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Abstract— In recent years, with the emergence of vulnerabilities 

such as "Spectre" and "Meltdown", efficient testing of 

processor security has become an important issue for research. 

Fuzz testing has also been applied in processor security testing 

in recent years. However, genetic algorithms exhibit a certain 

degree of blindness when performing fine-grained mutation, 

which can lead to the generation of test cases that trigger the 

same type of vulnerabilities, thereby failing to cover more types 

of vulnerabilities in a short period of time. To address the above 

issues, a guided processor security fuzzing scheme based on 

DQN reinforcement learning is proposed. This scheme 

constructs a reward function by associating the state values of 

test cases with the weights corresponding to the triggered 

vulnerability types. It employs reinforcement learning to guide 

the generation of test cases with targeted and directional 

mutations, thereby quickly triggering different types of 

vulnerabilities. Currently, there is no similar fuzz testing system 

in the industry. Experiments conducted on the  ARMv8 

platform demonstrate that compared to traditional approaches 

using genetic algorithms as feedback, this scheme significantly 

reduces the required time while covering an equivalent number 

of branch prediction vulnerabilities. The efficiency of 

vulnerability detection is improved by 1.29 times. 
 

Index Terms— Processor vulnerability detection, fuzz testing, 

DQN reinforcement learning, ARMv8, branch prediction 

vulnerabilities. 
 

 
I. INTRODUCTION 

With the rapid advancement of computer hardware 
technology, the microarchitecture of processors has become 
increasingly complex, posing numerous security challenges. 
Particularly in recent years, the discovery of vulnerabilities 
such as Spectre [1] and Meltdown [2] has revealed the severe 
security threats faced by modern processors. The existence of 
these vulnerabilities not only jeopardizes data security but 
also exposes shortcomings in existing processor designs and 
testing methods. Therefore, the development of more 
effective methods for exploring processor vulnerabilities and 
security testing has become an urgent need. 

The latest research utilizing fuzz testing principles for 
processor vulnerability testing is exemplified by Moghimi et 
al., who developed a tool named Transynther [3] to scan 
MDS [4] vulnerabilities. Although Transynther is also a fuzz 
testing tool, its implementation is incomplete, lacking a 
feedback mechanism and being highly restrictive in 
processor monitoring methods. Additionally, the generation 
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module of Transynther itself has a simplistic structure and 
can only test MDS-like vulnerabilities. However, where this 
tool can be informative is in its method of generating test 
cases through code block assembly. 

Traditional fuzz testing systems employ  genetic 
algorithms [5] for feedback in the test case generation module. 
Due to the fact that genetic algorithms evaluate the entire 
solution in each generation and perform selection and 
mutation at a higher level, while the test cases in this fuzz 
testing system are based on instruction blocks, the finest 
granularity of genetic algorithm mutation operations is at the 
level of instruction blocks. This leads to a certain degree of 
blindness in test case mutation, resulting in  frequent 
triggering of the same type of vulnerabilities during actual 
testing and significantly reducing testing efficiency. 
According to Sutton and Barto's research [6], reinforcement 
learning, with its unique reward mechanism and policy 
gradient methods, can effectively guide fine-grained 
behavioral adjustments, making it significantly superior to 
traditional genetic algorithms when handling tasks with 
complex state spaces. This suggests that reinforcement 
learning is more suitable for making action selections at a 
very fine-grained level, where each action is chosen based on 
the current state and learned policy, making it more suitable 
for guiding fine-grained mutations at the level of instruction 
blocks. 

Based on the advantages of reinforcement learning in 
handling fine-grained mutations, a high-performance guided 
processor security fuzzing scheme based on DQN(Deep Q-
network) reinforcement learning [7] is proposed. Firstly, by 
defining the state values of test cases, they can accurately 
understand and represent the state of processor 
microarchitecture under attack. Secondly, utilizing the 
defined state values and weights corresponding to the 
triggered vulnerability types of test cases, a reward function 
is constructed. The DQN reinforcement learning model is 
updated based on the state and reward, and the mutation 
strategy is optimized according to the obtained model to 
generate targeted and guided test cases. The innovation of 
this research lies in defining the state values of test cases and 
constructing corresponding reward functions, applying DQN 
algorithm to fuzz testing, and optimizing the generation and 
mutation process of test cases. Currently, there is no similar 
fuzz testing system for branch prediction class processor 
vulnerabilities in the industry. Experiments conducted on the 
ARMv8 platform demonstrate that compared to traditional 
approaches using genetic algorithms as feedback, this 
scheme significantly reduces the required time while 
covering an equivalent number of branch prediction class 
vulnerabilities. This not only provides a new approach for 
processor security testing but also offers important references 
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for  future  more  secure  processor  designs  and  security 
strategy formulation. 

 
 

II. BACKGROUND 
 

A. Processor Security Vulnerabilities 

In  recent  years,  the  Spectre  vulnerability,  discovered, 
exploits flaws in the branch prediction mechanism. When a 
processor executes a branch  instruction, it cannot 
immediately calculate the target address of the branch jump. 
The branch predictor predicts possible jump addresses and 
continues to fetch and execute instructions in the pipeline. 
When the processor detects a prediction error, it rolls back the 
processor   state.   However,   if   the   predicted   execution 
instructions  modify  the  state  of  components  such  as  the 
Cache, the processor does not roll back these components. 
Attackers  can  exploit  this  by  using  Cache  side-channel 
attacks   to   steal   sensitive   information.   The   Spectre 
vulnerability can be classified into three types based on the 
different components of the branch prediction unit filled in 
the first step: Spectre v1 [1], Spectre v2 [1] and Spectre RSB 
[8]. In addition, some research has derived different attack 
methods  based  on  the  variants  of  these  three  Spectre 
vulnerabilities.  For  example,  Zhang  [9]  et  al.  found  that 
partial address bit matching can trigger Spectre v2 on Intel 
processors.  SGXPectre [10], NetSpectre [11], and 
SmoTherSpectre [12] adaptively modify Spectre attacks for 
different  application  scenarios.  The  MDS  vulnerabilities 
detected by Transynther are not entirely the same as Spectre 
and Meltdown. It can leak data from various buffers inside 
the processor, and depending on the source and method of 
data leakage, it has different variants. Fallout [13] leaks data 
from the Store Buffer, RIDL [13] leaks data from the Line 
Fill  Buffer,  and  ZombieLoad  [14]  and  Medusa  [3]  are 
variants of RIDL with the same basic principle but different 
attack  methods.  There  are  also  attacks  targeting  other 
components. For example, Foreshadow  [15] can attack Intel 
SGX,  with  a  basic  principle  similar  to  Meltdown  but 
requiring leaked data to be kept in the L1 Cache. TLBleed [16] 
exploits the feature of hyper-threading to share the TLB, 
allowing one thread to monitor the TLB usage of another 
thread, resulting in information leakage in specific scenarios. 
Mamjam [17] and PortSmash [18] exploit the sharing of 
components to degrade the performance of the target service. 

B. DQN 

When you submit your final version, after your paper has 
been accepted, prepare it in two-column format, including 
figures and tables. DQN combines the powerful 
representation learning capability of deep neural networks 
with the policy learning capability of Q-learning. Q-learning 
is a classic reinforcement learning algorithm designed to 
address problems in Markov decision processes by learning 
optimal action selection strategies. The algorithm learns the 
optimal policy by continuously trying actions in the 
environment and updating based on reward signals for each 
state-action pair. However, Q-learning faces challenges when 
dealing with problems with large state spaces, as it requires 
maintaining a Q-value table containing all state-action pairs, 
which may become impractical in practice. 

To address this challenge, DQN has been introduced. By 
utilizing neural networks to approximate the Q-value 
function, DQN can handle large state spaces and learn 
directly from high-dimensional raw inputs. In recent years, it 
has been commonly combined with fuzz testing. By 
leveraging the learning capabilities of DQN and the 
automation features of fuzz testing, adaptive testing methods 
can be implemented, thereby enhancing testing coverage and 
efficiency. 

 
III. BRANCH PREDICTION CLASS VULNERABILITY FUZZ 

TESTING SYSTEM 

The Branch Prediction Vulnerability Fuzz Testing System, 
as depicted in Figure 1, consists of three main components: 
the test case generation module, the execution module, and 
the analysis module. 

 

 

Figure 1: Overall architecture of the branch prediction 
vulnerability fuzz testing system 

 

The test case generation module utilizes a DQN 
reinforcement learning model for feedback to generate new 
test cases through mutation. In the figure, the test case pool 
selects initial test cases from the seed library. In each round, 
new test cases are generated by mutating the previous ones 
under the guidance of the DQN. The execution module 
comprises two processes: the attacker process and the victim 
process. These processes execute independently to simulate 
attacks and assess vulnerability. The analysis  module 
receives test cases, analyzes their features, and then receives 
the execution results to determine if the test cases trigger 
vulnerabilities and categorizes them accordingly. Based on 
the analysis results, reward information is calculated and fed 
back into the reinforcement learning model to guide further 
test case mutation. This testing system requires launching 
two cores to execute different modules, denoted as Core 0 
and Core 1. Core 0 handles the test case generation and 
analysis modules, while Core 1 exclusively handles the 
execution module, aiming to mitigate interference from 
unrelated processes on the execution module. 
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IV. TEST CASE GENERATION MODULE BASED ON DQN 
 

A. Test Case Structure 

The test case generation module employs an "N+1 branch 
structure" pattern to generate a test case. The first N branch 
structures are utilized to populate the branch predictor 
microarchitecture, while the last one serves as the victim 
branch. The composition of each branch structure is 
illustrated in Figure 2. 

 

 
 

 

  
 

  
 

  
 

 

Figure 2: The composition of a single branch structure    

A single branch structure consists of a branch block, two 
Cache channel blocks, two return blocks, and some auxiliary 
instruction segments. The auxiliary instruction block, 
specifically the PMU event sampling, is primarily used to 
monitor whether the branch block triggers branch-related 
events. By sampling with PMU [19] and detecting Cache 
side-channel, the system can assess the branch prediction 
behavior, thereby analyzing whether the processor is 
vulnerable to a particular type of vulnerability. 

B. Mutation Action Set 

The branch block includes four adjustable attributes: 
execution address, target address, branch direction, and 
branch instruction type. There are six types of execution 
addresses defined in this testing system, each corresponding 
to a mutation type based on a fixed virtual address. The 
purpose of setting different address mutation types is to 
potentially trigger cross-address branch prediction 
interference. There are 16 types of target addresses, with each 
type corresponding to a virtual address page. Branch 
direction has three types: jump, no jump (for conditional 
branch instructions), and unconditional jump (for 
unconditional instructions). Branch instruction type 
represents different types of branch instructions specified in 
the ARMv8-Aarch64 instruction set [20]. The instruction set 
provides seven types of conditional branch instructions, but 
B.cond instructions have different nzcv field values 
representing different branch conditions, resulting in a total 
of 14 conditional branch instructions. There are six 
unconditional branch instructions. Therefore, there are a total 
of 26 types of branch block instructions. 

The output of the DQN consists of Q-Values 
corresponding to different actions, with the maximum value 
indicating the optimal action for the current mutation. To 

avoid getting stuck in local optima, the ε-greedy strategy is 
used. Considering the variable attributes of the branch block 
and the characteristics of known vulnerabilities, the 
following seven mutation methods are added to the action set: 
1) Mutate the branch instruction type attribute in the train 

and victim branch structures to B.cond, and mutate the 
branch direction attribute to false. 

2) Mutate the branch instruction type attribute in the train 
and victim branch structures to RET. 

3) Mutate the branch execution address in the train branch 
structure to make it different from the victim branch 
structure. 

4) Mutate the branch execution address in the victim branch 
structure to make it different from the train branch 
structure. 

5) Mutate the branch direction attribute in the train branch 
structure to false. 

6) Mutate the branch direction attribute in the train branch 
structure to true. 

7) Random mutation with a probability of ε. 

C. State Information Collection 

In reinforcement learning, the state information is 
calculated by the analysis module. Below, we will describe 
the method for collecting state information in detail. 

The analysis module pre-analyzes potential results based 
on known attack patterns of branch prediction vulnerabilities 
and possible branch prediction behaviors before obtaining 
execution results. It categorizes each result according to the 
reasons for its occurrence, as detailed in Table 1. 

Throughout the execution process, the analysis module is 
responsible for collecting the test results (highest count of 
magic number values) and monitoring information 
(poisoning success rate and side-channel success rate) sent by 
the execution module through the pipeline. To accurately 
understand and represent the state of the processor 
microarchitecture under attack and balance the integrity of 
vulnerability information with the simplicity of 
dimensionality, the state value is constructed as shown in (1). 

       (1) 

Equation (1) includes the poisoning success rate and 
side-channel success rate of the test case, reflecting the threat 
level to the processor microarchitecture and the quality of the 
test case. Additionally, the fitness function contains the size 

parameter, which reflects whether the test case triggers a 
large number of the same type of vulnerabilities. A higher 
state value indicates higher quality of the current test case and 
a greater likelihood of triggering different types of 
vulnerabilities. 

D. Directed Reward Function 

During DQN training, the reward values are primarily 
determined based on the state value of the test case and the 
type of vulnerability triggered. The first reward factor is 
calculated as the reciprocal of the difference between the 
current state value of the test case and the upper limit of the 
state value (denoted as state_max). Additionally, the second 
reward factor is determined by the weight ω associated with 
the type of vulnerability triggered by the test case. Different 
weights are assigned to various execution result types, as 
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Cache Block Cache Block 

mov x0 num2 mov x0 num1 

Branch Block 

PMU Sampling1 

http://www.ijerm.com/


Guided Processor Security Fuzzing Scheme Based on DQN 

46 www.ijerm.com 

 

 

 
detailed in Table 1. The principle for weight allocation is that 
execution result types with known attack patterns are 
assigned lower weights, while those with unknown attack 
patterns are assigned higher weights. Moreover, the higher 
the degree of unanalyzability, the higher the weight assigned. 

Table 1: Weight Table for Categorizing Execution Results of 
Branch Prediction Vulnerability Fuzz Testing System 

thereby accelerating the model's learning of new types of 
vulnerabilities. 

The loss function of DQN is the square of the difference 
between the Q-values of the target network and the training 
network, expressed as (5): 

             (5) 

The target Q can be represented as (6): 
 
 
 
 
 
 

v1_new 0.4 

v2_new 0.4 

 (6) 

Where ω represents the network parameters, which are 
learned using gradient descent as (7): 

 

no_prediction 0.3 

neg 0.4 

addr_match 0.6 

pc+1 0.4 

other 1 

invalid 0.1 
 

 

The actual reward value is calculated in the form of a joint 
reward, as shown in (2). 

 

                               (2) 

Here, p and q are multiplication factors, with their sum 

 
Figure 3: Processor Vulnerability Fuzz Testing System Based 

on DQN Algorithm 

being r1  and r2  represent the difference between the test 

case's state value and the upper limit of the state value, and 
the weight of the test case triggering the vulnerability type, 

V. EXPERIMENTAL RESULTS AND ANALYSIS 
 

A. Experimental Environment Configuration 

where r1  and r2 are shown in (3) and (4): 
 

1 
On the Hikey970 platform, branch prediction vulnerability 

fuzz testing systems with genetic algorithm and DQN as 
r1  

statemax  s

tate 

(3) feedback mechanisms were respectively executed. The 
platform's operating system and processor configurations are 
outlined in Table 2. In terms of software configuration, only 

r2  (4) any version of the g++ compiler and Python 3 interpreter are 
required. Apart from the pteditor tool, this testing system 

The introduction of the joint reward R allows the reward to 
dynamically adjust during the system's operation, enabling 
faster discovery of different types of vulnerabilities. 

The specific algorithm is illustrated in Figure 3. In the 
DQN  module,  two  structurally  identical  but  functionally 

does not rely on any third-party toolkits. 

Table 2: Experimental Environment Configuration for 
Branch Prediction Vulnerability Fuzz Testing System 

 
 

L1 

independent neural networks are defined: the training 
network (TrainingNet) and the target network (TargetNet). 
Initially, the Agent receives state information and rewards 

Device OS Kernel 
CPU

 
Architecture 

 

Linux 

Data 
Cache 

L2 
Cache 

from the fuzz testing system analysis module, guiding the 
mutation   of   test   cases   through   interaction   with   the 

Hikey970 Ubuntu 
18.04.5 

4.9.78 
ARM 

Cortex-A73 64KB 2048KB 

environment to train the network. To optimize the learning 
process, the model's parameters are periodically 
synchronized from the training network to the target network. 
The purpose of setting up the experience replay mechanism is 
to reduce the dependence between training samples and 
alleviate the potential instability of action value function 
estimation caused by this dependence. During actual training, 
the experience buffer provides a balanced mix of historical 
and new samples, breaking the time-series dependence of 
samples  and  increasing  the  utilization  rate  of  samples, 

B. Experimental Procedure 

On the Hikey970 platform, branch prediction vulnerability 
fuzz testing systems were separately executed using genetic 
algorithm and DQN as feedback mechanisms. Prior to 
running the systems, configuration of the experimental 
platform is required. As the testing system relies on the 
pteditor tool for editing page table states and depends on the 
processor's PMU functionality, it is necessary to cross-
compile the pteditor kernel driver module on the host 
machine and then install it on the target machine while setting 

(7) 
Experience 
Replay Unit 

Processor 
Vulnerability 
Fuzz Testing 

System 

TrainingNet 

Copy 
Parameters 

TargetNet 

Gradient 
of Loss 

Function 

Loss Function 

Vulnerability Weight 

v1 0.2 

v2 0.2 

rsb 0.2 
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PMU-related registers to enable PMU functionality. The 
testing system requires configuration of four parameters: the 
length of the train sequence in test cases, i.e., the number of 
branch structures; the number of repetitions for executing a 
single test case; and the feedback mechanism. 

In the experiment, the train sequence length was 
configured as 5, the number of repetitions for executing a 
single test case was set to 2000, and there were two feedback 
mechanisms: genetic algorithm and DQN. Due to the 
unreliable nature of the results decoded from the cache side 
channel, multiple executions were conducted, and the most 
reliable value was selected based on statistical results. 

Table 3 presents the average generation time, average 
execution time, and average analysis time for each test case 
under the two different feedback mechanisms. 

Table 3: Testing Time Statistics for Branch Prediction 
Vulnerability Fuzz Testing System 

algorithm-based model is 28,924, while for the DQN-based 
model, it is 22,364. The feedback mechanism based on DQN 
performs better, with an average speed improvement of 1.29 
times compared to the genetic algorithm-based approach. 

 

Figure 4: The number of test cases needed to be generated for 
 

Feedback 
Mechanism 

 
Genetic 

Average 
Generation 

Time 

 

Average 
Execution 

Time 

 
Average 

Analysis Time 

10 rounds under two feedback mechanisms 

 
VI. CONCLUSION 

Algorithm 2ms 409ms 4ms 

DQN 2ms 405ms 4ms 
 

 

The average testing time per test case under the two 
feedback mechanisms is essentially equal based on the data in 
the table. Therefore, the main factor affecting the overall 
testing efficiency is the number of executed test cases. This 
experiment will compare the performance of the two 
feedback mechanisms by measuring the number of test cases 
needed to achieve the same metric. In order to reflect both the 
quality and coverage of the mutated test cases, specific 
indicators are defined as follows: 
1) The average state value of the 20 newly mutated test 

cases is greater than 1.2. 
2) The mutated test cases cover the 11 possible types of 

vulnerabilities mentioned above. 
The implementation of the DQN agent is based on a fully 

connected deep neural network model. The neural network 
model consists of three fully connected layers, each with 24 
neurons, and ReLU activation functions are used to increase 
nonlinearity. The output layer size is equal to the size of the 
action space, and a linear activation function is used to 
predict the Q-values for each action. The loss function of the 
network is mean squared error (MSE), which evaluates the 
difference between the predicted Q-values and the target 
Q-values. The optimizer is Adam optimization  algorithm 
with a learning rate of 0.001 to adapt to the parameter update 
process of the model. During training, the agent balances 
exploration and exploitation based on the ε-greedy strategy. 
Initially, the agent tends to randomly explore different 
actions; as learning progresses, the exploration rate gradually 
decreases, and the agent relies more on the learned Q-values 
for action selection. Additionally, the experience replay 
mechanism is employed, storing the agent's experiences in a 
fixed-size replay buffer, and then randomly sampling small 
batches of experiences for learning, which helps break the 
correlation between data and improve learning stability. 

C. Experimental Results 

The experimental results, as shown in Figure 4, indicate 
that  the  number  of  test  cases  required  for  the  genetic 

This study proposes a guided processor security fuzzing 
testing method based on the DQN reinforcement learning 
algorithm. By designing a reward function and state values, 
dynamic adjustments to test cases are achieved to optimize 
the mutation strategy during the testing process. Currently, 
there is no similar fuzzing testing system targeting branch 
prediction processor vulnerabilities in the industry. 
Experimental results on the ARMv8 platform show that 
compared to traditional feedback mechanisms using genetic 
algorithms, this approach significantly reduces the required 
time while covering an equal number of branch prediction 
vulnerabilities. The efficiency of vulnerability detection is 
improved by 1.29 times. This achievement demonstrates the 
effectiveness of the DQN algorithm in guided fuzzing testing 
and its underlying principles, providing a new research 
direction for future processor vulnerability exploration and 
security testing. 
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