminished flexibility. 

The adoption of HLS accelerates development cannot 

precisely control area and timing, resulting in suboptimal 

quality of generated RTL code that fails to meet performance 

requirements. 

SpinalHDL is a novel hardware description language based 

on the extension of Scala. Compared to Verilog, it supports a 

broader range of object-oriented programming features and 

more advanced parameterization. Consequently, it offers 

more convenient and efficient capabilities and can adapt to 

the rapid iteration of neural networks. Currently, SpinalHDL 

supports simulation with various tools for simulation such as 

Verilator, VCS, and Vivado's XSIM. In summary, 

SpinalHDL has strong engineering development capabilities, 

making it highly suitable for agile design of neural network 

accelerators. 

B. Model Quantization 

Quantization involves converting the original 

floating-point model into alternative data formats for storage. 

There are currently two types of methods for compressing 

deep learning models. The first one involves constructing a 

lightweight network model, such as MobileNet[19]. The 

second one involves compressing the model through 

operations such as quantization and pruning. Quantizing 

models can reduce the data bit-width, thereby reducing 

computational complexity. For instance, quantizing 32-bit 

floating-point data to 8-bit integers can significantly reduce 

energy consumption according to Horowitz[20]. However, 

reducing the data bit-width too much results in accuracy 

issues with the model. Google's 2018 white paper on 

quantization showed that 8-bit quantization brings almost no 

loss in accuracy[21]. Therefore, we adopt 8-bit quantization 

in this paper.  

III. A FRAMEWORK FOR NEURAL 

NETWORK ACCELERATION 

A. Hardware-Software Co-Design 

The overall framework for neural network acceleration 

proposed in this paper is illustrated in Figure 1. This 

framework includes five fundamental components: algorithm 

training, simulator design, compiler design, generator design 

and on-board deployment. In the first step, a neural network is 

trained, and the trained weight data is obtained. In the next 

step, the design space is explored using the simulator to 

identify the optimal configurations. The third step involves 

generating the neural network accelerator using the generator. 

In the fourth step, the compiler extracts the computation graph 

of the neural network and generates instructions. Finally, the 

design is deployed to an FPGA board. It should be noted that 

the exploration of the design space, generation of the 

accelerator and extraction of the computation graph by the 

compiler are not sequential processes. These three 

components require data interaction, such as the compiler 

providing the computation graph to the simulator. If the 

simulator identifies that the neural network needs to be 

segmented, the compiler must re-segment the neural network 

and construct a new computation graph. The new computation 

graph is then provided to the simulator for a new round of 

simulation.  

Numerous studies have been conducted on the 

hardware-software co-design in the neural network 

acceleration field. For instance, Ahmed Nasser et al[22]. 

proposed a convolutional neural network accelerator 

framework that generates neural network operators via Perl 

scripts and creates the corresponding accelerator by varying 

neural network parameters. Nonetheless, this approach 

suffers from limited flexibility. In contrast, the framework 

proposed in this paper provides higher flexibility. The 

framework can be divided into two parts: software and 

hardware. The software portion consists of three components: 

a compiler, simulator, and trainer. The hardware portion is a 

generator. In the proposed neural network acceleration 

framework, a single language was not chosen for development. 

Instead, Python and SystemC are utilized for the software 

portion, while SpinalHDL and Verilog are employed for 

hardware description. Information exchange between the 

software and hardware portions was implemented in the 

JSON format. This approach was selected to maximize the 

performance advantages provided by each individual 

component. 

When conducting hardware-software co-design, one of the 

primary concerns is ensuring coordination between different 

modules. When it comes to information exchange between the 

compiler and simulator, the neural network model is the 

primary piece of data that needs to be transmitted. This can be 

achieved through the use of a trained PTH file, with only the 

quantized model needing to be transferred to the compiler. To 

explore the design space, the compiler and simulator need to 

be coordinated. The simulator requires information such as 

the neural network's parameters, weights, and initial FPGA 

design architecture. The compiler also needs the same 

information. The compiler obtains the weights of the current 

neural network from the trainer and then optimizes them 
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before passing them to the simulator. Once the design space 

exploration is complete, the FPGA design architecture is 

determined. After completing the design space exploration, 

the FPGA design architecture is determined. Once all 

parameters are finalized, the hardware accelerator can be 

generated. The generator, simulator, and compiler exchange 

data in JSON format. The generator generates corresponding 

RTL code and TCL files for synthesis, layout, and other 

operations in Vivado. After generating the bitstream, the 

Table Ⅰ 
Configurable parameters of the generator 

Param Type Parameters Values    Default Value 

General parameters data bit width 4 8 16 32 4 

image type RGB Gray   Gray 

convolution type 320 416 640  640 

operator type 1x1(8x) 1x1(4x) 1x1(2x) 1x1 1x1(8x) 

operator selection Focus enable    no 

activation function type Leaky Relu Relu   Leaky Relu 

on-chip cache size(MiB) 1 2 4  1 

 off-chip storage size(GiB) 1 2 4  4 

Performance 

parameters 

computational parallelism 4x4 8x8 8x16 16x1

6 

8x8 

maximum parallelism 16x16 32x32   16x16 

number of computing cores 1 2 3 4 1 

burst transfer size(B) 16 32 64  32 

dedicated IP enable yes no   yes 

Optimization 

parameters 

DSP frequency multiplication 1x 2x   1x 

DSP multiplexing 1x 2x   2x 

URAM enable yes no   yes 

delay of multipliers 3 4 5 6 3 

delay of adders 1 2 3  1 

delay of cache units 1 2 3 4 2 

timing optimization enable yes no   yes 

 

weight and instruction files generated by the compiler need to 

be read on the host computer. 

B. Generator Design 

The neural network generator proposed in this paper 

incorporates a series of configuration statements, which 

facilitate the creation of different accelerator configurations 

as it is shown in Table Ⅰ. This approach minimizes resource  

 

 
Fig. 2. Generator design 

 

consumption as the generator avoids producing redundant 

operators that do not require acceleration. The choice of 

FPGAs as the hardware platform was motivated by their 
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reconfigurable nature. Apart from accelerating various 

operators based on the neural network model, the proposed 

accelerator can generate distinct neural network accelerator 

architectures automatically that depends on the available 

FPGA chip resources. In addition, Table Ⅱ  provides a 

comprehensive description of how the instruction register set 

controls the computational process, facilitates the transfer of 

network parameters, and enables the transmission of data. 

Figure 2 illustrates the hardware acceleration diagram of 

the convolutional neural network accelerator proposed in this 

paper. It comprises three modules: the Conv module, 

responsible for convolution computation; the Instruction 

module, which controls functionality; the Shape module, 

which modifies the feature map dimensions. Both the Conv 

module and the Shape module can receive data from external 

storage modules and exchange data with each other, reducing 

the need for external memory access, improving 

computational speed, and minimizing power consumption. 

Table Ⅱ  

Instruction Register Set 

Instruction Type Register Address  Field Description 

Control 

Computation 

Conv StateReg [31:0] State of the convolution 

ControlReg [31:0] Control of the convolution 

Shape StateReg [31:0] State of the shape 

ControlReg [31:0] Control of the shape 

Network 

Parameters 

Conv ImageSizeReg [31:22] Number of input channels 

[21:11] Number of input columns 

[10:0] Number of input rows 

ParamReg [31] Stride enable 

[30:23] Z3 

[22:20] Number of Z1 

[19:12] Z1 

[11] Activation enable 

[10] Padding enable 

[9:0] Number of output channels 

ConvTypeReg [31:16] First layer 

[15:0] Convolution type 

ParamCountReg [31:16] Number of quantified params 

[15:0] Number of weight params 

AmendmentReg [31:0] Amendment 

Shape DataSizeReg [31:22] Number of input channel 1 

[21:11] Number of input columns 

[10:0] Number of input rows 

C2Reg [31:0] Number of input channel 2 

S1Reg [31:0] Scale 1 

S2Reg [31:0] Scale 2 

Z1Reg [31:0] Zero 1 

Z2Reg [31:0] Zero 2 

Data Transfer Conv WAddrReg [31:0] DMA write address 
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WLenReg [31:0] DMA write length 

RAddrReg [31:0] DMA read address 

RLenReg [31:0] DMA read length 

Shape WAddrReg [31:0] DMA write address 

WLenReg [31:0] DMA write length 

RAddrReg [31:0] DMA read address 

RLenReg [31:0] DMA read length 

 

In the field of neural networks, convolutional layers constitute 

the majority of the computational workload. Thus, optimizing 

the performance of these layers is critical. Conversely, 

operations that alter the feature map dimensions, such as 

pooling, upsampling, concatenation, addition and splitting 

occur infrequently. To efficiently manage these operations, 

they are grouped together into a module named Shape. The 

Instruction module is responsible for selecting and switching 

between different computation modes within the Conv 

module and Shape module. 

The convolution acceleration module can be partitioned 

into several sub-modules, including the cache module for 

weight and feature maps, the convolution computation 

module and the quantization module, as it is illustrated in 

Figure 2. In particular, the convolution computation module 

employs the reuse and clock frequency doubling of DSP units 

to improve the accelerator's performance. 

AMD XILINX's FPGA chips provide a range of DSP units 

such as DSP48 and DSP58. DSP48E1 and DSP48E2 can 

perform multiplications of 25 × 18 and 27 × 18 bits, 

respectively, while the DSP58 can perform multiplications of 

27×24 bits. Since 8-bit quantization technology is employed 

in this paper, using a DSP unit solely with an 8-bit 

multiplication would result in a significant waste of DSP 

resources. Therefore, we employ DSP multiplexing 

technology[23]. Taking DSP48E1 as an example. DSP48E1 

offers a calculation mode of (A+D) × B, which enables the 

conversion of A×B and D× B to (A+D) × B. Consequently, 

two 8-bit multiplications can be computed directly through 

this single DSP unit. Using DSP multiplexing technology can 

reduce DSP usage by half with the same level of parallelism 

configuration, which means that the computing power can be 

doubled within the same FPGA chip. 

The DSP computation unit undertakes the execution of 

multiplication and accumulation operations within 

convolution processes, occupying a crucial position along the 

critical path of convolution calculations. When employing an 

FPGA as a carrier for neural network acceleration, the 

operating frequency is typically set to 200MHz or lower, 

which limits the DSP frequency to only 15 % to 30 % of the 

maximum frequency, thereby wasting DSP resources[24]. 

This is because leakage power is independent of clock 

frequency. As a result, the power consumption of the DSP is 

mostly wasted. Therefore, the computing power can be 

further enhanced by setting the DSP frequency to twice the 

clock frequency. 

The Shape module includes functional modules such as 

MaxPooling, UpSampling and Concat. These modules reuse 

the same set of external data, which is distributed to the 

corresponding working modules via the Switch module after 

entering the Shape module. Once the computation is 

completed, the Switch module collects the results and sends 

them to the external storage unit. The functional modules can 

be pruned based on the requirements of the neural network 

algorithm, thereby they enable the resulting neural network 

accelerator to achieve resource minimization. 

To increase the computational performance in such  

 

architectures, parallelism of the convolutional unit is often  

augmented. However, this brute-force parallelism 

augmentation is commonly limited by bandwidth, causing  

suboptimal acceleration results. Therefore, this paper 

proposes a multi-core architecture design. The design 

methodology of integrating multiple processing units on a 

single processor has been widely employed in CPU design 

and has been implemented in the proposed neural network 

accelerator. 

This paper presents an analysis of the data flow in a 

multi-core architecture accelerator, using SqueezeNet as a 

case study. SqueezeNet mainly consists of Fire layers as it is 

illustrated in Figure 3(a). In the Fire layer, two convolutional 

layers share the same input. In a typical neural network 

accelerator, one convolutional layer is computed firstly, 

which is followed by the other and leads to redundant reads by 

the same input data from external storage and resulting in time 

and power wastage. To address this issue, our proposed 

multi-core architecture connects both input channels of 

Conv2 and Conv3 to the output channel of Conv1, as shown 

in Figure 3(a). This optimization allows the simultaneous 

calculation of both convolutional layers, resulting in a 

significant improvement in computational efficiency. The 

multi-core acceleration architecture diagrams of YOLOv4 

and YOLOX are shown in Figure 3(b) and Figure 3(c), 

respectively. 
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Fig. 3. Multi-core acceleration architecture 

 

C. Toolchain Design 

A well-designed toolchain can facilitate the transformation 

of a neural network accelerator from a mere functional unit to 

an efficient computing system. In this paper, we present a 

compiler and simulator designed for the deployment of neural 

network models. The compiler is an essential component of 

neural network acceleration. The compiler implemented in 

this paper focuses on quantization, optimization, and mapping 

of the model. 

TVM is an end-to-end compilation and optimization stack 

that enables the deployment of neural network models 

generated by PyTorch, TensorFlow, and other frameworks 

onto various hardware platforms. In this paper, we extend the 

compiler based on TVM. The extended compiler efficiently 

map the neural network model onto the hardware architecture. 

In order to better support custom hardware, it is sometimes 

necessary to define custom operations. Therefore, TVM 

supports the use of custom passes to achieve this goal. 

Depending on the amount of FPGA resources available, a 

convolution operator can be split into multiple convolutions 

and concatenation operations, enabling large neural networks 

to be deployed on smaller FPGAs. The acceleration 

capabilities of the accelerator platform can be fully utilized. 

As it is shown in Figure 4, a convolution operator is split into 

four convolutions and three concatenation operations. This 

paper presents a compiler that extracts parameters, optimizes 

computation graphs and schedules instructions for 

deployment. By utilizing this compiler, neural networks can 

be automatically deployed while concealing 

hardware-specific parameters from software engineers, 

streamlining the process of neural network deployment. 

 

 
Fig. 4. A customized pass 

 

The conventional approach to chip development often 

separates software and hardware development, leading to 

limited collaboration between software and hardware 

engineers. To solve this problem, SystemC was developed as 

a C++ library that enables software developers to rapidly 

construct hardware designs. SystemC extends C++ by 

providing functions and classes for hardware modeling with a 

simulation kernel that allows modeling from the Register 

Transfer Level to the system level. By utilizing SystemC, 

engineers can perform system-level modeling, conduct swift 

simulations and verifications, explore and evaluate various 

design architectures during the early development stages, and 

compare functional simulations with RTL descriptions during 

the later stages of development. Thus, SystemC promotes 

collaborative design between software and hardware 

engineers. In this paper, we utilize the SystemC simulator to 

explore the design space that encompasses power analysis and 

resource utilization across different architectures. Early 

adoption of SystemC for simulation modeling can alleviate 

the pressure of using RTL design for accelerator 

implementation in the later stages. Moreover, it is essential to 

maintain consistency between the simulation model and the 

RTL implementation. It enables exploration of new design 

iterations on the simulation model and delaying RTL design 

until the design has matured, which results in accelerated 

development speed and reduced costs. 

 

IV. EXPERIMENTAL RESULTS 

To demonstrate the superior performance and ease of 
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deployment of the proposed accelerator generator on different 

FPGA platforms, we conducted a series of experiments on a 

range of FPGA platforms, including AMD XILINX's 

XCVU9P-2FSGD2104E, XC7K325T-FFG900I, and 

XC7Z100-2FFG900I. YOLOv4-Tiny and YOLOX-S were 

selected for evaluation using the VOC2007 dataset, which 

were trained and quantized by using the PyTorch 1.7. 

Table Ⅲ  presents a comparison of the acceleration 

performance of our work with existing works. Considering 

multiple aspects such as speed, accuracy, and power 

consumption. Our work exhibits an attractive performance. 

Despite the lower power consumption of Jetson Nano 

compared to our design, our achieved frames per second (FPS) 

significantly surpass it. Consequently, when evaluating the 

ratio of FPS to power consumption, our design still 

demonstrates superior performance. Table Ⅳ and V present 

comprehensive data on resource utilization, power 

consumption, and other relevant metrics for both single-core 

and multi-core architectures, respectively. These tables 

demonstrate the experimental results of the proposed neural 

network accelerator generator in this paper under single-core, 

multi-core architectures, and different clock frequencies, 

which comprehensively show the superior performances 

compared with other ones. 

 

Table Ⅲ  

Performance comparison of YOLOv4-Tiny acceleration on various platforms 

 R7-5800

H 

RTX 3070 Jetson Nano XCKU040[25

] 

VU9P[26

] 

VU9P(Our

) 

Platform CPU GPU GPU FPGA FPGA FPGA 

Clock Frequency(GHz) 3.2 1.5 0.922 0.143 0.2 0.2 

Data Type FP32 FP32 FP32 FP16 INT8 INT8 

FPS 19.53 131.98 14.26 31.20 49.38 102.75 

mAP 78.60% 78.60% 78.60% / 81.54% 76.40% 

Power(W) 45 220 10 / 12.689 14.360 

 

 

Table Ⅳ 

Resource Utilization and Acceleration Performance of Single-Core Architecture under different parallelism, FPGA chips, and clock 

frequencies 

  325T 7100 VU9P VU9P(dsp2x

) 

VU9P(Our) 

Compute Channel In 8 8 4 8 8 16 16 

Compute Channel Out 8 8 4 8 8 8 16 

Resource LUT 66920 41201 5841

9 

74914 102071 94511 13309

5 

LUT RAM 10107 6055 6867 9565 9709 13095 19173 

FF 10120

6 

70700 8163

8 

11276

0 

224601 15364

4 

22784

6 

BRAM 266.5 243 120 164 164 232.5 244.5 

URAM 0 0 37 73 73 145 290 

DSP 474 474 173 477 333 885 1525 

NPU Power(W) 4.527 4.478 0.761 1.953 4.835 3.521 6.8 

Total Power(W) 10.768 8.176 7.802 9.015 11.971 10.636 13.958 

YOLOv4-Tiny FPS 22.22 24.06 6.56 23.04 / 45.81 87.58 
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Performance(GOP/s) 152.52 165.1

5 

45.03 158.15 / 314.44 601.15 

Energy Efficiency(GOPS/W) 14.164 20.19

9 

5.772 17.543 / 29.564 43.068 

YOLOX-S FPS 15.09 16.07 3.94 15.14 / 29.07 54.92 

Performance(GOP/s) 172.20 183.3

9 

44.96 172.78 / 331.78 626.69 

Energy Efficiency(GOPS/W) 15.992 22.43

0 

5.763 19.166 / 31.194 44.898 

 

 

Table V 

Resource utilization and acceleration performance of multi-core architecture under different numbers of cores and FPGA chips 

  7100 VU9P 

Core Number 1 2 1 2 3 4 

Resource LUT 41201 65475 74914 10198

0 

12840

8 

15593

1 

LUT RAM 6044 9700 9565 13284 16999 20712 

FF 70700 12041

5 

11276

0 

15905

9 

20561

2 

25168

7 

BRAM 243 459.5 164 229 294 359 

URAM 0 0 73 146 219 292 

DSP 474 827 477 830 1183 1536 

NPU Power(W) 4.478 8.338 1.953 3.576 5.317 7.042 

Total Power(W) 8.176 12.167 9.015 10.700 12.572 14.360 

YOLOv4-Tiny FPS 24.06 55.82 23.04 53.91 78.80 102.75 

Performance(GOP/s) 165.1

5 

383.15 158.15 370.04 540.88 705.28 

Energy Efficiency(GOPS/W) 20.19

9 

31.491 17.543 34.583 43.02 49.11 

YOLOX-S FPS 16.07 37.12 15.14 35.28 49.81 66.92 

Performance(GOP/s) 183.3

9 

423.61 172.78 402.62 569.57 763.69 

Energy Efficiency(GOPS/W) 22.43

0 

34.816 19.166 37.628 45.305 53.182 

V. CONCLUSION 

In this paper, a high-performance neural network 

accelerator generator is presented, which is implemented by 

SpinalHDL. This generator can adapt to various FPGA chips, 

generating specialized accelerators optimized for energy 

efficiency or universal neural network accelerators capable of 

supporting multiple neural network algorithms. Additionally, 
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a comprehensive toolchain is proposed. The compiler extracts 

the computation graph and neural network parameters, splits 

the neural network model and generates instructions to 

control accelerator operations. The simulator is responsible 

for functional simulation, design space exploration, resource 

and power estimation. The generator, compiler, and simulator 

collectively constitute a neural network acceleration 

framework. Through hardware-software co-design and agile 

design, our proposed neural network accelerator can quickly 

and easily deploy different neural networks to various FPGA 

chips. Finally, we conducted experiments to implement 

YOLOv4-Tiny and YOLOX-S on the 325T, 7100, and VU9P 

chips. We performed accelerator validation on both 

single-core and multi-core architectures, which demonstrates 

the better acceleration performance compared with other 

ones. 
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