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Abstract— In the analysis of functional magnetic 

resonance imaging (fMRI) images, brain partitioning is a 

core step in the generation, analysis, and study of 

functional connectivity of human brain networks. 

Previous related research mainly relied on meta-analysis, 

random standards, or brain atlases generated based on 

original anatomical data to define the nodes of human 

brain networks. However, these methods have limitations 

in terms of functional specificity and may not accurately 

reflect the actual neural functional partitions. In 

contrast, brain functional partitioning can effectively 

avoid the above problems. Therefore, This paper, in light 

of the characteristics of resting-state fMRI data, proposes 

a Density First Clustering (DF-OPTICS) algorithm based 

on the OPTICS algorithm. By using local density to 

replace core distance and reachability distance metrics, 

this algorithm avoids clustering errors and ensures that 

the result sequence is output in order while considering 

the spatial continuity of the partition. Additionally, to 

prevent the original OPTICS algorithm from consuming 

a large amount of computing time in neighborhood 

search, DF-OPTICS utilizes the existing voxel spatial 

coordinate information for local voxel search, 

significantly reducing the computational load of 

neighborhood search. Simulation experiment results 

show that the algorithm proposed in this paper 

significantly outperforms other comparison algorithms in 

multiple comprehensive evaluation indicators and 

achieves satisfactory partitioning effects. 

     

    Index Terms—Functional Magnetic Resonance 

Imaging； Brain Functional Parcellation； Clustering 

Algorithm；OPTICS 

I. INTRODUCTION 

  The operational mechanisms of the human brain have long 

been a central theme in interdisciplinary research. Its intrinsic 

cognitive functions, encompassing perception, 

decision-making, emotional regulation, memory storage, and 

retrieval, not only form the foundation of individual behavior 

but also profoundly shape social interactions and cultural 

evolution[1]. Understanding how the brain integrates and 

processes information through the 

electrochemicaltransmission of signals between neurons is 

key to uncovering the nature of consciousness, the origins of 
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intelligence, and the principles of neural plasticity[2].To 

analyze this dynamic process, researchers have developed a 

multi-level technological framework, ranging from 

microscopic approaches such as neurotransmitter receptor 

analysis and extracellular recordings to macroscopic 

techniques like electroencephalography (EEG) monitoring 

and blood oxygen metabolism imaging[3]. Among these, 

non-invasive techniques have emerged as essential tools for 

exploring brain functional networks and pathological 

mechanisms due to their safety, repeatability, and 

precision.Furthermore, research paradigms in neuroscience 

are profoundly influencing advancements in computational 

fields. Inspired by neuronal signal transmission and synaptic 

plasticity, artificial neural networks and deep learning 

models replicate the hierarchical information processing 

characteristics of the brain, demonstrating brain-like 

intelligence in tasks such as pattern recognition and natural 

language processing[4-6].  

  Whole-brain parcellation is a fundamental component of 

neuroscience research, playing a crucial role in understanding 

brain function and structure. For instance, the Human 

Connectome Project aims to construct a comprehensive atlas 

of human brain function and structure, further highlighting 

the critical importance of whole-brain parcellation in 

neuroscience[7]. Beyond these large-scale research initiatives, 

numerous other research teams are actively advancing work 

related to brain parcellation. Over the years, these efforts 

have accumulated a wealth of valuable findings, significantly 

contributing to the ongoing progress of brain 

science[8-10].Currently, widely used templates such as the 

Automated Anatomical Labeling (AAL) atlas and Brodmann 

Area (BA) maps segment the brain based on 

cytoarchitectonic features[11]. However, these structural 

templates do not fully account for functional connectivity 

between brain regions, inter-individual variability, or the 

distinct functional characteristics of each region. As a result, 

brain regions derived solely from these templates may have 

limitations in functional interpretation, potentially affecting 

the accuracy of disease diagnosis and treatment analysis.To 

address these challenges, functional brain parcellation 

methods based on functional magnetic resonance imaging 

(fMRI) data have emerged[12,13]. By delineating functional 

brain regions, researchers can gain deeper insights into the 

organizational principles of brain function. Moreover, 

functional parcellation serves as a foundation for 

constructing brain functional networks using abstracted 

nodes or defining regions of interest (ROIs) in functional 

connectivity analysis[14]. Therefore, functional brain 

parcellation is a core step in neuroscience research, essential 

for both fundamental studies and clinical applications[15-17]. 
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Whole-brain functional parcellation can be achieved through 

four primary approaches: clustering-based methods, 

boundary mapping methods, independent component 

analysis (ICA)-based methods, and graph theory-based 

methods[18].In recent years, advancements in brain imaging 

technologies—particularly multi-modal magnetic resonance 

imaging (MRI), including structural, functional, and 

diffusion MRI—have provided increasingly rich datasets, 

enabling researchers to explore more precise and 

comprehensive methods for delineating the organizational 

patterns of the cerebral cortex[19]. Despite these 

methodological developments, the fundamental principle of 

functional parcellation remains rooted in the concept of 

connectivity—the function of each brain region is defined by 

its input and output patterns relative to other regions. These 

connectivity patterns play a crucial role in determining the 

functional organization of the brain.While emerging brain 

parcellation methods differ in both technical implementation 

and theoretical foundations, their overarching goal remains 

consistent: to identify brain regions that are functionally 

coherent yet anatomically heterogeneous based on specific 

neurobiological measurements, ultimately enhancing our 

understanding of brain function and organization[20-22]. 

    Clustering-based methods achieve brain functional 

parcellation by grouping voxels based on their feature 

distances, which typically reflect their similarity in 

connectivity patterns. During the clustering process, elements 

with similar connectivity characteristics are assigned to the 

same cluster, while those with significant differences are 

categorized into separate clusters.Numerous clustering 

algorithms have been applied to brain parcellation research. 

For example, Craddock et al. employed a spatially 

constrained spectral clustering method to partition the brain 

into 200 regions[23]. This approach segmented whole-brain 

fMRI data into spatially coherent regions with homogeneous 

functional connectivity, generating a region of interest (ROI) 

atlas. Building upon this work, Fan Lingzhong et al. 

introduced the Brainnetome Atlas, developing a spectral 

clustering-based framework for brain parcellation using 

structural connectivity data[24]. Their method produced 210 

cortical and 36 subcortical regions across the entire brain, 

providing a comprehensive and cross-validated parcellation 

atlas.To address the need for multi-modal data integration, 

Joshi et al. proposed the USCBrain atlas, which combines the 

BCI-DNI anatomical atlas with resting-state fMRI data[25]. 

By employing hierarchical clustering, they refined the brain 

into 130 functional subregions, demonstrating the potential 

of cross-modal integration for achieving a finer-grained 

parcellation. 

In summary, although significant methodological 

advancements have been made in brain functional 

parcellation, many unexplored areas remain. Future research 

should focus on further integrating multi-scale data, 

developing adaptive computational models, and establishing 

standardized evaluation frameworks to drive the transition of 

functional parcellation from methodological innovation to 

applications in precision medicine[26,27]. Ultimately, these 

advancements will provide stronger technological support for 

understanding the mechanisms of brain disorders and 

enabling personalized interventions. 

II.  MATERIAL AND METHODS 

A. The 1000 Functional Connectomes Project 

In this chapter, we utilize data from the Beijing_Zang dataset, 

which is part of the publicly available 1000 Functional 

Connectomes Project. This dataset, provided by Professor 

Yu-Feng Zang's team at Beijing Normal University, includes 

resting-state functional magnetic resonance imaging 

(rs-fMRI) data from 198 healthy adults aged 18-26 years with 

a balanced gender ratio.During scanning, all participants 

remained awake with their eyes closed and did not engage in 

any specific cognitive tasks to capture spontaneous brain 

activity signals. The data were acquired using a 3T Siemens 

Trio scanner, following a resting-state paradigm with the 

following parameters: repetition time (TR) = 2 seconds, 

voxel resolution = 3×3×3 mm³, and a scan duration of 

approximately 8 minutes (240 time points). Additionally, 

high-resolution T1-weighted structural images were 

collected for anatomical localization of brain regions.The 

dataset complies with ethical guidelines, with all participants 

providing informed consent and approval obtained from the 

institutional ethics committee. Due to its high quality and 

well-controlled conditions, this dataset has been widely used 

in studies on the default mode network (DMN), individual 

differences in functional connectivity, and methodological 

validation.Specifically, in this study, we use structural and 

resting-state fMRI data from 20 participants for further 

analysis. 

 

B. Density-First OPTICS Algorithm 

1. Algorithm Description and Initialization 

The algorithm initialization settings as a dataset  𝐷 ={𝑢1, 𝑢2, … , 𝑢𝑛} consisting of n voxels is assumed to exist in a 

three-dimensional brain space (𝑥, 𝑦, 𝑧). Each voxel has m 

attributes, denoted as 𝑢𝑖 = {𝑢𝑖1, 𝑢𝑖2, … , 𝑢𝑖𝑚}, and its spatial 

coordinates are represented as {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖}.In the dataset D, the 

feature distance between voxels 𝑢𝑖 and 𝑢𝑗is defined using the 

Euclidean distance as: 

             
2
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 The spatial distance between voxels 𝑢𝑖 and 𝑢𝑗 is also defined 

using the Euclidean distance as: 
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2. Definition of Neighborhood and Voxel Partitioning 

For any voxel 𝑢𝑖, its neighborhood is defined as a spherical 

region centered at  𝑢𝑖 with a radius r, denoted as 𝑁(𝑢𝑖 , 𝑟). 
This can be expressed as: 

      ( , ) { | ( , ) }i j space i jN u r u D d u u r=     

To identify high-density regions within the data and thereby 

facilitate effective clustering analysis, voxels need to be 

categorized into core voxels (CoreVoxel) and boundary 

voxels (BounVoxel). For a given voxel 𝑢𝑖 , a density 

threshold 𝜌𝑀𝑖𝑛  is defined. If the density of a voxel 𝜌𝑖 satisfies 𝜌𝑖 ≥ 𝜌𝑀𝑖𝑛 , indicating that the voxel is located in a 

sufficiently dense region, it is classified as a core voxel. 

Conversely, if 𝜌𝑖 < 𝜌𝑀𝑖𝑛 , meaning that the voxel's 

surrounding region is less densely populated, it is classified 

as a boundary voxel. This classification is formally defined as 

follows: 

http://www.ijerm.com/
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3. Generating the Result Sequence 

    (1) Initialize a max-heap PointTree and a result sequence 

ResultList. PointTree maintains the density of each voxel 

within its neighborhood, ensuring that the root node always 

corresponds to the voxel with the highest density. ResultList 

stores the visited voxels, forming the final ordered sequence. 

(2) For each voxel, create an object containing feature 

distance 𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , spatial distance 𝑑𝑠𝑝𝑎𝑐𝑒 , voxel density 𝜌𝑖 , 
and two flags: IsInList (indicating whether 𝑢𝑖  is in 

ResultList) and IsInTree (indicating whether 𝑢𝑖  is in 

PointTree). 

(3) Iterate through each voxel. If the voxel is not a core voxel, 

skip it. Otherwise, update the density of its neighbors add 𝑢𝑖 
to PointTree while maintaining the heap property, and insert 𝑢𝑖 into ResultList to mark it as visited. 

(4) Construct PointTree by extracting the root node with the 

highest density voxel 𝑢𝑀𝑎𝑥, expressed as: 

arg ( )Max k PointTreeu Max k=  

If 𝑢𝑀𝑎𝑥 is not a core voxel, directly add it to ResultList and 

mark it as visited, indicating that it is a boundary voxel. If 𝑢𝑀𝑎𝑥  is a core voxel but not yet in ResultList, visit its 

neighboring voxels and compute their densities. For voxels 

not already in PointTree, insert them, then update and adjust 

PointTree. Once the root node 𝑢𝑀𝑎𝑥 is fully processed, add it 

to ResultList and remove it from PointTree. 

 If PointTree is not empty, it indicates that the current cluster 

is still being traversed. In this case, jump to Step 4 and 

continue execution. Otherwise, if PointTree is empty, it 

means that the traversal of the current cluster has ended, and a 

new unvisited core voxel must be selected as the new starting 

point. Then, jump to Step 3 and continue execution. 

 When the algorithm terminates, the result sequence 

ResultList is output. Meanwhile, there may be some voxels 

that have not been visited. These voxels are considered 

outliers or noise points, denoted as NoiseVoxel. 

 

4. Constructing the Density Map 

After obtaining the result sequence ResultList , a density map 

can be constructed according to the ordering of voxels in the 

sequence and their corresponding density values. considering 

computational complexity and the spatial constraints required 

for functional parcellation, this chapter uses density values 

instead of reachability distance to evaluate the clustering 

structure of the data.  

 

5. Cluster Extraction 

Based on the density map, this section introduces a threshold 

parameter (thres) for cluster division. Inspired by the core 

principles of DBSCAN, this method is adapted specifically 

for the density map. Different thres values lead to varying 

clustering results, allowing adjustments to achieve different 

partitioning granularities.After setting the thres parameter, 

the algorithm iterates through each voxel in the density map 

using thres as the density threshold. If a voxel’s density ρᵢ is 

greater than or equal to thres, it is assigned to the same cluster 

as its preceding voxel. If the density is below thres, the 

algorithm further checks whether the voxel is a core voxel. If 

it is, the voxel is designated as the starting point of a new 

cluster; otherwise, it is marked as a noise voxel. Through this 

process, the algorithm dynamically merges continuous 

regions that meet the density threshold, ultimately forming 

the final clustering results. 

III. RESULTS 

a) Spatial Continuity Results 

To evaluate spatial continuity, this section applies each 

clustering algorithm to 20 subjects and computes the Space 

Discontiguity (SD) index for each subject. The final spatial 

continuity measure for each algorithm is obtained by 

averaging the SD values across all subjects, providing a 

standardized evaluation of spatial consistency under a given 

number of partitions. A lower SD value indicates higher 

spatial continuity, meaning that the clustering results produce 

more spatially coherent functional regions. 

 
Fig.1.Spatial Continuity Results 

As shown in Figure 1, the Geometric algorithm, used as a 

baseline method, clusters voxels solely based on spatial 

location. As a result, regardless of the partitioning strategy, 

each cluster consists of adjacent voxels, leading to an SD 

(Space Discontiguity) index of zero in all cases.The SCSC 

algorithm demonstrates the best spatial continuity, primarily 

due to its strong spatial constraints, which result in larger and 

more contiguous regions. However, this often comes at the 

cost of weaker functional connectivity within individual 

clusters.In contrast, the Ward algorithm relies primarily on 

functional feature similarity, leading to the formation of a 

greater number of disjoint regions and, consequently, a 

higher SD index.The DF-OPTICS algorithm proposed in this 

chapter exhibits slightly lower spatial continuity compared to 

SCSC. However, it significantly outperforms the original 

OPTICS and Ward algorithms, achieving 35.2% and 26.1% 

improvements in spatial continuity, respectively. 

 

b) Functional Consistency Results 

To evaluate functional consistency, a process similar to the 

assessment of spatial continuity is applied. The Silhouette 

Coefficient (SC) is computed for each of the 20 subjects, and 

the final evaluation metric for each algorithm is obtained by 

averaging the SC values across all subjects.Each algorithm 

produces an SC score corresponding to a specific number of 

partitions, where a higher SC value indicates better functional 

consistency within the clusters. A higher score suggests that 

voxels within the same partition share more similar 

functional properties, making the clustering results more 

functionally meaningful. 
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Fig.2.Functional Consistency Results 

As shown in Figure 2, except for the Geometric algorithm, 

which serves as a baseline method, overall functional 

consistency improves as the number of partitions increases. 

However, unlike the results for spatial continuity, the SCSC 

algorithm exhibits poor functional consistency. This is 

primarily due to its strong spatial constraints, which reduce 

the functional homogeneity within clusters.The DF-OPTICS 

algorithm, proposed in this chapter, achieves the best 

functional consistency among all methods. Compared to the 

Ward algorithm, it improves functional consistency by 4.5%, 

and compared to the original OPTICS algorithm, it achieves a 

4.1% improvement. 

 

c) Reproducibility Results 

To evaluate the reproducibility of the clustering algorithms, 

this study employs the bootstrap sampling method. 

Specifically, resampling with replacement is performed on 

the 20 subjects, selecting 20 samples per iteration, and this 

process is repeated 10 times.For each resampling iteration, 

the clustering results are pairwise compared, and the Dice 

coefficient is computed to measure the similarity between 

partitions. The final reproducibility score for a given number 

of partitions is obtained by averaging the Dice coefficients 

across all pairwise comparisons. This averaged Dice 

coefficient serves as the reproducibility metric, reflecting the 

stability and consistency of the clustering method under 

different subject selections. 

As shown in Figure 3, the reproducibility of all algorithms 

declines as the number of partitions increases, indicating that 

inter-individual variability becomes more pronounced with 

finer-grained parcellation.Notably, the Ward algorithm 

exhibits even lower reproducibility than the baseline 

Geometric algorithm. This is primarily because Geometric is 

based on the k-means algorithm, which relies solely on 

spatial distance for clustering, whereas Ward’s hierarchical 

clustering is more susceptible to individual differences.In 

contrast, SCSC and DF-OPTICS outperform other methods 

in terms of reproducibility, as both incorporate spatial 

information, which helps mitigate the impact of inter-subject 

variability. Among them, DF-OPTICS achieves the best 

reproducibility, improving by 9.8% compared to SCSC and 

by 32.6% compared to the original OPTICS algorithm. 

Fig.3.Reproducibility Results 

 

d) Runtime Results 

To quantify the computational efficiency of different 

clustering algorithms, we record their runtime performance 

under varying numbers of partitions. Specifically, we apply 

five clustering algorithms to the same set of fMRI data and 

measure their execution time for each partitioning setting. 

The recorded runtimes provide a direct comparison of the 

computational cost associated with each method, allowing 

for an evaluation of their scalability and efficiency. 

Fig.4.Runtime Results 

As shown in Figure 4, the runtime trends indicate that, except 

for SCSC and the baseline Geometric algorithm, the 

execution time of the other clustering methods does not 

significantly increase with the number of partitions. This is 

primarily because SCSC relies on spectral decomposition, 

where computational complexity grows as the number of 

partitions increases. Similarly, Geometric clustering is based 

on k-means, whose computational cost is positively 

correlated with the number of partitions.In contrast, the 

execution time of the remaining algorithms is not directly 

dependent on the number of partitions, resulting in relatively 

stable runtime curves.From a numerical perspective, the 

DF-OPTICS algorithm, proposed in this study, demonstrates 

superior computational efficiency. Its runtime is reduced by 

88.7% compared to the original OPTICS and by 83.3% 

compared to SCSC, making it a highly efficient clustering 

approach for brain functional parcellation. 

 

e) Brain Functional Parcellation Results 

As shown in Figure 5, different clustering algorithms exhibit 

significant variations in the overall spatial distribution of 

http://www.ijerm.com/
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brain parcellation results, where k represents the number of 

clusters. 

 
Fig.5.Brain Functional Parcellation Results 

 

Specifically, the SCSC algorithm, due to its strong spatial 

constraints, produces more structured and regular partitions. 

In contrast, the Geometric algorithm, which clusters voxels 

solely based on spatial coordinates without considering 

functional features, maintains a highly uniform parcellation 

structure regardless of whether k = 100 or k = 200.The Ward 

and OPTICS algorithms, which primarily rely on feature 

distance for clustering, result in more spatially scattered brain 

regions. Notably, the Ward algorithm generates highly 

symmetric left and right brain regions. This is because 

Ward’s hierarchical clustering follows a variance 

minimization principle, which favors grouping spatially 

adjacent and functionally similar regions into the same 

cluster. Such symmetry in brain parcellation reflects 

functional similarity between corresponding brain 

regions .For the DF-OPTICS algorithm, as k increases, some 

regions remain stable, while others undergo further 

refinement. This occurs because, with a higher density 

threshold, some voxel clusters that previously belonged to the 

same partition are split, whereas voxel groups that 

consistently exceed the threshold remain unaffected. A 

similar phenomenon is observed in the OPTICS algorithm, 

where density-based clustering dynamically adjusts the level 

of granularity in brain parcellation. 

IV. DISCUSSION 

This paper focuses on the Density-First OPTICS algorithm 

(DF-OPTICS) and its successful application in resting-state 

fMRI data clustering. First, the challenges associated with 

applying the original OPTICS algorithm to brain functional 

parcellation were analyzed, including issues related to 

computational complexity and distance metrics. Based on 

these considerations, a density-first optimization of the 

OPTICS algorithm was proposed.The DF-OPTICS algorithm 

replaces core distance and reachability distance with 

density-based measures, ensuring that the result sequence is 

output in an ordered manner while also maintaining spatial 

continuity within partitions. To address the high 

computational cost of neighborhood searches in the original 

OPTICS algorithm, existing voxel spatial coordinates were 

utilized to optimize the spatial neighborhood search process, 

significantly reducing computation time.To verify the 

effectiveness of the proposed method, simulation 

experiments were conducted. The algorithm parameters were 

first fine-tuned, followed by a comparative evaluation against 

other brain functional parcellation algorithms, including the 

original OPTICS algorithm, the commonly used Ward 

algorithm, the SCSC algorithm with spatial constraints, and 

the Geometric algorithm as a baseline.Experimental results 

demonstrate that, in terms of spatial continuity, functional 

consistency, reproducibility, and runtime efficiency, the 

proposed DF-OPTICS algorithm outperforms the other four 

methods, highlighting its feasibility and effectiveness for 

brain functional parcellation. 

V. CONCLUSION 

To address the distance metric bias and computational 

efficiency issues of the traditional OPTICS algorithm in brain 

parcellation, this paper proposes a Density-First OPTICS 

algorithm (DF-OPTICS). By replacing the core distance and 

reachability distance with local density measures, 

DF-OPTICS not only ensures the ordered output of the result 

sequence but also maintains the spatial continuity of the 

parcellation.To reduce the excessive computational cost of 

neighborhood searches in the original OPTICS algorithm, 

DF-OPTICS utilizes existing voxel spatial coordinates to 

perform localized voxel searches, significantly reducing the 

computational complexity of the neighborhood search 

process.Finally, the proposed algorithm was applied to brain 

parcellation experiments using resting-state fMRI data. The 

results demonstrate that DF-OPTICS achieves superior 

performance in terms of spatial continuity, functional 

consistency, reproducibility, and computational efficiency, 

making it a highly effective method for brain functional 

parcellation.With the continuous advancement of brain 

network analysis techniques and their expanding 

applications, brain functional parcellation remains a key 

research focus in the academic community. Although this 

study has made progress, several limitations remain, which 

will be explored and improved in future research: 

1. The human brain is one of the most complex systems, and 

brain functional parcellation research is still evolving. Differ

ent parcellation methods employ varied evaluation criteria, a

nd currently, there is no standardized evaluation metric in the

 field of brain functional parcellation. The clustering algorith

m proposed in this study uses a limited set of evaluation met

rics, which may not fully capture the accuracy and robustnes

s of parcellation results. Future studies should explore more 

comprehensive and precise evaluation standards to improve t

he reliability and interpretability of brain parcellation outcom

es. 

2. This study primarily relies on BOLD signal features from 

functional magnetic resonance imaging (fMRI). However, th

e biological basis of brain functional parcellation should inco

rporate information from structural, metabolic, and electroph

http://www.ijerm.com/


 

Research on the Application of the Density-Based OPTICS Algorithm in Whole-Brain Functional Parcellation 

                                                                                              26                                                                                  www.ijerm.com  

ysiological data. Future research can explore multimodal fusi

on algorithms to construct cross-scale brain parcellation mod

els, which could uncover more intricate coupling mechanism

s underlying brain function. 

3.  Functional regions extracted from fMRI data adjust dyna

mically in response to changes in brain states, and the data it

self also varies over time. Future research should focus on dy

namic functional parcellation to further investigate time-depe

ndent boundary shifts in functional regions and their underlyi

ng mechanisms. 
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