
43 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-05, May 2024

Guided Processor Security Fuzzing Scheme Based on
DQN

Yunkai Cui, Hanning Dong

Abstract— In recent years, with the emergence of vulnerabilities

such as "Spectre" and "Meltdown", efficient testing of

processor security has become an important issue for research.

Fuzz testing has also been applied in processor security testing

in recent years. However, genetic algorithms exhibit a certain

degree of blindness when performing fine-grained mutation,

which can lead to the generation of test cases that trigger the

same type of vulnerabilities, thereby failing to cover more types

of vulnerabilities in a short period of time. To address the above

issues, a guided processor security fuzzing scheme based on

DQN reinforcement learning is proposed. This scheme

constructs a reward function by associating the state values of

test cases with the weights corresponding to the triggered

vulnerability types. It employs reinforcement learning to guide

the generation of test cases with targeted and directional

mutations, thereby quickly triggering different types of

vulnerabilities. Currently, there is no similar fuzz testing system

in the industry. Experiments conducted on the ARMv8

platform demonstrate that compared to traditional approaches

using genetic algorithms as feedback, this scheme significantly

reduces the required time while covering an equivalent number

of branch prediction vulnerabilities. The efficiency of

vulnerability detection is improved by 1.29 times.

Index Terms— Processor vulnerability detection, fuzz testing,

DQN reinforcement learning, ARMv8, branch prediction

vulnerabilities.

I. INTRODUCTION

With the rapid advancement of computer hardware
technology, the microarchitecture of processors has become
increasingly complex, posing numerous security challenges.
Particularly in recent years, the discovery of vulnerabilities
such as Spectre [1] and Meltdown [2] has revealed the severe
security threats faced by modern processors. The existence of
these vulnerabilities not only jeopardizes data security but
also exposes shortcomings in existing processor designs and
testing methods. Therefore, the development of more
effective methods for exploring processor vulnerabilities and
security testing has become an urgent need.

The latest research utilizing fuzz testing principles for
processor vulnerability testing is exemplified by Moghimi et
al., who developed a tool named Transynther [3] to scan
MDS [4] vulnerabilities. Although Transynther is also a fuzz
testing tool, its implementation is incomplete, lacking a
feedback mechanism and being highly restrictive in
processor monitoring methods. Additionally, the generation

Manuscript received May 24, 2024
Yunkai Cui, Computer Science, Beijing Information Science and

Technology University, Beijing, China
Hanning Dong, Computer Science, Hebei Normal University for

Nationalities, Chengde, China

module of Transynther itself has a simplistic structure and
can only test MDS-like vulnerabilities. However, where this
tool can be informative is in its method of generating test
cases through code block assembly.

Traditional fuzz testing systems employ genetic
algorithms [5] for feedback in the test case generation module.
Due to the fact that genetic algorithms evaluate the entire
solution in each generation and perform selection and
mutation at a higher level, while the test cases in this fuzz
testing system are based on instruction blocks, the finest
granularity of genetic algorithm mutation operations is at the
level of instruction blocks. This leads to a certain degree of
blindness in test case mutation, resulting in frequent
triggering of the same type of vulnerabilities during actual
testing and significantly reducing testing efficiency.
According to Sutton and Barto's research [6], reinforcement
learning, with its unique reward mechanism and policy
gradient methods, can effectively guide fine-grained
behavioral adjustments, making it significantly superior to
traditional genetic algorithms when handling tasks with
complex state spaces. This suggests that reinforcement
learning is more suitable for making action selections at a
very fine-grained level, where each action is chosen based on
the current state and learned policy, making it more suitable
for guiding fine-grained mutations at the level of instruction
blocks.

Based on the advantages of reinforcement learning in
handling fine-grained mutations, a high-performance guided
processor security fuzzing scheme based on DQN(Deep Q-
network) reinforcement learning [7] is proposed. Firstly, by
defining the state values of test cases, they can accurately
understand and represent the state of processor
microarchitecture under attack. Secondly, utilizing the
defined state values and weights corresponding to the
triggered vulnerability types of test cases, a reward function
is constructed. The DQN reinforcement learning model is
updated based on the state and reward, and the mutation
strategy is optimized according to the obtained model to
generate targeted and guided test cases. The innovation of
this research lies in defining the state values of test cases and
constructing corresponding reward functions, applying DQN
algorithm to fuzz testing, and optimizing the generation and
mutation process of test cases. Currently, there is no similar
fuzz testing system for branch prediction class processor
vulnerabilities in the industry. Experiments conducted on the
ARMv8 platform demonstrate that compared to traditional
approaches using genetic algorithms as feedback, this
scheme significantly reduces the required time while
covering an equivalent number of branch prediction class
vulnerabilities. This not only provides a new approach for
processor security testing but also offers important references

http://www.ijerm.com/

Guided Processor Security Fuzzing Scheme Based on DQN

44 www.ijerm.com

for future more secure processor designs and security
strategy formulation.

II. BACKGROUND

A. Processor Security Vulnerabilities

In recent years, the Spectre vulnerability, discovered,
exploits flaws in the branch prediction mechanism. When a
processor executes a branch instruction, it cannot
immediately calculate the target address of the branch jump.
The branch predictor predicts possible jump addresses and
continues to fetch and execute instructions in the pipeline.
When the processor detects a prediction error, it rolls back the
processor state. However, if the predicted execution
instructions modify the state of components such as the
Cache, the processor does not roll back these components.
Attackers can exploit this by using Cache side-channel
attacks to steal sensitive information. The Spectre
vulnerability can be classified into three types based on the
different components of the branch prediction unit filled in
the first step: Spectre v1 [1], Spectre v2 [1] and Spectre RSB
[8]. In addition, some research has derived different attack
methods based on the variants of these three Spectre
vulnerabilities. For example, Zhang [9] et al. found that
partial address bit matching can trigger Spectre v2 on Intel
processors. SGXPectre [10], NetSpectre [11], and
SmoTherSpectre [12] adaptively modify Spectre attacks for
different application scenarios. The MDS vulnerabilities
detected by Transynther are not entirely the same as Spectre
and Meltdown. It can leak data from various buffers inside
the processor, and depending on the source and method of
data leakage, it has different variants. Fallout [13] leaks data
from the Store Buffer, RIDL [13] leaks data from the Line
Fill Buffer, and ZombieLoad [14] and Medusa [3] are
variants of RIDL with the same basic principle but different
attack methods. There are also attacks targeting other
components. For example, Foreshadow [15] can attack Intel
SGX, with a basic principle similar to Meltdown but
requiring leaked data to be kept in the L1 Cache. TLBleed [16]
exploits the feature of hyper-threading to share the TLB,
allowing one thread to monitor the TLB usage of another
thread, resulting in information leakage in specific scenarios.
Mamjam [17] and PortSmash [18] exploit the sharing of
components to degrade the performance of the target service.

B. DQN

When you submit your final version, after your paper has
been accepted, prepare it in two-column format, including
figures and tables. DQN combines the powerful
representation learning capability of deep neural networks
with the policy learning capability of Q-learning. Q-learning
is a classic reinforcement learning algorithm designed to
address problems in Markov decision processes by learning
optimal action selection strategies. The algorithm learns the
optimal policy by continuously trying actions in the
environment and updating based on reward signals for each
state-action pair. However, Q-learning faces challenges when
dealing with problems with large state spaces, as it requires
maintaining a Q-value table containing all state-action pairs,
which may become impractical in practice.

To address this challenge, DQN has been introduced. By
utilizing neural networks to approximate the Q-value
function, DQN can handle large state spaces and learn
directly from high-dimensional raw inputs. In recent years, it
has been commonly combined with fuzz testing. By
leveraging the learning capabilities of DQN and the
automation features of fuzz testing, adaptive testing methods
can be implemented, thereby enhancing testing coverage and
efficiency.

III. BRANCH PREDICTION CLASS VULNERABILITY FUZZ

TESTING SYSTEM

The Branch Prediction Vulnerability Fuzz Testing System,
as depicted in Figure 1, consists of three main components:
the test case generation module, the execution module, and
the analysis module.

Figure 1: Overall architecture of the branch prediction
vulnerability fuzz testing system

The test case generation module utilizes a DQN
reinforcement learning model for feedback to generate new
test cases through mutation. In the figure, the test case pool
selects initial test cases from the seed library. In each round,
new test cases are generated by mutating the previous ones
under the guidance of the DQN. The execution module
comprises two processes: the attacker process and the victim
process. These processes execute independently to simulate
attacks and assess vulnerability. The analysis module
receives test cases, analyzes their features, and then receives
the execution results to determine if the test cases trigger
vulnerabilities and categorizes them accordingly. Based on
the analysis results, reward information is calculated and fed
back into the reinforcement learning model to guide further
test case mutation. This testing system requires launching
two cores to execute different modules, denoted as Core 0
and Core 1. Core 0 handles the test case generation and
analysis modules, while Core 1 exclusively handles the
execution module, aiming to mitigate interference from
unrelated processes on the execution module.

seed library

test case pool

environment
configuration

test case
execution

DQN

vulnerability
analysis

state information and
reward calculation

Core 0

test case generation module

Core 1

execution module

attacker
test case

configuration

mutation

test case

result

analysis module

http://www.ijerm.com/

45 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-05, May 2024

RET Block RET Block

IV. TEST CASE GENERATION MODULE BASED ON DQN

A. Test Case Structure

The test case generation module employs an "N+1 branch
structure" pattern to generate a test case. The first N branch
structures are utilized to populate the branch predictor
microarchitecture, while the last one serves as the victim
branch. The composition of each branch structure is
illustrated in Figure 2.

Figure 2: The composition of a single branch structure

A single branch structure consists of a branch block, two
Cache channel blocks, two return blocks, and some auxiliary
instruction segments. The auxiliary instruction block,
specifically the PMU event sampling, is primarily used to
monitor whether the branch block triggers branch-related
events. By sampling with PMU [19] and detecting Cache
side-channel, the system can assess the branch prediction
behavior, thereby analyzing whether the processor is
vulnerable to a particular type of vulnerability.

B. Mutation Action Set

The branch block includes four adjustable attributes:
execution address, target address, branch direction, and
branch instruction type. There are six types of execution
addresses defined in this testing system, each corresponding
to a mutation type based on a fixed virtual address. The
purpose of setting different address mutation types is to
potentially trigger cross-address branch prediction
interference. There are 16 types of target addresses, with each
type corresponding to a virtual address page. Branch
direction has three types: jump, no jump (for conditional
branch instructions), and unconditional jump (for
unconditional instructions). Branch instruction type
represents different types of branch instructions specified in
the ARMv8-Aarch64 instruction set [20]. The instruction set
provides seven types of conditional branch instructions, but
B.cond instructions have different nzcv field values
representing different branch conditions, resulting in a total
of 14 conditional branch instructions. There are six
unconditional branch instructions. Therefore, there are a total
of 26 types of branch block instructions.

The output of the DQN consists of Q-Values
corresponding to different actions, with the maximum value
indicating the optimal action for the current mutation. To

avoid getting stuck in local optima, the ε-greedy strategy is
used. Considering the variable attributes of the branch block
and the characteristics of known vulnerabilities, the
following seven mutation methods are added to the action set:
1) Mutate the branch instruction type attribute in the train

and victim branch structures to B.cond, and mutate the
branch direction attribute to false.

2) Mutate the branch instruction type attribute in the train
and victim branch structures to RET.

3) Mutate the branch execution address in the train branch
structure to make it different from the victim branch
structure.

4) Mutate the branch execution address in the victim branch
structure to make it different from the train branch
structure.

5) Mutate the branch direction attribute in the train branch
structure to false.

6) Mutate the branch direction attribute in the train branch
structure to true.

7) Random mutation with a probability of ε.

C. State Information Collection

In reinforcement learning, the state information is
calculated by the analysis module. Below, we will describe
the method for collecting state information in detail.

The analysis module pre-analyzes potential results based
on known attack patterns of branch prediction vulnerabilities
and possible branch prediction behaviors before obtaining
execution results. It categorizes each result according to the
reasons for its occurrence, as detailed in Table 1.

Throughout the execution process, the analysis module is
responsible for collecting the test results (highest count of
magic number values) and monitoring information
(poisoning success rate and side-channel success rate) sent by
the execution module through the pipeline. To accurately
understand and represent the state of the processor
microarchitecture under attack and balance the integrity of
vulnerability information with the simplicity of
dimensionality, the state value is constructed as shown in (1).

 (1)

Equation (1) includes the poisoning success rate and
side-channel success rate of the test case, reflecting the threat
level to the processor microarchitecture and the quality of the
test case. Additionally, the fitness function contains the size

parameter, which reflects whether the test case triggers a
large number of the same type of vulnerabilities. A higher
state value indicates higher quality of the current test case and
a greater likelihood of triggering different types of
vulnerabilities.

D. Directed Reward Function

During DQN training, the reward values are primarily
determined based on the state value of the test case and the
type of vulnerability triggered. The first reward factor is
calculated as the reciprocal of the difference between the
current state value of the test case and the upper limit of the
state value (denoted as state_max). Additionally, the second
reward factor is determined by the weight ω associated with
the type of vulnerability triggered by the test case. Different
weights are assigned to various execution result types, as

PMU
Sampling2

PMU
Sampling2

Cache Block Cache Block

mov x0 num2 mov x0 num1

Branch Block

PMU Sampling1

http://www.ijerm.com/

Guided Processor Security Fuzzing Scheme Based on DQN

46 www.ijerm.com

detailed in Table 1. The principle for weight allocation is that
execution result types with known attack patterns are
assigned lower weights, while those with unknown attack
patterns are assigned higher weights. Moreover, the higher
the degree of unanalyzability, the higher the weight assigned.

Table 1: Weight Table for Categorizing Execution Results of
Branch Prediction Vulnerability Fuzz Testing System

thereby accelerating the model's learning of new types of
vulnerabilities.

The loss function of DQN is the square of the difference
between the Q-values of the target network and the training
network, expressed as (5):

 (5)

The target Q can be represented as (6):

v1_new 0.4

v2_new 0.4

 (6)

Where ω represents the network parameters, which are
learned using gradient descent as (7):

no_prediction 0.3

neg 0.4

addr_match 0.6

pc+1 0.4

other 1

invalid 0.1

The actual reward value is calculated in the form of a joint
reward, as shown in (2).

 (2)

Here, p and q are multiplication factors, with their sum

Figure 3: Processor Vulnerability Fuzz Testing System Based

on DQN Algorithm

being r1 and r2 represent the difference between the test

case's state value and the upper limit of the state value, and
the weight of the test case triggering the vulnerability type,

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment Configuration

where r1 and r2 are shown in (3) and (4):

1
On the Hikey970 platform, branch prediction vulnerability

fuzz testing systems with genetic algorithm and DQN as
r1

statemax s

tate

(3) feedback mechanisms were respectively executed. The
platform's operating system and processor configurations are
outlined in Table 2. In terms of software configuration, only

r2 (4) any version of the g++ compiler and Python 3 interpreter are
required. Apart from the pteditor tool, this testing system

The introduction of the joint reward R allows the reward to
dynamically adjust during the system's operation, enabling
faster discovery of different types of vulnerabilities.

The specific algorithm is illustrated in Figure 3. In the
DQN module, two structurally identical but functionally

does not rely on any third-party toolkits.

Table 2: Experimental Environment Configuration for
Branch Prediction Vulnerability Fuzz Testing System

L1

independent neural networks are defined: the training
network (TrainingNet) and the target network (TargetNet).
Initially, the Agent receives state information and rewards

Device OS Kernel
CPU

Architecture

Linux

Data
Cache

L2
Cache

from the fuzz testing system analysis module, guiding the
mutation of test cases through interaction with the

Hikey970 Ubuntu
18.04.5

4.9.78
ARM

Cortex-A73 64KB 2048KB

environment to train the network. To optimize the learning
process, the model's parameters are periodically
synchronized from the training network to the target network.
The purpose of setting up the experience replay mechanism is
to reduce the dependence between training samples and
alleviate the potential instability of action value function
estimation caused by this dependence. During actual training,
the experience buffer provides a balanced mix of historical
and new samples, breaking the time-series dependence of
samples and increasing the utilization rate of samples,

B. Experimental Procedure

On the Hikey970 platform, branch prediction vulnerability
fuzz testing systems were separately executed using genetic
algorithm and DQN as feedback mechanisms. Prior to
running the systems, configuration of the experimental
platform is required. As the testing system relies on the
pteditor tool for editing page table states and depends on the
processor's PMU functionality, it is necessary to cross-
compile the pteditor kernel driver module on the host
machine and then install it on the target machine while setting

(7)
Experience
Replay Unit

Processor
Vulnerability
Fuzz Testing

System

TrainingNet

Copy
Parameters

TargetNet

Gradient
of Loss

Function

Loss Function

Vulnerability Weight

v1 0.2

v2 0.2

rsb 0.2

http://www.ijerm.com/

47 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-05, May 2024

PMU-related registers to enable PMU functionality. The
testing system requires configuration of four parameters: the
length of the train sequence in test cases, i.e., the number of
branch structures; the number of repetitions for executing a
single test case; and the feedback mechanism.

In the experiment, the train sequence length was
configured as 5, the number of repetitions for executing a
single test case was set to 2000, and there were two feedback
mechanisms: genetic algorithm and DQN. Due to the
unreliable nature of the results decoded from the cache side
channel, multiple executions were conducted, and the most
reliable value was selected based on statistical results.

Table 3 presents the average generation time, average
execution time, and average analysis time for each test case
under the two different feedback mechanisms.

Table 3: Testing Time Statistics for Branch Prediction
Vulnerability Fuzz Testing System

algorithm-based model is 28,924, while for the DQN-based
model, it is 22,364. The feedback mechanism based on DQN
performs better, with an average speed improvement of 1.29
times compared to the genetic algorithm-based approach.

Figure 4: The number of test cases needed to be generated for

Feedback
Mechanism

Genetic

Average
Generation

Time

Average
Execution

Time

Average

Analysis Time

10 rounds under two feedback mechanisms

VI. CONCLUSION

Algorithm 2ms 409ms 4ms

DQN 2ms 405ms 4ms

The average testing time per test case under the two
feedback mechanisms is essentially equal based on the data in
the table. Therefore, the main factor affecting the overall
testing efficiency is the number of executed test cases. This
experiment will compare the performance of the two
feedback mechanisms by measuring the number of test cases
needed to achieve the same metric. In order to reflect both the
quality and coverage of the mutated test cases, specific
indicators are defined as follows:
1) The average state value of the 20 newly mutated test

cases is greater than 1.2.
2) The mutated test cases cover the 11 possible types of

vulnerabilities mentioned above.
The implementation of the DQN agent is based on a fully

connected deep neural network model. The neural network
model consists of three fully connected layers, each with 24
neurons, and ReLU activation functions are used to increase
nonlinearity. The output layer size is equal to the size of the
action space, and a linear activation function is used to
predict the Q-values for each action. The loss function of the
network is mean squared error (MSE), which evaluates the
difference between the predicted Q-values and the target
Q-values. The optimizer is Adam optimization algorithm
with a learning rate of 0.001 to adapt to the parameter update
process of the model. During training, the agent balances
exploration and exploitation based on the ε-greedy strategy.
Initially, the agent tends to randomly explore different
actions; as learning progresses, the exploration rate gradually
decreases, and the agent relies more on the learned Q-values
for action selection. Additionally, the experience replay
mechanism is employed, storing the agent's experiences in a
fixed-size replay buffer, and then randomly sampling small
batches of experiences for learning, which helps break the
correlation between data and improve learning stability.

C. Experimental Results

The experimental results, as shown in Figure 4, indicate
that the number of test cases required for the genetic

This study proposes a guided processor security fuzzing
testing method based on the DQN reinforcement learning
algorithm. By designing a reward function and state values,
dynamic adjustments to test cases are achieved to optimize
the mutation strategy during the testing process. Currently,
there is no similar fuzzing testing system targeting branch
prediction processor vulnerabilities in the industry.
Experimental results on the ARMv8 platform show that
compared to traditional feedback mechanisms using genetic
algorithms, this approach significantly reduces the required
time while covering an equal number of branch prediction
vulnerabilities. The efficiency of vulnerability detection is
improved by 1.29 times. This achievement demonstrates the
effectiveness of the DQN algorithm in guided fuzzing testing
and its underlying principles, providing a new research
direction for future processor vulnerability exploration and
security testing.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security
and Privacy (SP), IEEE, 2019, pp. 1-19.

[2] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), USENIX Association,
2018, pp. 973-990.

[3] D. Moghimi, M. Lipp, B. Sunar, et al., “Medusa:
Microarchitectural Data Leakage via Automated Attack
Synthesis,” in 29th USENIX Security Symposium (USENIX
Security 20), USENIX Association, 2020, pp. 1427-1444.

[4] C. Canella, D. Genkin, L. Giner, et al., “Fallout: Leaking data
on meltdown-resistant CPUs,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and
Communications Security, Association for Computing
Machinery, 2019, pp. 769-784.

[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, 1989.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing Atari with
deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[8] E. M. Koruyeh, K. N. Khasawneh, C. Song, et al., “Spectre

http://www.ijerm.com/

Guided Processor Security Fuzzing Scheme Based on DQN

48 www.ijerm.com

returns! Speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies,
USENIX Association, 2018, pp. 3.

[9] T. Zhang, K. Koltermann, D. Evtyushkin, “Exploring branch
predictors for constructing transient execution trojans,” in
Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, Association for Computing Machinery,
2020, pp. 667-682.

[10] G. Chen, S. Chen, Y. Xiao, et al., “Sgxpectre: Stealing Intel
secrets from SGX enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy
(EuroS&P), IEEE, 2019, pp. 142-157.

[11] M. Schwarz, M. Schwarzl, M. Lipp, et al., “Netspectre: Read
arbitrary memory over network,” in European Symposium on
Research in Computer Security, Springer, Cham, 2019, pp.
279-299.

[12] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, et al.,
“SMoTherSpectre: Exploiting speculative execution through
port contention,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
Association for Computing Machinery, 2019, pp. 785-800.

[13] S. S. Van, A. Milburn, S. Österlund, et al., “RIDL: Rogue
in-flight data load,” in 2019 IEEE Symposium on Security and
Privacy (SP), IEEE, 2019, pp. 88-105.

[14] M. Schwarz, M. Lipp, D. Moghimi, et al., “ZombieLoad:
Cross-privilege-boundary data sampling,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, Association for Computing
Machinery, 2019, pp. 753-768.

[15] B. J. Van, M. Minkin, O. Weisse, et al., “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution,” in 27th USENIX Security
Symposium (USENIX Security 18), USENIX Association,
2018, pp. 991-1008.

[16] B. Gras, K. Razavi, H. Bos, et al., “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB
attacks,” in 27th USENIX Security Symposium (USENIX
Security 18), USENIX Association, 2018, pp. 955-972.

[17] A. Moghimi, J. Wichelmann, T. Eisenbarth, et al., “Memjam:
A false dependency attack against constant-time crypto
implementations,” International Journal of Parallel
Programming, vol. 47, no. 4, pp. 538-570, 2019.

[18] A. C. Aldaya, B. B. Brumley, S. ul Hassan, et al., “Port
contention for fun and profit,” in 2019 IEEE Symposium on
Security and Privacy (SP), IEEE, 2019, pp. 870-887.

[19] M. Spisak, “Hardware-Assisted Rootkits: Abusing
Performance Counters on the ARM and x86 Architectures,” in
10th USENIX Workshop on Offensive Technologies,
USENIX Association, 2016, pp. 79-90.

[20] C. S. Components, “Technical Reference Manual,” ARM DDI
H, vol. 314, pp. 2004-2009, 2009.

http://www.ijerm.com/

	Yunkai Cui, Hanning Dong

