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 
Abstract— In decomposition-based MOEAs, the 

inconsistency of the distribution of reference vectors with the 

shape of the PF is a long-standing problem. To address this 

challenge, strategies to adjust the reference vectors during the 

evolutionary process have been proposed. However, most of the 

methods either adjust the reference vectors fixedly in each 

generation or at a fixed frequency, ignoring the dynamic 

information during population evolution. To solve the above 

problem, this work proposes a strategy to judge the timing of 

reference vector adjustment based on the change of population 

convergence. By calculating the improvement rate of 

subproblem convergence, it can reflect the current convergence 

state of the population. The algorithm performs reference 

vector adjustment only when the subproblems are considered to 

be converged in general. To make the reference vectors better 

adapt to different shapes of the Pareto fronts, this work draws 

on the concept of vector angle and proposes a method to adjust 

the reference vector based on the maximum vector angle. 

Specifically, by maintaining an archive with well-distributed 

nondominated solutions, the individual among them that 

possesses the largest vector angle with the current population is 

selected for the adjustment of the reference vector. 

Experiments on WFG test problems show that the proposed 

algorithm is competitive compared to the state-of-the-art 

algorithms for solving problems with different Pareto fronts. 

 
Index Terms—convergence state, decomposition-based 

MOEAs, irregular Pareto fronts, reference vectors adjustment. 

I. INTRODUCTION 

With the development of science and the renewal of 
industrial technology, multi-objective optimization problems 
(MOPs) have become more and more the focus of attention, 
and are widely used in the fields of scientific research and 
engineering. When problems have more than four objectives, 
they are called many-objective optimization problems 
(MaOPs). A MOP or MaOP can be formulated as follows: 
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where  1 ,  ,
T

n
x x x   is an n-dimensional decision 

vector in the feasible region Ω of the decision space. fi(x) 
represents the i-th objective function in objective space, m is 
the number of objectives in the optimization problem. 

In the MaOPs presented above, multiple objectives often 
conflict with each other. Optimizing one objective may 
result in deterioration of other objectives. Therefore, there 
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does not exist a solution that can achieve optimal results on 
all objectives. For the study of MaOPs, it is significance to 
explore effective methods to coordinate these conflicting 
objectives 0and help decision makers obtain the optimal 
compromise. 

With the increasing research on optimization problems, 
many-objective optimization problems (MaOEAs) have been 
proposed to solve MaOPs. These algorithms are broadly 
categorized into three types: (1) Pareto-dominance-based; (2) 
Indicator-based; (3) Decomposition-based. Based on the 
Pareto-dominance principle, MOaEAs typically categorize 
solutions into distinct non-dominated floors, addressing 
MaOPs by preserving a set of non-dominated solutions. 
Nevertheless, when confronted with a substantial number of 
objectives, the traditional Pareto dominance relationship 
becomes insufficient for selecting non-dominated solutions. 
Consequently, researchers have introduced various enhanced 
dominance relationships, including grid dominance [1] and 
L-dominance [2], to overcome this limitation. Indicator-
based MaOEAs often devise specific indicators to 
comprehensively assess performance of individuals 
accordingly. Such as the epsilon indicator-based approach [3] 
and the hypervolume indicator-based method [4] prioritize 
both convergence and diversity. Nevertheless, as the number 
of objectives increases, the computational overhead of 
calculating these performance indicators also escalates. 
Decomposition-based MaOEAs dividing the MaOPs into 
numerous subproblems through the weights [5], reference 
points [6], or reference vectors [7]. These algorithms solve 
these subproblems cooperatively, offering a more efficient 
means of tackling MaOPs. 

Decomposition-based MaOEAs have achieved excellent 
performance in solving MaOPs by dividing a MaOP into 
several subproblems using a set of predefined uniformly 
distributed reference vectors. In decomposition-based 
algorithms, if the reference vectors are uniformly distributed, 
then the optimal solutions will also have good diversity. 
Based on this assumption, many researchers have proposed a 
variety of algorithms aiming to ensure the divisibility of the 
reference vectors on the real Pareto fronts (PFs). With the 
increasing research on such algorithms, it is recognized that 
this assumption presupposes that the PF shapes are simplex-
like. However, when the shape of the real PF is irregular, 
such as discontinuous or degenerate, uniformly distributed 
reference vectors in the objective space are not guaranteed 
to be uniformly distributed on the real PF as well. 

In order to solve the problem of the distributivity of the 
reference vectors, a straight approach is to adjust the 
reference vectors during the evolutionary process. There are 
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several important issues that need to be addressed in 
reference vector adjustment-based algorithms. Although 
some of these issues have been addressed to some extent. 
However, there is still room for further research in such 
algorithms, in terms of when to trigger the adjustment 
operation and how to adjust the reference vectors to ensure 
their effectiveness in the face of MaOPs. However, most of 
the existing reference vector adjustment mechanisms only 
focus on the process of reference vector adjustment, in 
which the correlation between the frequency of adjustment 
and the evolutionary state of the population has received 
little attention. As long as a preset frequency is reached, the 
reference vector is adjusted, even though the individuals of 
the population still have a large convergence space. 
Adjusting the reference vectors in this case may destroy the 
diversity of the population, leading to longer convergence 
time and poorer convergence of the algorithm. In addition, 
the number of valid reference vectors becomes small in a 
high-dimensional objective space. Therefore, the reference 
vector adjustment method independent of the number of 
objectives has better performance in the solution of MaOPs. 

To address the issues mentioned above, a new algorithm 
to improve the RVEA called CDBEA is proposed in this 
work. The algorithm designs a reference vector adjustment 
timing strategy based on convergence metrics in order to 
periodically and conditionally trigger the reference vector 
adjustment. In addition, the reference vector adjustment 
process selects a vector angle adjustment-based method to 
replace invalid reference vectors in MaOPs. The main 
contributions of CDBEA can be summarized as follows: 

1. The reference vectors are adjusted only when the 
subproblems are generally considered to be convergent. The 
current convergence of the population by calculating the 
improvement rate of the subproblem convergence.  

2. Based on the vector angle between the individuals in a 
well-maintained archive and the reference vectors, this paper 
proposes a method to adjust the reference vector based on 
the maximum vector angle. The individual in the archive that 
has the largest vector angle with the current population is 
chosen as the reference vector to fit the shape of the PF. 

II. BACKGROUND 

A. Related work 

Since most of the real-world optimization problems have 
irregular PFs, the adjustment of the reference vectors is 
necessary in order to make the reference vectors uniformly 
distributed over the real PFs. In MOEA/D-AM2M [9], k 
representative individuals are randomly selected to divide 
the objective space into k subregions. In each subregion, a 
vector is randomly selected and a new weight vector is 
generated using the individual with the largest angle to the 
selected vector. In the enhanced decomposition-based 
evolutionary algorithm g-DEBA [10], invalid reference 
vectors that are not associated with any solution are removed 
at each iteration. When adding new reference vectors, the 
closest reference vector to the deleted reference vector is 
first found. Next, the individual in the population that has 
the largest vertical distance from that vector is found. Finally, 
generate a new reference vector based on this solution. In 

MOEA/D with adaptive weight adjustment (MOEA/D-AWA) 
[11], the weight vectors of the congested regions are 
periodically deleted and new weight vectors are added based 
on the sparsest solution in the external archive. In the 
MOEA/D algorithm with uniform stochastic adaptive 
weights (MOEA/D-URAW) [12], MOEA/D-AWA is 
enhanced by using a uniform strategy to generate the initial 
weight vectors. In the Adaptive Evolutionary Algorithm for 
Reference Points Based on IGD-NS Metrics (AR-MOEA) 
[13], the reference vectors are updated based on the IGD-NS 
metrics using the individuals in the archive. Lin et al [14] set 
up the reference vectors based on the nondominated 
individuals in the external archive that have the maximum 
multiplicative distance from the kth nearest neighbor. In the 
Decomposition-based multi-objective Evolutionary 
Algorithm guided by Growing Neural Gas (DEA-GNG) [15], 
the structure of the PF is learned by a growing neural gas 
network. The learned topological neighbors are used to 
modify the scalarizing functions and the reference vectors. 
New Two-Stage Based Evolutionary Algorithm (MaOEA-IT) 
[16] improves the performance of the MOEA/D algorithm 
by introducing the concept of iteration and weight 
adjustment. It adjusts the weight vectors iteratively during 
the optimization process, which enhances the search 
capability and convergence speed of the algorithm. 

B. RVEA 

The reference vector-guided evolutionary algorithm 
RVEA can be seen as a decomposition-based algorithm, 
which aims to balance convergence and diversity of 
solutions. In RVEA, reference vectors are used to divide the 
objective space into several subspaces, each reference vector 
represents a subproblem, and each subproblem evolves 
independently under the guidance of the reference vectors. 
The process of reference vector-guided solution evolution in 
RVEA consists of the following four main steps:(1) 
objective value conversion; (2) population division; (3) 
calculation of angular penalization distance (APD) values; 
and (4) selection of elite solutions. The ADP function plays 
an important role in the process of environment selection 
and is used to evaluate the overall performance of the 
candidate solutions, i.e., the convergence and diversity of the 
solutions. The APD is calculated as shown in the following 
equation: 
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where M is the number of objectives, N is the population 
size, t is the current iteration number, and tmax is a predefined 
maximum number of iterations. α is a user-defined 

parameter to control the rate of change of  , ,t i j
P  , and a 

larger value of α indicates a greater focus on convergence. In 
the evolutionary process, when the initial iteration t = 0, 

 , ,t i j
P  = 0, which means that solutions with better 

convergence will be prioritized. As the number of iterations t 
increases, the algorithm then emphasizes more and more on 
the diversity of solutions. 

III. PROPOSED ALGORITHM 

In this section, details of the CDBEA will be given. The 
overall framework of CDBEA is first presented.  

A. Overall Framework  

The main loop of CDBEA is presented in Algorithm 1. 
The new component of CDBEA are Archive Update and the 
Reference Vectors Adjustment. 

Algorithm 1: Main Processes of CDBEA 
Input: Population size N; number of objectives M; maximum 
number of iterations tmax; external archive size NA. 
Output: The final population P; 

1 
Initialize the population P and a set of uniformly 
distributed reference vectors V = {v1, v2, . . ., vN}; 

2 
Adding non-dominated solutions from population P to 
archive A; 

3 
Calculate the value of the convergence indicator CM for 
the subproblem; (Algorithm 2) 

4 While t< tmax Do 
5 Q= Offspring-Creation (P); 
6 A = ArchiveUpdate (A, Q, NA); 

7  S Q P   

8 P= Environmental Selection (S, V); 
9 If condition 1 is satisfied 

10 
Compute IR to reflect the relative improvement in 

convergence for each subproblem; 
11 If condition 2 is satisfied 

12 
Adaptive adjustment of reference vectors; 

(Algorithm 3) 
13 End If 
14 End If 
15 End While 

Algorithm 1 shows the framework of CDBEA. First, the 
population P and the set of reference vectors V are 
initialized (line 1). Next, find the non-dominated solutions in 
the population P and place them in the archive A (line 2). 
The degree of convergence of the subproblem is evaluated 
by calculating the convergence indicator CM by Algorithm 3 
(line 3). Lines 4-15 are the main loop of CDBEA. If the 
current number of iterations does not reach the preset 
maximum number of iterations, the child generation Q is 
generated based on the population P (line 5); the individuals 
in the archive A are updated by the Archive Update method 
(line 6). The next generation of populations is selected in the 
joint population S by the APD method, this is the same 

environment selection as in RVEA. Finally, we determine 
whether to perform reference vector adjustment by condition 
1 and condition 2 and execute the adjustment method of 
reference vector. 

B. Archive Update  

In CDBEA, an archive with a set limit is employed during 
evolution to hold non-dominated solutions. When the 
archive reaches its capacity, overcrowded individuals are 
selectively eliminated to preserve a balanced distribution. 

For this study, we utilize the population maintenance 
technique proposed in [17] as a means to guarantee archive 
diversity. The niche concept serves as a powerful tool for 
evaluating the crowding of individuals in a population. Here, 
we assess the crowding level of archive individuals based on 
the number and position of individuals in the niche. Then, 
we systematically remove the most crowded individuals until 
the archive reaches its predetermined capacity. Specifically, 
the crowding degree of individual p in archive A is defined 
as follows: 

 ( ) 1 ( , )

,

D p R p q

q A q p

 
 
  (5) 

and 

 
( , ) / ,  if ( , )

( , )
1,  otherwise 

d p q r d p q r
R p q


 

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where  ,d p q denotes the Euclidean distance between 

solutions p and q in the archive A; The niche radius r is set 
to the median distance between all solutions and their k-th 
nearest neighbor, where k corresponds to the number of 
objectives. In addition, since the different number of 
objectives in the problem affects the evaluation of individual 
crowding, all objectives will be normalized using the max-
min method. 

Notably, the individual crowding degree D(p) ranges from 
[0,1], where a lower D(p) signifies less crowding. When D(p) 
is zero, it implies that there are no other individuals in the 
niche of p. Duplicate individuals exhibit the largest D(p).  

C. Reference Vector Adjustment  

1. Adjustment time 
In the process of reference vector adjustment, the 

frequency of adjustment is an important issue. Adjusting the 
reference vectors with higher frequency may destroy the 
convergence of the solution. On the contrary, lower 
frequency adjustments will waste some computational effort 
on unnecessary subproblems whose reference vectors do not 
intersect with the true PF. If there is still room for improving 
convergence in the subproblem, then no adjustment of the 
reference vectors is needed. Ideally, the reference vector 
should be adjusted when the population as a whole 
converges. To solve the above problem, this paper sets two 
conditions, condition 1 and condition 2, and uses the 
improvement rate (IR) to control the reference vector 
adjustment. As shown in Algorithm 1, if condition 1 is 
satisfied, IR is calculated, and if condition 2 is also satisfied, 
then the reference vector is adjusted. 

At the beginning of evolution, the population is in the 
process of exploration and it is not appropriate to perform 
operational adjustment. At the end of evolution, if the 
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reference vectors still be adjusted, then the subproblem will 
not have enough time to converge. Thus, condition 1 can be 
expressed as follows: the current iteration t is in the range of 
20% to 90% of tmax. If condition 1 is true, IR is computed to 
reflect the relative improvement in convergence for each 
subproblem. 

 old 

old 

CM CM
IR

CM


  (7) 

where CM is the value of the convergence metric for the 
current iteration, and CMold is the value of the convergence 
metric for the previous computation. As shown in Algorithm 
2, First, the population P is normalized, and then the angular 
distance between each reference vector in V and the solution 
in the normalized P is computed. The formula for angular 
distance is as follows. 
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where ( )
i j

F' x v is the inner product between ( )
i

F' x and 

j
v . 2| ( ) |

i
'F x and |vj|2 represent the L2-norm ( )

i
F' x  of and 

j
v . Then, find the solution with smallest angular distance to 

each reference vector and compute the d1 distance of that 
solution on its associated reference vector. 

Algorithm2: Calculating Convergence Indicator Values 

Input： population P, the set of reference vectors V 

Output: Convergence indicator value CM 
1. Normalized population P; 

2. 
Calculate the angular distance between the set of 
reference vectors V and the population P 
according to Eq. (8); 

3. 
Associate the reference vector vi with its nearest 
solution xi; 

4. 
CM = calculate the distance d1 between the 
projection of xi on vi and the ideal point 

In this paper, each reference vector is associated with its 
nearest solution, instead of associating each solution with its 
nearest reference vector. If a reference vector has more than 
one associated solution, the solution with the smallest d1 
distance is chosen as the final associated solution for that 
reference vector. Thus, in Fig.1(a), the reference vectors V1, 
V2, V3, and V5, V6, V8 all have solutions associated with them, 
which can be used to measure the degree of convergence of 
their subproblems. In contrast, the degree of convergence of 
subproblems V4 and V7 cannot be represented because there 
are no solutions associated with them. Although V4 and V7 
are currently invalid reference vectors, there should be 
solutions capable of estimating the degree of convergence of 
their corresponding subproblems before adjusting them. 
With this in mind, as shown in Figure 4(b), this paper 
chooses to associate each reference vector with its closest 
solution. This ensures that each reference vector has an 
associated solution and that the degree of convergence of its 

subproblem can be computed. 

 

Figure 1 (a) 

 

Figure 1 (b) 

Figure 1: The way the reference vector is associated with the 
solution 

After calculating IR using Eq. (7), it is converted as follows. 

 

1,

1

0

IR

IR IR

otherwise

  
 



α

， α

，

 (9) 

where α is a parameter that determines whether the 

subproblem has converged or not. IR <-α indicates that the 

subproblem still has room to converge. Otherwise, it 
indicates that the corresponding subproblem is in the process 
of diversity preservation, and there is not much room for 
convergent improvement under the current reference vector. 
Accordingly, the reference vector is adjusted if condition 2 
is satisfied. This question defines condition 2 as: when the 
sum of IR of all subproblems is greater than or equal to zero, 
the evolution of all subproblems has converged on the whole. 

2. Adding and removing reference vectors 
If both condition 1 and condition 2 are satisfied, the 

reference vectors are adjusted using Algorithm3. During 
evolution, some reference vectors may have no solution 
associated with them, and these are inactive reference 
vectors. The main idea of reference vector adjustment in 
CDBEA is to delete invalid reference vectors, and then to 
generate new reference vectors based on the solution in the 
archive that has the largest vector angle to the current set of 
reference vectors V. 

Deletion of invalid reference vectors: the individuals in 
the population are first normalized (lines 1-4). Associate the 
individuals in the population with the reference vectors 
closest to them (lines 5-8). For each reference vector, count 
the number of solutions associated with it; if no solution is 
associated with that reference vector, it means that this 
reference vector is invalid, and such a reference vector will 
be deleted (lines 9-13). 

Adding new reference vectors: the newly generated 
reference vectors are added one by one to the set of 
reference vectors V until the number of reference vectors in 
V reaches a predefined number N. The addition of new 
references is based on the following considerations. First, 
when solving MaOPs, the nondominated solutions during 
evolution can reflect the evolutionary state of the current 
population. During the evolutionary process, the 
nondominated solutions will gradually approximate the PF 
and thus reflect the shape of the real PF. Therefore, these 
nondominated solutions serve as a reference for exploring 
the current unexplored areas. Therefore, an archive, in which 
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the nondominated solutions during the evolutionary process 
are kept, should be used to reflect the current evolutionary 
direction. Therefore, the newly added reference vectors are 
referenced by maintaining a good archive. Another 
consideration is that the newly added reference vectors 
should maintain the diversity of the reference vector set, 
which in turn guides the diversity of the solutions. Therefore, 
new reference vectors are generated based on the solution in 
the archive that has the largest vector angle with the current 
reference vector. 

The process of adding new reference vectors is shown in 
lines 14-21 of Algorithm3. First, the number of paradigms is 
computed for each reference vector in the normalized 

objective space. For vj, the )
j

norm（v is defined as: 

    2

1

norm
m

j i j

i

vfv



  (10) 

Then the vector (acute angle) between the solution xj in the 
archive and the reference vector vk is defined as: 
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j k

v
 

F x F is the inner product between 

 j
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F x and  k

v


F ,it is defined as follows: 
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• .
m

j k i j i k

i

fv vf
   


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After calculating the vector angles between the archive 
and the reference vectors, the smallest of these angles is 
selected and the individual in the archive corresponding to 
the smallest angle is identified, a new reference vector is 
generated based on this individual and added to the set of 
reference vectors, and the individual is deleted from the 
archive. 

Algorithm 3: Reference Vector Adjustment. 
Input: population P, reference vector set V, archive A, 
number of populations N. 
Output: updated population P, updated reference vector V. 
# Normalization process 
1 Calculate the ideal point min

Z ; 

2 For   1i P  do 

3 
min - 

i i
f f Z ; 

4 End For 

5  For   1i P  do 

6   1,2 | |, , 
,

i jj V
k argmin P V  ; 

7   k k i
S S P  ;#Dividing the subproblems 

8 End For 
 # Remove inactive reference vectors 

9 For     1i V  do 

10  If |Si| > 0 Then 
11   V=V \ Vi; 
12  End If 
13 End For 
 # Add new reference vectors 
14 While |V|< N 
15 computing norm (A ∪V) according to Eq. (10); 
16  Calculate the vector angle between the solution in the 

archive and V according to Eq. (11); 

17  
Select the individual Amax in the archive with the largest 
vector angle to V 

18  Generate a new reference vector Vmax based on Amax 
19  V = V ∪ Vmax; 
20  A= A \ Amax; 
21 End While 

IV. EXPERIMENTAL SIMULATION AND ANALYSIS 

In this section, the performance of the proposed algorithm 
is examined on WFG1-WFG9 [18]. MOEAD [5], RVEA [7], 
DEAGNG [15], MaOEAIT [16] and hpaEA [19] are 
adopted to compare with the proposed algorithm. 

A. Performance Indicators 

In this paper, the performance of the algorithms is 
evaluated by two widely used metrics: hypervolume (HV) 
[20] and inverse generation distance (IGD) [21]. These two 
metrics serve as comprehensive evaluation metrics capable 
of measuring algorithm convergence and diversity. 

(1) IGD evaluates the performance of a population by 
calculating the average Euclidean distance between a 
reference point on the true PF and a solution in the 
population. The smaller value of IGD indicates a better 
performance of the algorithm. The real PF is represented by 
a set of solutions located in it. In this experiment, the 
number of these solutions is set to 10000. the IGD is defined 
by the following formula: 

 
  *

min
*

*

( , )

IGD , v P

D v P

P P
P




 (13) 

where P∗ is the set of uniformly distributed reference points 

on the real PF and P is the set of objective vectors of the 
population. The value of Dmin(v,P) is the minimum 

Euclidean distance from point v in P∗ to all points in P.  

(2) HV evaluates the convergence and distribution of the 
algorithm in terms of the reference points surrounded by the 
hypervolume. A larger value of HV indicates better 
performance of the algorithm. The reference point Z = (Z1, 
Z2, ..., ZM), are dominated by all Pareto optimal solutions. 
The HV of a set of solutions can be defined as the volume of 
the objective space dominated by the final solution set P and 
bounded by the reference point Z. It can be expressed as 
follows: 

    1 1( , )  Volume ( ), ( ),
M M

x P

HV P Z f x Z f x Z


 
  

 
(14) 

where Volume(.) is the Lebesgue metric, which is used to 
measure the volume in space. In this experiment, the size of 
each dimension of the reference point exceeds the upper 
limit of each dimension of the real PF by 10%. In general, in 
order to reduce the computational complexity of HV on 
MaOPs, Monte Carlo methods are usually used to 
approximate the HV values with 1000000 sampling points 
when M>4. 

B. Experimental Settings 

In the design of algorithm parameters for the (MOEAs) 
under comparison, the parameter settings are the same as the 
recommendations provided in their original papers. 
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Specifically, for MOEA/D, the neighborhood size is set to 
10% of the total population size, while the probability of 
selecting a parent solution from the neighborhood is set at 
0.9. Additionally, the maximum number of solutions that can 
be replaced during each iteration is limited to 1% of the 
population size. For the RVEA, the rate of change for the 
penalty function is set to 2, and the frequency of adaptive 
adjustment for the reference vector is specified as 0.1. These 
parameter configurations ensure consistency with the 
original implementations and facilitate a fair comparison of 
the algorithms' performance. 

Since the population size of the multi-objective 
evolutionary algorithm (MOEA/D) is significantly 
influenced by the number of objectives, a tailored approach 
is adopted for weight reduction problems. When the number 
of objectives exceeds 8, a two-layer reference vector 
generation strategy is employed. This strategy generates 
weight vectors not only along the outer boundary of the 
Pareto front, but also within an inner layer to capture a 
broader range of potential weight reductions. In the current 
experiment, the population sizes for the six algorithms on 
the 9 test problems are determined based on the number of 
objectives. Specifically, when the number of objectives is 3, 
5, 8, and 10, the corresponding population sizes are set to 
100, 212, 156, and 275, respectively. 

In this experiment, the maximum number of evolutionary 
iterations for the 9 test functions is set to 100,000 on 3, 5, 8, 
and 10 objectives. Upon reaching the maximum iteration 
limit, the algorithms terminated their execution. Furthermore, 
for the 9 test problems each of the six algorithms is 
evaluated independently 30 times, and the mean and 
standard deviation of the metrics were documented. To 
assess the significant differences in the hypervolume (HV) 
and inverted generational distance (IGD) metrics against the 
five comparison algorithms of CDBEA, we employed the 
Wilcoxon rank sum test with a significance level of 0.05. 
Specifically, the symbol "+" denotes that the other multi-
objective evolutionary algorithms (MOEAs) exhibited 
significantly superior results compared to CDBEA, whereas 
"-" signifies the converse. Lastly, the symbol "=" indicates 
that the algorithms performed similarly.  

C. Results and Discussions 

Tables 1 and 2 collect the mean and standard deviation of 
the HV performance metrics and IGD performance metrics 
for the six algorithms in WFG1-WFG9 on 3, 5, 8, and 10 
objectives. In these tables, the best results for each test suite 
are marked with a gray background. 

In Table 1, CDBEA shows better performance on the HV 
test metrics. It outperforms all the comparison algorithms on 
17 out of 36 test instances, while RVEA, hpaEA, MOEAD, 
MaOEAIT, and DEAGNG, perform best on 1, 4, 3, 1, and 8 
test instances, respectively. Based on the Wilcoxon rank sum 
test to test the performance difference with the five 
comparison algorithms of CDBEA on HV metrics it can be 
concluded that CDBEA outperforms the other five 
comparison algorithms on 21, 17, 29, 32, and 19 test suites, 
respectively. CDBEA outperforms the other five comparison 
algorithms on 5, 8, 10 objectives of WFG6, WFG7, WFG8, 

and WFG9, from which it can be inferred that CDBEA has a 
competitive advantage in dealing with MaOPs, which may 
be attributed to the fact that the reference vector adjustment 
method based on the vector angles can well guide the 
evolution of the populations thus obtaining solutions that can 
balance the convergence and diversity. 

The results of the comparison between CDBEA and the 
other five algorithms on the IGD metrics are shown in Table 
2. According to the results CDBEA has a competitive 
advantage in IGD metrics for WFG test problems. As shown 
in the table, CDBEA achieves the best results on 20 out of 
36 test instances, while RVEA, hpaEA, MOEAD, 
MaOEAIT, and DEAGNG perform best on 4, 5, 0, 1, and 6 
test instances, respectively. Based on the Wilcoxon rank sum 
test to examine the performance differences with the five 
CDBEA comparison algorithms on IGD metrics, it can be 
concluded that CDBEA outperforms the other five 
comparison algorithms on 16, 21, 34, 34 and 15 test suites, 
respectively. In addition, CDBEA obtains the best 
performance on the test cases WFG2-WFG9 the highest 
number of times and the algorithm still performs well when 
the number of objectives increases, proving that CDBEA has 
a competitive advantage in terms of comprehensive 
performance. DEAGNG performs second only to CDBEA, 
and also solves the WFG test problem well. In addition, 
since WFG3 is a degenerate problem, none of the six 
algorithms converge to the PF on the objectives 8 and 10. 

In order to visualize the comparison between CDBEA and 
RVEA, their output populations with maximum HV values 
over 30 runs on the 10-objective WFG7 are plotted in 
parallel coordinates. Figure 2 gives the results of the 
comparison between CDBEA and RVEA on WFG7 at 10-
objective. 

WFG7 is a separable unimodal problem. As can be 
observed from the figure, RVEA outputs only a few 
solutions and does not cover the middle part of each 
objective well. For RVEA, it fails to converge to the true PF 
on some of the objectives. CDBEA obtains a solution set 
with better convergence and diversity due to its focus on the 
convergence of the solutions during the evolutionary process 
and adjusts the reference vectors according to the overall 
convergence. RVEA lacks an effective method of adaptive 
adjustment of the reference vectors, and thus obtains 
solutions with poorer diversity. 

 

  
Figure 2: Parallel coordinates of the final solution set 

obtained by RVEA and CDBEA on the 10-objective WFG7 
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Table 1: Statistical results of the HV values obtained by the six algorithms in the WFG test suite 

problem 
    

objective 
RVEA hpaEA MOEAD MaOEAIT DEAGNG CDBEA 

WFG1 

3 1.2828e-4 (6.97e-4) = 3.7391e-3 (1.19e-2) = 3.0964e-3 (6.09e-3) + 3.0609e-2 (2.63e-2) + 1.2612e-2 (1.30e-2) + 1.0167e-4 (5.32e-4) 
5 8.3192e-4 (1.64e-3) - 2.2586e-2 (3.15e-2) + 1.3198e-1 (8.42e-2) + 1.0187e-2 (1.52e-2) = 4.0491e-3 (6.30e-3) = 3.2731e-3 (3.41e-3) 
8 1.3739e-3 (3.23e-3) - 6.1516e-3 (9.77e-3) = 1.0216e-1 (9.67e-2) + 4.8957e-4 (2.02e-3) - 1.5265e-4 (2.54e-4) - 5.0394e-3 (1.06e-2) 

10 5.3289e-3 (1.04e-2) = 7.0233e-3 (1.31e-2) = 3.2004e-2 (9.54e-2) = 2.2337e-4 (1.16e-3) - 3.0871e-4 (8.75e-4) - 7.9198e-3 (1.01e-2) 

WFG2 

3 8.9007e-1 (9.61e-3) + 9.0409e-1 (2.54e-2) + 8.2499e-1 (3.07e-2) - 8.5530e-1 (2.52e-2) - 9.0879e-1 (5.68e-3) + 8.7694e-1 (1.42e-2) 
5 9.2564e-1 (2.05e-2) - 9.4352e-1 (1.41e-2) = 8.1579e-1 (4.59e-2) - 8.6670e-1 (4.23e-2) - 9.3554e-1 (1.02e-2) = 9.3678e-1 (2.29e-2) 
8 8.8265e-1 (4.19e-2) - 9.0679e-1 (5.07e-2) - 7.5345e-1 (7.46e-2) - 8.0961e-1 (4.97e-2) - 9.3060e-1 (3.11e-2) = 9.2820e-1 (4.25e-2) 

10 8.9640e-1 (5.41e-2) - 9.0631e-1 (6.98e-2) = 7.4702e-1 (7.31e-2) - 7.4921e-1 (6.31e-2) - 9.3564e-1 (3.23e-2) = 9.3548e-1 (3.36e-2) 

WFG3 

3 3.0435e-1 (1.37e-2) + 3.5215e-1 (8.58e-3) + 2.8308e-1 (3.50e-2) + 9.2546e-2 (2.52e-2) - 3.5898e-1 (7.59e-3) + 2.5567e-1 (3.22e-2) 
5 5.3130e-2 (2.71e-2) + 5.6637e-2 (1.85e-2) + 8.8807e-4 (4.21e-3) - 0.0000e+0 (0.00e+0) - 5.3364e-2 (2.77e-2) + 3.6463e-3 (4.88e-3) 

8 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 
(0.00e+0) 

10 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 (0.00e+0) 

= 
0.0000e+0 
(0.00e+0) 

WFG4 

3 5.1792e-1 (4.02e-3) - 5.2669e-1 (7.05e-3) = 4.9014e-1 (8.99e-3) - 4.2587e-1 (1.56e-2) - 5.3540e-1 (2.91e-3) + 5.2606e-1 (4.68e-3) 
5 6.9995e-1 (8.73e-3) - 6.1852e-1 (3.32e-2) - 4.8267e-1 (4.78e-2) - 3.8975e-1 (3.22e-2) - 6.4160e-1 (1.16e-2) - 7.0936e-1 (1.20e-2) 
8 7.2328e-1 (4.05e-2) - 4.9043e-1 (3.68e-2) - 2.4928e-1 (4.61e-2) - 3.2809e-1 (3.74e-2) - 6.2539e-1 (3.77e-2) - 7.6258e-1 (6.40e-2) 

10 7.2686e-1 (4.54e-2) = 5.0394e-1 (4.59e-2) - 2.2505e-1 (4.59e-2) - 3.0058e-1 (2.93e-2) - 6.3422e-1 (3.92e-2) - 7.2907e-1 (8.77e-2) 

WFG5 

3 4.9526e-1 (4.80e-3) = 5.0430e-1 (4.27e-3) + 4.7675e-1 (8.58e-3) - 4.1477e-1 (1.97e-2) - 4.9538e-1 (3.09e-3) = 4.9429e-1 (7.85e-3) 
5 6.8342e-1 (6.97e-3) + 6.6255e-1 (1.18e-2) - 4.8094e-1 (3.34e-2) - 3.8149e-1 (2.62e-2) - 6.0565e-1 (1.29e-2) - 6.7661e-1 (8.13e-3) 
8 7.1796e-1 (2.58e-2) - 5.0244e-1 (2.50e-2) - 2.2107e-1 (2.78e-2) - 2.7075e-1 (2.86e-2) - 5.7293e-1 (3.69e-2) - 7.5043e-1 (1.87e-2) 

10 7.5575e-1 (3.07e-2) - 5.9347e-1 (2.96e-2) - 2.0202e-1 (3.59e-2) - 2.4894e-1 (3.40e-2) - 5.6079e-1 (4.57e-2) - 7.9510e-1 (2.29e-2) 

WFG6 

3 4.5416e-1 (1.61e-2) = 4.7649e-1 (1.35e-2) + 4.4671e-1 (1.96e-2) - 3.7278e-1 (1.95e-2) - 4.7740e-1 (1.21e-2) + 4.6461e-1 (1.99e-2) 
5 6.2754e-1 (3.51e-2) = 6.2457e-1 (2.09e-2) - 3.4857e-1 (4.60e-2) - 3.4405e-1 (3.15e-2) - 5.7996e-1 (2.12e-2) - 6.4024e-1 (2.23e-2) 
8 5.8851e-1 (4.27e-2) - 4.8955e-1 (4.58e-2) - 1.1589e-1 (4.31e-2) - 2.4089e-1 (2.97e-2) - 5.6380e-1 (4.63e-2) - 6.6063e-1 (4.58e-2) 

10 4.8918e-1 (9.69e-2) - 5.6550e-1 (4.18e-2) - 1.0071e-1 (4.26e-2) - 2.2326e-1 (2.62e-2) - 5.2791e-1 (4.31e-2) - 7.4826e-1 (4.70e-2) 

WFG7 

3 5.1770e-1 (4.29e-3) - 5.3505e-1 (2.77e-3) + 4.3496e-1 (2.60e-2) - 3.6553e-1 (2.30e-2) - 5.4125e-1 (3.87e-3) + 5.2780e-1 (7.36e-3) 
5 7.0494e-1 (1.46e-2) = 6.6669e-1 (1.64e-2) - 4.3262e-1 (6.22e-2) - 3.5436e-1 (2.76e-2) - 6.4969e-1 (1.73e-2) - 7.0852e-1 (1.76e-2) 
8 6.8928e-1 (5.48e-2) - 5.0803e-1 (4.18e-2) - 2.1721e-1 (5.72e-2) - 3.0674e-1 (1.96e-2) - 6.1545e-1 (4.69e-2) - 7.8553e-1 (3.23e-2) 

10 6.5129e-1 (1.47e-1) - 5.6368e-1 (4.15e-2) - 1.6571e-1 (6.27e-2) - 2.9443e-1 (2.11e-2) - 6.2434e-1 (4.42e-2) - 8.3339e-1 (6.80e-2) 

WFG8 

3 4.2712e-1 (6.10e-3) = 4.4457e-1 (3.92e-3) + 4.0929e-1 (1.73e-2) - 3.4192e-1 (1.85e-2) - 4.4898e-1 (4.18e-3) + 4.2488e-1 (1.00e-2) 
5 5.6096e-1 (1.45e-2) - 5.6832e-1 (1.06e-2) = 2.0751e-1 (6.92e-2) - 3.0589e-1 (3.89e-2) - 5.2040e-1 (1.71e-2) - 5.7084e-1 (1.46e-2) 
8 4.7996e-1 (8.85e-2) - 4.8682e-1 (3.56e-2) - 4.5023e-2 (8.57e-2) - 2.0418e-1 (2.55e-2) - 5.0886e-1 (3.24e-2) - 6.9030e-1 (7.12e-2) 

10 3.8240e-1 (1.61e-1) - 5.6392e-1 (2.05e-2) - 2.0282e-1 (2.94e-1) - 1.7766e-1 (2.94e-2) - 5.4232e-1 (3.64e-2) - 7.4395e-1 (3.21e-2) 

WFG9 

3 4.8188e-1 (2.19e-2) - 5.1237e-1 (5.05e-3) + 4.0868e-1 (4.64e-2) - 4.0984e-1 (1.84e-2) - 5.1135e-1 (2.10e-2) + 4.9550e-1 (1.07e-2) 
5 6.0872e-1 (7.91e-2) = 6.1302e-1 (3.16e-2) = 4.1999e-1 (8.19e-2) - 3.3762e-1 (3.25e-2) - 6.2089e-1 (2.64e-2) = 6.2304e-1 (3.09e-2) 
8 6.0355e-1 (4.05e-2) - 4.6556e-1 (3.07e-2) - 1.8760e-1 (7.08e-2) - 2.5460e-1 (2.84e-2) - 5.9442e-1 (3.81e-2) - 6.6099e-1 (5.17e-2) 

10 5.7139e-1 (6.68e-2) - 5.2202e-1 (4.54e-2) - 1.0877e-1 (7.14e-2) - 2.3153e-1 (2.19e-2) - 5.6452e-1 (4.52e-2) - 6.7294e-1 (8.91e-2) 
+/-/= 4/21/11 9/17/10 4/29/3 1/32/3 9/19/8 

 

Table 2: Statistical results of the IGDvalues obtained by the six algorithms in the WFG test suite 

problem 
       

objective 
RVEA hpaEA MOEAD MaOEAIT DEAGNG CDBEA 

WFG1 

3 3.2894e-1 (1.05e-1) - 5.9861e-1 (2.30e-1) - 2.0140e-1 (1.00e-1) = 4.0404e-1 (2.17e-1) - 1.6735e-1 (5.81e-2) + 2.4760e-1 (9.08e-2) 
5 3.8960e-1 (1.25e-1) = 8.7275e-1 (2.54e-1) - 8.7808e-1 (1.94e-1) - 8.2355e-1 (1.90e-1) - 4.1714e-1 (1.05e-1) = 3.6111e-1 (1.14e-1) 
8 6.1541e-1 (1.95e-1) + 9.8290e-1 (2.39e-1) - 1.6354e+0 (3.01e-1) - 9.2653e-1 (2.38e-1) = 7.4963e-1 (1.61e-1) + 8.7811e-1 (2.19e-1) 

10 
1.0879e+0 (3.11e-1) 

= 
1.3600e+0 (3.02e-1) 

= 
1.5694e+0 (4.57e-1) - 8.7162e-1 (2.47e-1) + 

1.0929e+0 (2.11e-1) 
+ 

1.2206e+0 (2.57e-1) 

WFG2 

3 2.1344e-1 (1.10e-2) + 1.9126e-1 (6.32e-2) + 3.1870e-1 (3.63e-2) - 2.8047e-1 (6.50e-2) - 1.7479e-1 (7.25e-3) + 2.2707e-1 (2.19e-2) 
5 4.9992e-1 (1.95e-2) + 5.2294e-1 (2.21e-2) + 9.5608e-1 (6.53e-2) - 7.1310e-1 (2.21e-1) - 5.2067e-1 (3.28e-2) + 5.7180e-1 (2.81e-2) 

8 
1.1783e+0 (7.30e-2) 

= 
1.3713e+0 (4.29e-1) - 1.9507e+0 (3.29e-1) - 1.4191e+0 (3.92e-1) - 1.2686e+0 (2.97e-1) - 1.1665e+0 (6.52e-2) 

10 
1.3627e+0 (5.49e-2) 

= 
1.9276e+0 (8.82e-1) - 2.0942e+0 (5.07e-1) - 2.0367e+0 (7.09e-1) - 1.6206e+0 (4.16e-1) - 1.3608e+0 (1.20e-1) 

WFG3 

3 2.6978e-1 (3.09e-2) + 1.4219e-1 (1.61e-2) + 3.2258e-1 (1.31e-1) = 7.6700e-1 (1.02e-1) - 1.3769e-1 (1.28e-2) + 2.9411e-1 (5.34e-2) 
5 7.1449e-1 (8.46e-2) + 5.4642e-1 (4.91e-2) + 1.3394e+0 (3.18e-1) - 1.1274e+0 (1.30e-1) - 6.7192e-1 (2.11e-1) + 8.4336e-1 (1.14e-1) 

8 2.3915e+0 (5.63e-1) - 
1.2851e+0 (4.95e-1) 

= 
3.9174e+0 (3.24e-1) - 1.6786e+0 (1.55e-1) - 

1.0712e+0 (3.76e-1) 
= 

1.0707e+0 (4.41e-1) 

10 
4.2717e+0 (1.31e+0) 

- 
1.4034e+0 (4.17e-1) - 5.8137e+0 (4.47e-1) - 2.0077e+0 (1.50e-1) - 1.4735e+0 (6.36e-1) - 1.1022e+0 (3.64e-1) 

WFG4 

3 2.6552e-1 (7.58e-3) - 2.4999e-1 (3.11e-2) = 2.9299e-1 (1.10e-2) - 4.5607e-1 (5.72e-2) - 2.5180e-1 (3.97e-3) - 2.4996e-1 (4.06e-3) 
5 1.4289e+0 (7.81e-3) - 1.5978e+0 (1.76e-1) - 2.6098e+0 (2.45e-1) - 2.2050e+0 (3.01e-1) - 1.4263e+0 (1.79e-2) - 1.3798e+0 (3.97e-2) 

8 4.6757e+0 (1.04e-1) - 6.1650e+0 (6.05e-1) - 8.4381e+0 (3.61e-1) - 6.4427e+0 (6.93e-1) - 
4.2675e+0 (2.42e-1) 

= 
4.1749e+0 (6.90e-1) 

10 
6.0599e+0 (1.30e-1) 

+ 
9.5323e+0 (9.80e-1) - 1.0849e+1 (4.18e-1) - 

9.7675e+0 (1.04e+0) 
- 

6.1306e+0 (5.71e-1) 
+ 

7.2891e+0 
(1.28e+0) 

WFG5 

3 2.5955e-1 (7.25e-3) - 2.5582e-1 (2.69e-3) = 2.7624e-1 (1.13e-2) - 4.5265e-1 (6.39e-2) - 2.5634e-1 (2.95e-3) - 2.5536e-1 (5.77e-3) 

5 
1.2167e+0 (6.94e-3) 

+ 
1.2315e+0 (4.67e-2) 

+ 
2.6231e+0 (1.39e-1) - 1.8680e+0 (2.06e-1) - 

1.2211e+0 (1.96e-2) 
+ 

1.3532e+0 (3.27e-2) 

8 
3.7627e+0 (8.77e-2) 

= 
4.4919e+0 (2.08e-1) - 8.1445e+0 (1.81e-1) - 5.7340e+0 (5.42e-1) - 

3.7961e+0 (2.12e-1) 
= 

3.7279e+0 (1.66e-1) 
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10 6.0077e+0 (9.30e-2) - 6.7534e+0 (4.77e-1) - 1.0405e+1 (2.62e-1) - 8.3947e+0 (8.99e-1) - 6.0971e+0 (4.48e-1) - 5.6125e+0 (2.42e-1) 

WFG6 

3 3.3477e-1 (2.27e-2) - 2.6959e-1 (1.59e-2) + 3.3353e-1 (2.47e-2) - 5.2529e-1 (7.56e-2) - 2.7149e-1 (1.18e-2) + 3.0475e-1 (2.12e-2) 
5 1.4768e+0 (6.97e-2) - 1.5757e+0 (3.90e-2) - 3.1025e+0 (2.43e-1) - 1.9341e+0 (2.62e-1) - 1.4607e+0 (2.55e-2) - 1.4115e+0 (5.77e-2) 

8 
4.0300e+0 (2.34e-1) 

= 
4.5953e+0 (3.13e-1) - 8.5315e+0 (1.43e-1) - 6.0325e+0 (7.86e-1) - 

3.9035e+0 (2.70e-1) 
+ 

4.1655e+0 (2.17e-1) 

10 7.1097e+0 (4.55e-1) - 6.9772e+0 (5.49e-1) - 1.0902e+1 (2.64e-1) - 8.2670e+0 (8.38e-1) - 6.5592e+0 (5.96e-1) - 5.8451e+0 (2.80e-1) 

WFG7 

3 2.7575e-1 (1.39e-2) - 2.2469e-1 (2.92e-3) + 4.0280e-1 (3.77e-2) - 6.5080e-1 (9.13e-2) - 2.2608e-1 (4.78e-3) + 2.6517e-1 (1.85e-2) 

5 
1.2416e+0 (1.14e-2) 

+ 
1.3000e+0 (5.32e-2) 

+ 
2.8667e+0 (3.08e-1) - 2.0152e+0 (2.39e-1) - 

1.2367e+0 (3.01e-2) 
+ 

1.4358e+0 (3.67e-2) 

8 
3.9892e+0 (1.38e-1) 

= 
4.9240e+0 (4.01e-1) - 8.5650e+0 (6.56e-1) - 6.1730e+0 (5.07e-1) - 

3.9043e+0 (2.98e-1) 
= 

3.9021e+0 (2.20e-1) 

10 
5.9998e+0 (2.64e-1) 

= 
7.8948e+0 (6.70e-1) - 1.1397e+1 (2.69e-1) - 8.7406e+0 (6.83e-1) - 6.3581e+0 (4.61e-1) - 5.9968e+0 (6.47e-1) 

WFG8 

3 3.7483e-1 (1.35e-2) - 3.1390e-1 (5.17e-3) + 3.7530e-1 (2.81e-2) - 6.1452e-1 (7.30e-2) - 3.1145e-1 (5.46e-3) + 3.6128e-1 (1.24e-2) 
5 1.3642e+0 (1.65e-2) - 1.3611e+0 (7.08e-2) - 2.3552e+0 (2.45e-1) - 2.1440e+0 (2.30e-1) - 1.3624e+0 (4.31e-2) - 1.3579e+0 (2.39e-2) 

8 
3.9650e+0 (2.11e-1) 

= 
4.9407e+0 (3.56e-1) - 

7.1496e+0 (1.10e+0) 
- 

5.9800e+0 (4.51e-1) - 4.3766e+0 (2.55e-1) - 3.9646e+0 (3.07e-1) 

10 
6.6573e+0 (5.22e-1) 

= 
7.1723e+0 (4.14e-1) - 

8.8883e+0 (1.73e+0) 
- 

8.8017e+0 (8.49e-1) - 7.0086e+0 (5.32e-1) - 6.5619e+0 (5.00e-1) 

WFG9 

3 2.7896e-1 (3.27e-2) - 2.2499e-1 (5.03e-3) + 3.7693e-1 (7.08e-2) - 4.5304e-1 (4.98e-2) - 2.2810e-1 (2.27e-2) + 2.5786e-1 (8.98e-3) 

5 
1.2538e+0 (2.11e-1) 

+ 
1.2006e+0 (3.00e-2) 

+ 
2.5047e+0 (1.90e-1) - 1.8730e+0 (1.55e-1) - 

1.2084e+0 (2.10e-2) 
+ 

1.3173e+0 (3.31e-2) 

8 
3.6766e+0 (8.08e-2) 

= 
4.6297e+0 (3.72e-1) - 7.8498e+0 (4.23e-1) - 6.0122e+0 (5.25e-1) - 3.6923e+0 (1.29e-1) - 3.6319e+0 (1.94e-1) 

10 5.7915e+0 (1.96e-1) - 7.1310e+0 (7.38e-1) - 1.0493e+1 (3.90e-1) - 9.0798e+0 (5.80e-1) - 6.0252e+0 (4.90e-1) - 5.7847e+0 (6.90e-1) 
+/-/= 9/16/11 11/21/4 0/34/2 1/34/1 16/15/5 

 

V. CONCLUSIONS 

The algorithm proposes a method to judge the timing of 
reference vector adjustment based on the change of population 
convergence in order to periodically and conditionally trigger the 
reference vector adjustment. This strategy ensures that the 
reference vector adjustment is based on the actual evolution of the 
population, avoids unnecessary adjustment overhead, and improves 
the efficiency of the algorithm. In addition, the reference vector 
adjustment process chooses a vector angle-based adjustment 
method. Specifically, by maintaining well-distributed non-
dominated solutions in archive, the individual among them that 
possesses the largest vector angle with the current population is 
selected as the basis for reference vector adjustment. This method 
enables the reference vectors to be more evenly distributed over the 
PFs, increasing the validity of the reference vectors and thus better 
adapting to PFs with different shapes. In the future research, we 
will work on designing novel methods to evaluate the convergence 
of populations in order to reflect more comprehensively and 
accurately the convergence state of populations in high-
dimensional spaces. 
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