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 
Abstract—Traditional evolutionary algorithms are often 

used to solve single-task optimization problems. With the study 

of evolutionary algorithms, it is found that most optimization 

tasks often have potential correlation, which indicates that the 

knowledge obtained in the evolution process of one 

optimization task can be used to optimize another task to 

further optimize the performance of the target task. With the 

rapid development of machine learning technology, the idea of 

making use of commonalities or differences among multiple 

tasks for efficient learning has been widely studied in the field 

of multi-task learning.In order to strengthen the positive 

transfer of knowledge, we can consider using strong 

correlation prior knowledge to construct help tasks and 

optimize the original tasks together. In this paper, a method of 

constructing help tasks is proposed, which is based on the 

original problem and constructed by multi-objective 

decomposition of sub-problem groups. These sub-problem sets 

are closely related to the original problem and belong to the 

strongly correlated tasks. Therefore, the help tasks constructed 

by this method can promote the forward knowledge transfer of 

multi-task optimization theoretically. The experimental results 

show that the efficiency of the proposed algorithm is improved 

significantly in task optimization. 

 
Index Terms—knowledge transfer, helper task , piror 

konwledge, multitask optimization algorithm 

 

I. INTRODUCTION 

Evolutionary algorithm (EA), which simulates the process 

of biological evolution, is a heuristic search algorithm 

proposed under the influence of Darwinian evolution, and 

uses selection, crossover and mutation to realize the 

evolutionary process of the population. The evolutionary 

algorithm generates new child individuals through 

continuous iteration, and then selects more excellent 

individuals to enter the next iteration process, and obtains 

the optimal solution through continuous iteration search. 

With strong parallelism, simple implementation method and 

strong search ability, evolutionary algorithm has been 

widely used to solve real life optimization problems, 

including path planning[1][2], network security, intelligent 

scheduling [3]and other problems. 

With the rapid development of science and technology, 

modern society is faced with more and more complex 

optimization problems, such as energy scheduling, traffic 

planning, production scheduling and so on. These problems 

are usually highly nonlinear, multi-modal,  
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multi-constrained and dynamic. Traditional evolutionary 

algorithms can only solve one task at a time, which makes it 

difficult for traditional optimization algorithms to solve 

effectively. However, in these problems, there are often 

similarities between many tasks. Knowledge sharing is 

carried out between them, and the knowledge used to solve 

one task can also be used to solve another task, which can 

improve the optimization efficiency between tasks. Inspired 

by multi-task learning, Gupta et al. [4] combined multi-task 

learning with evolutionary algorithm for the first time and 

proposed Multifactorial Evolutionary Algorithm (MFEA). 

Evolutionary multitasking algorithm, as a new evolutionary 

paradigm, can deal with multi-task optimization problems 

across domains and optimize each task in parallel. Fig.1 

schematic diagram of multi-task optimization algorithm 

processing. In real life, many problems can be represented 

as multi-task optimization problems, such as path planning 

problems[5], cloud service composition problems[6], 

complex optimization problems [7],which can be solved by 

evolving multi-task optimization algorithms. 

 Fig.1 schematic diagram of multi-task optimization 

algorithm processing. 

 

In multitasking Optimization (Multi - Task Optimization, 

MTO) algorithm is put forward before, scholars complex 

Optimization problem was divided into two categories: The 

first type is Single-Objective Optimization (SOO) and the 

second type is Multi-Objective Optimization (MOO). 

Single-objective optimization means that when the function 

to be optimized has only one objective value, the optimal 

solution satisfies the constraints of the function to obtain the 

variable corresponding to the maximum or minimum value 

of the function, while multi-objective optimization requires 

consideration of multiple objective functions at the same 

time. In most cases, there are conflicts between these 

objectives, and the optimization of one objective is often 

accompanied by the disadvantage of the other objective. So 

in this case you need to consider these compromises, which 

are called Pareto optimal solutions, not optimal solutions for 
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a particular goal. Until the MTO was proposed, it became a 

new paradigm. Although both multi-task optimization and 

multi-objective optimization seek solutions to a set of 

objective functions, the difference is that multi-objective 

optimization is only a single task. Multi-task optimization 

has multiple tasks, and there is some potential parallelism 

between these tasks in the optimization process, which can 

obtain some useful knowledge, realize knowledge transfer of 

cross-domain tasks, and accelerate the convergence of tasks. 

To find the optimal solution to the task. Multi-objective 

multi-task optimization algorithm combines multi-objective 

optimization problems with multi-task optimization 

algorithms, and introduces NSGA-II on the basis of MFEA. 

Each optimization task has an independent search space. 

The proposed algorithm makes further development in 

solving optimization problems and can provide better task 

solutions. 

The research of evolutionary multi-task optimization 

algorithm will promote the technological innovation in 

related fields. With the development of big data, cloud 

computing[8], artificial intelligence and other technologies, 

multi-task optimization algorithms have great potential in 

dealing with complex problems and large-scale 

data.Transform the search space, such as LDA-MFEA[9]. 

Due to the remarkable effect achieved by MFEA, many 

scholars have proposed a variety of variants based on it. 

Zheng et al.[10] proposed a method that adaptively adjusts 

the degree of knowledge transfer across task domains, taking 

into account the different degree of correlation between 

different tasks, so that knowledge capture between tasks can 

be realized to a large extent and useful knowledge can be 

shared to a large extent. Han et al.[11] introduced decision 

space and target space based on each task, used knowledge 

estimation metric to evaluate the knowledge carried by 

particles to improve the effectiveness of solving each task, 

and introduced a parameter that could be automatically 

adjusted to realize self-regulated transfer mode and adjust 

the intensity of knowledge transfer. Shi et al. [12] designed 

an improved assortative mating operation based on 

DE/rand/2 mutation in order to make full use of the optimal 

solution generated by each generation in assortative mating. 

The improved operation generates offspring for each 

individual by running perturbations around the current 

optimal individual. Integrated opposition-based search 

strategies to balance the development and exploration of 

each search space. The idea of Wu et al.[13] is to estimate 

the bias between the two tasks and then eliminate it in 

chromosome transfer so that the optimal solutions of the two 

tasks are close to each other. In this way, a promising 

chromosome in one task can also be transformed into a 

promising solution for another task, thereby speeding up the 

rate of convergence and efficiently transferring the most 

suitable chromosome. 

II. PRELIMINARIES 

A. Multifactorial optimization problem 

Multifactorial Optimization (MFO) is an evolved 

multi-task paradigm. It is characterized by the simultaneous 

existence of multiple search spaces corresponding to 

different tasks. Each search space is unique. During the 

optimization process, each Each task contributes different 

information that affects the task optimization process. The 

problem of MFO can be defined as follows: 

   )(),...,(),(minarg,...,, 2121 xfxfxfxxx kk   (1) 

Where xi is the feasible solution of the task fi(x),i=1,2,... ,k. 

Each individual xi in MFEA has the following four 

characteristics: 

(1)Factorial Cost: for a given individual xi and task Tj, the 

factor cost of the individualis calculated by evaluating the 

objective function value and the total violation value on the 

corresponding task , defined as i

j . 

(2)Factorial Rank: The factorial rank i

jr of the individual  

xi is the index value obtained by sorting the factor cost i

j  

in ascending order when evaluating the task Tj. 

(3)Scalar Fitness: The scalar fitness φi of an individual xi 

is the reciprocal of its factor ranking on the task for which it 

performs best in all task evaluations   ijkji r,...,2,1min1  . 

(4)Skill Factor: The skill factor of individual xi, τi is the 

index of xi of the task in which the smallest factor rank can 

be obtained, }{minarg },...,2,1{

i

jkji r . 

B. Unified encoding and decoding methods 

In MFO, each task to be optimized has different spatial 

characteristics, so knowledge transfer between tasks cannot 

be realized directly.In order to realize knowledge transfer 

between task domains, MFEA performs uniform encoding 

and decoding operations for optimization tasks.All the 

individuals in the population by encoding operation to build 

a unified search space, with a different search space mission 

after the searching space of the individual coding to unity, 

knowledge transfer between tasks to improve the 

optimization efficiency of the algorithm. The decoding 

operation is to map the individual in the unified search space 

back to the original solution space to obtain the optimal 

solution of the task. 

 Suppose that K tasks are optimized at the same time and 

the search space corresponding to the jth task is Dj ,then the 

dimension of the unified search space is the largest 

dimension among all tasks, that is 

 
jkjMultitask DD },...,2,1{max  , which can better realize the 

information sharing between tasks. As shown in Fig.2, 

individuals in the unified search space encode the solution 

of three chromosomes. The spatial dimensions 

corresponding to the three target tasks are respectively 6,7, 

and 9. Each task performs coding operations, and the 

dimension of the unified search space obtained is 9. The 

decoding operation is to decode the individual of each task 

into the corresponding original task for evaluation. Suppose 

that an individual pi in the population corresponds to the 

task Tj. In the evaluation, 

},...,2,1{),( kjLUpLx jjijj  ,maps the individual 

pi decoding to the search space corresponding to the original 

task Tj. Where xj represents the candidate solution 

corresponding to task Tj, Uj and Lj table the upper and lower 

bounds of the search space of task Tj respectively. 
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Fig. 2 Individual representation in the unified search space 

C. MFEA algorithm framework 

There are two key processes in MFEA: assortative mating 

and vertical cultural transmission. Assortative mating is the 

process of producing offspring, and vertical cultural 

transmission assigns skill factors to individuals and 

evaluates them. In the generation of offspring, the process of 

information transfer needs to be controlled by random 

mating probabilities(rmp). 

Algorithm 1:MFEA algorithm framework 

Input: population size N, maximum number of iterations 

Gen, K optimization tasks 

Output:the optimal solution for each task 

1.Initialize population P, contains N individuals 

2.Each individual in the population is randomly assigned 

a skill factor τi,and evaluate the individuals 

3.t=0 

4.while(t<Gen) 

5. Generation of offspring population C through 

assortative mating 

6. Assign skill factors for individuals in offspring 

population C through vertical cultural communication 

and evaluate  

7. Merge parent and offspring populations to update 

scalar fitness and skill factors for all individuals 

8. Select N elite individuals from the merged population 

to form a new population and enter the next generation 

9.  t=t+1 

10.end 

In the process of assortative mating, knowledge transfer is 

carried out in a unified search space, and individuals 

between different tasks perform crossover operation, so as to 

realize knowledge sharing between tasks and achieve the 

purpose of knowledge transfer. If individuals have the same 

or similar skill factors, it is easier to perform cross-operation. 

In this case, individuals pa and pb cross freely to generate 

offspring, so that both offspring individuals have the genetic 

information from the two parents of different tasks, realizing 

knowledge transfer. 

When choosing whether to perform crossover operation, 

it is also determined by random mating probability, the size 

of rmp is between 0 and 1. If rmp value is closer to 0, it 

means that only individuals with the same cultural 

background can freely perform crossover operation. If the 

value of rmp is closer to 1, it means that individuals can 

randomly mate to produce offspring. 

In the process of vertical cultural transmission, the genetic 

characteristics of individuals are influenced by their parents. 

If the offspring individual has two parents, randomly select 

one parent's skill factor to inherit. If there is only one parent, 

the child individual directly inherits the skill factor of its 

sole parent. At the same time, in order to reduce calculation, 

only the tasks pointed to by the skill factor are evaluated. 

III. PROPOSED APPROACH 

A. Research motivation 

It has been proved that the correlation between multiple 

tasks will greatly affect the performance of MFEA. When 

the tasks are highly correlated, there is a lot of forward 

transfer of shared knowledge between tasks, which speeds 

up the convergence rate of the algorithm. Therefore, in order 

to strengthen the forward transfer of knowledge, we can 

consider using the strongly correlated prior knowledge 

helper task to optimize together with the original task. The 

helper task used in this paper is built on the sub-problem set 

of the multi-objective decomposition of the original 

problem. These sub-problem sets are closely related to the 

original problem and belong to the strongly correlated tasks. 

Therefore, the helper tasks constructed by this method can 

promote the positive knowledge transfer theory of MFEA. 

In this paper, a prior-knowledge-based helper-tasks (PKHT) 

algorithm for multi-task evolution based on Prior knowledge 

of helper tasks is proposed. In order to verify the 

effectiveness of MFEA-PKHT, which transforms prior 

knowledge into helper tasks, in improving the efficiency of 

MFEA in optimizing tasks, this paper designed experiments 

for data comparison and analysis, and the results proved that 

MFEA-PKHT, which uses prior knowledge helper tasks, 

performs extremely well in most multi-task optimization 

problems. 

In this paper, we use a multi-objective decomposition 

method based on prior knowledge to construct strongly 

correlated helper tasks, and integrate this method into 

MFEA algorithm to enhance the forward knowledge transfer 

of the algorithm. The multi-objective decomposition of tasks 

is to optimize a single objective task by decomposing it into 

multiple objective tasks [14]. Multi-objective decomposition 

can decompose a problem into many small optimization 

problems that cover all the solution space of the original 

problem, so optimizing these subproblems simultaneously 

optimizes the original problem. 

Based on MFEA, the MFEA-PKHT algorithm used in 

this study decomposes the original target task into multiple 

subtask groups according to decision variables or problem 

structure, and then constructs strongly correlated helper 

tasks. These decomposed sub-problems are closely related 

to the original problem, so they can promote the forward 

transfer of knowledge well and have a good optimization 

effect for MFEA. 

B. Multiobjective decomposition of the original problems 

Before starting the main algorithm work of 

MFEA-PKHT, the original task needs to be decomposed 

into multiple objectives. Common types of multipurpose 

decomposition construction assistance tasks 

include
mfxf  ...)(1

 conversion to  Tm xfxf )(),...,(1
 , 

)()( 21 xfxf  is converted  into  Txfxf )(),( 21
. 

In the existing multi-objective decomposition methods, 

there is less research on constructing helper tasks for 

continuous optimization tasks, and more research is related 
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to combinatorial optimization tasks. In recent years, 

Lochtefeld et al. [15] proved the relationship between 

multi-objective decomposition and the formalization of 

helper tasks; Handl et al. [16]proved that multi-objective 

decomposition reduces the number of local optimizations 

and increases the size of incomparable solutions. Da et al. 

[17] proposed to add multi-objective decomposition as an 

helper task under the restrictive conditions of combinatorial 

optimization. Louis et al. [18]was the first to apply the 

helper task of multi-objective decomposition to the 

continuous optimization task. 

These studies verify the positive effect of multi-objective 

decomposition on multi-task optimization, which can 

increase population diversity to avoid falling into local 

optimal, and provide better knowledge transfer. Each helper 

task in the MFEA-PKHT used in this paper is a strongly 

correlated helper task generated by the multi-objective 

decomposition method on the original task. Theoretically, 

the knowledge transfer of this strong correlation relationship 

is beneficial to the global convergence of the optimization 

algorithm. The experimental data also prove that using 

multi-objective decomposition to add prior knowledge to 

construct helper tasks can indeed enhance the algorithm. In 

this paper, we use the first method of decomposing the 

helper task, here decomposed into two sub-problems, 

)(...)( 21 xfxf  converted to  Txfxf )(),...,( 21
. 

C. The main flow of the algorithm 

Similar to MFEA, the transfer of genetic material from 

parent to offspring in MFEA-PKHT is also based on vertical 

cultural transmission, with crossover occurring easily among 

individuals of similar cultural backgrounds. The process of 

assortative mating is to produce offspring. Two parents are 

randomly selected from the parent population. If the two 

individuals have the same skill factor, they will perform 

crossover operation. If they do not have the same skill 

factor, then a random number from 0 to 1 determines 

whether they cross offspring or mutate their own offspring. 

The children obtained under the cross operation of the 

algorithm inherit the skill factor of one parent randomly, and 

the children obtained by variation inherit the skill factor of 

their unique parent. 

Then the algorithm evaluates the fitness of individual 

offspring, and the algorithm execution the process of 

vertical culture transmission.Offspring and parents need to 

be merged first and then sorted, and Non-dominated sort and 

Crowding distance are applied to determine the ordering of 

new population individuals. According to the principle of 

quick sorting, the population is sorted by non-dominant 

rank. Firstly, the dominant number of each individual in the 

population and the dominant solution set of that individual 

are calculated, and the individuals with the dominant 

number of 0 in the population are placed in the 

non-dominant solution set of level 1. These classified 

individuals are then removed from the sorted set, while the 

dominance of other individuals is updated. The steps are 

repeated from the assigned individuals to the non-dominated 

solution set after the current non-dominated solution set is 

upgraded until all individuals are graded. Finally, the 

populations were sorted in ascending order according to the 

non-dominant ranking. Update skill factor τi and scalar 

fitness φi for all individuals. Finally, MFEA-PKHT uses the 

elite selection strategy to screen out individuals and select a 

new population P for the next iteration. 

IV. SOO EXPERIMENT AND RESULT ANALYSIS 

A. Test set and parameter Settings  

In the SOO experiment, a SOO test set was tested to 

verify the effectiveness of the algorithm, consisting of seven 

single-objective optimization problems, namely Ackley, 

Griewank, Rastrigin, Rosenbrock, Schwefel, Sphere, and 

Weierstrass. The comparison algorithm used is SOEA and 

NSGA-II. 

The parameters used in this experiment are set as follows: 

(1) The experiment was processed by Wilcoxon rank sum 

test with a significance level of 5%. 

(2) Random mating probability rmp=0.3 in MFEA-PKHT, 

SOEA and NSGA-II do not need to set random mating 

probability. 

(3) SOEA solves the original single-objective problem f(x), 

NSGA-II solves F(x), which decomposes the original 

problem into a multi-objective optimization problem, and 

MFEA-PKHT solves the multi-task problem MTO. 

(4) Population size is set to N=50. 

(5) The maximum number of iterations is 1000. 

(6) All the algorithms run independently 20 times. 

B. Experimental resultset  

Test set 1 is a single objective problem set consisting of 7 

single objective problems. Fig.3 shows the convergence 

curves of the three algorithms. Through comparison, it can 

be seen that MFEA-PKHT can achieve faster convergence 

and better stability, indicating that the proposed 

multi-objective decomposition based on prior knowledge is 

effective for improving the diversity of the population and 

promoting the solution of the original problem. 

MFEA-PKHT only got slightly worse results on the two test 

problems Ackley and Weierstrass than SOEA and NSGA-II. 
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Fig.3 Convergence curve for obtaining the optimal average 

solution on 7 test problems 

Compared with the other two comparison algorithms, 

MFEA-PKHT can solve the original target task and its 

helpertask task at the same time, and the knowledge transfer 

between the two tasks can solve the task faster, and the 

performance is also greatly improved. The added helpertask 

tasks are the result of the decomposition of the original 

problem by multipurpose, so the two tasks are closely 

related. In MFEA-PKHT, the multi-task processing method 

obtains some useful knowledge and helps to solve the 

original task through knowledge transfer while solving the 

helpertask task. In addition, it can help the task jump out of 

the local optimal, improve the convergence and diversity of 

the population. 

By observing Fig.3, the proposed MFEA-PKHT is better 

than SOEA and NSGA-II in terms of overall algorithm 

performance when solving the single-objective problem set, 

among which Rastrigin and Schwefel problems can 

converge faster at the early stage of iteration. From 

Griewank's convergence curve, it can be seen that in the 

middle of the iteration, it falls into a local optimal situation, 

and then jumps out of the local optimal situation and 

continues to converge to a relatively excellent solution. This 

phenomenon shows that the introduced helpertask task is 

closely related to the original task, which is conducive to 

improving the efficiency of knowledge transfer between 

tasks and helping the task to escape the local optimal. 

V. MTO EXPERIMENT AND RESULT ANALYSIS 

A. Test set and parameter Settings  

In order to verify whether MFEA-PKHT has advantages 

in multi-task optimization, this experiment uses an MTO test 

data set to compare the optimization tests of MFEA-PKHT, 

MFEA and MFEA-LDA. This paper adopts the MTO 

benchmark test question of CEC 2017 Evolutionary 

multi-task Optimization competition, which contains 9 

questions. Each problem shown consists of a single 

objective optimization task, namely CIHS, CIMS, CILS, 

PIHS, PIMS, PILS, NIHS, NIMS, and NILS. According to 

the intersection degree of the optimal solution, the tasks can 

be divided into three categories: complete intersection (CI), 

partial intersection (PI), and no intersection (NI). Spearman 

rank correlation coefficient among landscapes was divided 

into high similarity (HS), medium similarity (PS), and low 

similarity (LS) according to the Spearman rank correlation 

coefficient Rs.  

B. Experimental resultset  

The convergence curves obtained by MFEA-PKHT, 

MFEA and MFEA-LDA algorithms on 9 benchmark 

problems are   

 

shown in Fig.4-Fig.5. Obviously, the proposed 

MFEA-PKHT shows better performance, showsthat the 

multi-objective decomposition strategy adopted is effective. 

Fig.4 shows the comparison of the convergence curves of 

MFEA-PKHT, MFEA and MFEA-LDA in the three 

optimization task groups CIHS, CIMS, and CILS. It can be 

seen that MFEA-PKHT performs better than MFEA and 

MFEA-LDA in the optimization of these three groups of 

tasks, and the convergence speed is faster than the other two 

comparison algorithms.This indicates that the helpertask 

task constructed by the method proposed in this paper has a 

strong relevance, which generates a large amount of useful 

knowledge in the process of task optimization and promotes 

the positive transfer of knowledge. 

 

 
 

 
Fig. 4 Convergence curve of CIHS, CIMS, and CILS 

optimization tasks 

Fig. 5 shows the convergence curves of MFEA-PKHT, 

MFEA, and MFEA-LDA on three optimization task groups: 

PIHS, PIMS, and PILS. It can be seen that the overall 

optimization performance of MFEA-PKHT in these three 

groups is also better than that of MFEA and MFEA-LDA, 

and the improvement of optimization efficiency is especially 

obvious in the two tasks of PILS. In this case, MFEA and 

MFEA-LDA produce negative migration to a certain extent 

as the correlation between tasks decreases, which affects the 

task optimization process. 
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Fig.5 Convergence curve of PIHS, PIMS, and PILS 

optimization tasks 

VI. CONCLUSION 

This paper proposes a multi-task optimization algorithm 

MFEA-PKHT based on prior knowledge to construct 

helpertask tasks. Knowledge transfer in MFEA comes from 

multiple optimization tasks with unknown relationships, so 

there are some invalid or negative knowledge transfers in the 

process, and these non-positive knowledge transfers will 

reduce the optimization efficiency of the algorithm. In order 

to improve the algorithm's effective utilization of knowledge 

transfer, this paper uses a multi-task optimization algorithm 

to construct helpertask tasks based on prior knowledge. The 

helpertask tasks are constructed by decomposing the original 

problem into two subfunctions, which are composed of these 

closely related subtasks. The helpertask tasks constructed by 

this method are highly correlated with the original tasks, and 

the amount of forward knowledge transfer between these 

strongly correlated tasks will be greatly increased, thus 

speeding up the convergence speed and improving the 

overall optimization performance of the algorithm. 
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