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Abstract— Convolutional Neural Networks (CNNs) have 

demonstrated significant advantages in binocular stereo 

matching tasks, but the high computational complexity of their 

3D extensions (3D CNNs) limits real-time applicability. This 

study proposes a 2D convolutional cost feature-based binocular 

matching neural network accelerator, achieving efficient 

deployment through algorithm-hardware co-design. Key 

innovations include: (1) Designing the FDSCS network 

architecture with optimized cost volume generation modules, 

integrating enhanced preprocessing and pipeline mechanisms; 

(2) Restructuring 2D convolution via an Img2Col-GEMM 

strategy to leverage FPGA parallel computing for accelerated 

matrix operations; (3) Introducing network weight quantization 

and bilinear interpolation modules to reduce memory 

requirements while improving output accuracy. Evaluations on 

the ZCU102 platform demonstrate that the accelerator achieves 

18.72 ms per-frame processing speed and a 3.22% average 

error rate on the KITTI dataset, balancing real-time 

performance with precision for time-sensitive applications such 

as autonomous driving. 

 
Index Terms—Binocular Matching, CNN, FPGA. 

 

I. INTRODUCTION 

  Binocular stereo matching is a fundamental technique in 

computer vision, with its core objective being to calculate the 

parallax between corresponding pixel points in images 

captured from two different viewpoints by computing and 

aggregating matching costs, thereby recovering the 3D depth 

information of the scene. This process entails complex image 

processing and matching algorithms, with early methods 

primarily relying on local feature matching[1] and global 

optimization strategies[2]. However, traditional methods often 

struggle to maintain matching accuracy and stability in 

complex scenarios, such as occlusion, repeated textures, and 

lighting variations. 

With the advent of deep learning techniques, particularly 

the rapid advancement of convolutional neural networks 

(CNNs), deep learning-based binocular matching methods 

have become increasingly prevalent[3]. These methods 

significantly improve the robustness and accuracy of 

matching by learning rich image feature representations. 

Early deep learning models, such as DispNet[4], directly 

predicted pixel-level depth maps, while later models, such as 

GC-Net[5], introduced the cost volume concept, processed 

using 3D convolutional networks to achieve more precise 

parallax estimation. However, the application of these 
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models in real-time systems is constrained by their high 

computational complexity and stringent hardware resource 

demands 

Considering the low accuracy of traditional binocular 

matching algorithms in low-texture and occluded regions, as 

well as the limitations of 3D convolutional networks in 

real-time applications, this study proposes the design of an 

efficient binocular matching neural network accelerator 

based on 2D convolutional cost features, achieving an 

optimal balance between accuracy and real-time 

performance. The main contributions of this study can be 

summarised as follows: 

(1) Algorithm-hardware co-optimization: We conduct a 

detailed analysis of the FDSCS network architecture and 

design a dedicated hardware implementation strategy for its 

key operators, significantly reducing computational latency 

and resource consumption through customized hardware 

modules and optimized memory access patterns. 

(2) High-efficiency convolutional implementation: We 

employ GEMM as the basis for convolution operations, 

combining it with techniques such as loop unrolling and data 

caching to fully leverage the parallel processing capabilities 

of FPGAs, thereby enhancing processing efficiency. 

(3) Comprehensive performance evaluation: We evaluated 

our binocular matching method on the ZCU102 FPGA 

platform to demonstrate its effectiveness and efficiency. The 

experimental results indicate that our method achieves a 

processing speed of 53.42 frames per second (fps) for 1242 × 

375 resolution images over a range of 128 parallaxes, 

meeting the real-time processing requirements of most 

systems. Additionally, the average error rate is 3.22%, which 

compares favorably to other implementations.  

 

II. RELATED WORK 

To address the computational and deployment challenges 

of deep learning models, research on hardware accelerators 

has garnered significant attention. Hardware accelerators, 

particularly those based on field-programmable gate arrays 

(FPGAs) and ASICs, offer superior energy-efficiency and 

computational performance compared to general-purpose 

processors (CPUs or GPUs) due to their customized designs. 

In the field of deep learning, FPGAs are an ideal platform for 

implementing efficient neural network accelerators due to 

their flexibility and reconfigurability. 

In recent years, significant progress has been made in 

accelerator designs for binocular stereo matching, 

encompassing diverse methodologies. For instance, 

Cambuim et al.[6] developed an occlusion-robust stereo vision 

system that enhanced robustness and processing speed, 

achieving 25 FPS at 1024×768 resolution and 159 FPS at 
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320×240 resolution. While this approach demonstrated 

advantages in resource efficiency, its performance degraded 

in low-texture and occluded regions due to insufficient global 

context. In contrast, Liang et al.[7] proposed an adaptive 

window mechanism integrated with left-right consistency 

checks and median filtering post-processing, improving 

average matching accuracy by 5.07% compared to 

conventional algorithms. Their implementation on a Zynq 

UltraScale+ chip achieved 54.24 frames per second (FPS) for 

1280×720 resolution images with 64 disparity levels. 

Meanwhile, Rahnama et al.[8] implemented a semi-global 

matching (SGM) algorithm seeking to balance local and 

global optimization for enhanced accuracy. However, all 

these FPGA-based accelerators rely on handcrafted features 

and traditional algorithms, which fundamentally limits 

further precision improvements. 

 

III. ARCHITECTURE 

A. Overall Algorithm Flow 

As depicted in Fig.1, our stereo matching framework 

comprises cost volume construction based on a local 

matching method, cost feature transformation and 

aggregation using a CNN engine, and post-processing with 

bilinear interpolation. In this chapter, we will describe the 

implementation of each module in detail. 
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Fig.1 Overall Algorithmic Flow 

B. Image Pre-processing Module Design  
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Fig.2 Implementation of the image pre-processing module 

The design architecture of the image preprocessing module 

is shown in Fig.2. First, the size of the input left and right 

images is reduced using the average pooling (AvgPool) 

technique. A sliding window is defined, and the average of all 

pixel values within each window region is computed. This 

average represents the new pixel value for that region. In this 

way, the original image is scaled to a smaller size, but the 

overall structure and texture information is still preserved. 

During this process, a temporary buffer is used to construct 

the sliding window, and the image data is imported into the 

buffer via a row and column selector. Next, the pixel values 

are accumulated using an adder and the average value is 

calculated by a right-shift operation. 

Next, the image is converted from RGB color space to 

YCbCr color space. This conversion is particularly important 

for stereo vision tasks because it decomposes the image into 

subjective luminance (Y) and color difference (Cb, Cr) 

components, helping to separate the effects of luminance 

variations in the subsequent Census Transform. Notably, to 

adapt to the fixed-point arithmetic characteristics of the 

hardware, an approximate color conversion formula is 

employed to simplify the originally complex floating-point 

operation into a fixed-point one, improving both 

computational efficiency and hardware implementability. 

C. Census Transform Module Design  

FIFO  1

FIFO  2

FIFO  3

FIFO  4

.

.

.

0

1

2

22

.

.

.

23

Y Datas

Census C ode

24 bit

Census Transform

 
Fig.3 Implementation of the Census Transform module 

Fig.3 illustrates the architecture of the Census transform, 

designed to efficiently generate Census codes for stereo 

matching. The design employs four FIFO buffers to 

temporarily store four rows of pixel data. Once these rows are 

cached, the system simultaneously outputs five adjacent row 

data columns aligned vertically. These data are then fed into a 

5×5 register array to form the processing window. At this 

stage, the center pixel is compared with all other pixels within 

the window to generate the Census code. Specifically, for 

each sliding window centered on a target pixel, the 

comparison results between the center pixel and its neighbors 

(assigned a binary "0" if the neighboring pixel’s grayscale 

value is less than or equal to the center pixel, otherwise "1") 
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are concatenated bitwise into a binary string, forming the 

Census code. This process assigns each pixel a unique 

Census signature that encapsulates its local structural 

information. 
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Fig.4 Implementation of the Hamming Distance module 

To further process the image data, we employ 128 shift 

registers to buffer the Census codes and calculate the 

Hamming distance between left-right image Census codes at 

corresponding positions through bitwise XOR operations. 

The computational workflow is detailed in Fig.4. 

Specifically, the Census codes from the left image are first 

cached sequentially using 128 shift registers. After buffering, 

the stored left-image Census codes are streamed alongside 

the corresponding right-image Census codes into XOR gates 

for bitwise comparison. Since Hamming distance quantifies 

the number of differing bits between two equal-length binary 

strings, we count the number of '1's in the XOR results to 

determine this metric. The Hamming distance directly 

reflects the similarity between matched positions: a larger 

Hamming distance indicates lower similarity. 

To preserve original image dimensions during edge 

processing, the shift registers store left-image Census codes 

when the horizontal coordinate satisfies X < W – 

128 (where W denotes image width). For the final 128-pixel 

columns (X ≥ W – 128), right-image Census codes are stored 

instead, with zeros serving as padding values. 

D. Design of CNN Engine  

Fig.5 illustrates the internal architecture of the pulsed array 

and its processing elements (PEs). Each PE cell receives 

operands from its port, performs multiplication and addition 

operations, and transmits the operands to neighboring PE 

cells in the following cycle. By arranging the PE cells in a 

Height × Width matrix, a two-dimensional pulsed array 

structure is designed. Additionally, a hierarchical design 

concept is employed to combine these 2D arrays vertically, 

forming a 3D pulsating array topology with dimensions Tile 

× Height × Width. This topology enhances data processing 

parallelism and improves both throughput rate and 

computational density. Cache Unit A stores the output data 

from the img2col unit and facilitates efficient data transfer to 

the computational array using a ping-pong caching 

mechanism and a MUX select-through function. Cache Unit 

B stores the weights required for convolutional computation, 

with each cache block storing the weights of one output 

channel, enabling the computation of convolutional kernels 

for up to Tile × Width output channels per operation. 
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 Fig.5 3D pulsed array architecture 

E. Post-processing Module Design  
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 Fig.6 2×2 Bilinear interpolation architecture 

Fig.6 illustrates the architecture of bilinear interpolation. 

Shifters and adders are employed to substitute multiplication 

and division operations in the interpolation formula, thereby 

reducing resource consumption and enabling rounding of the 

calculation results. By utilizing a selector and two buffers to 

alternately store the results of horizontal interpolation, 

continuous output of neighboring points in the vertical 

direction is achieved, thereby completing the interpolation 

operation vertically. The entire interpolation process is 

managed by a state machine, which ensures both the accuracy 

of the interpolation results and the correct output order. 

 

IV. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Experiment Settings 

This study presents a comprehensive evaluation of the 

hardware accelerator design, focusing on resource efficiency 

and performance. We used Spinal HDL as the RTL source 

code generation tool and Xilinx Vivado 2021.2 for synthesis 

and implementation. The accelerator was implemented on a 

ZCU102 platform, with an operating frequency of 200 MHz. 

The architectural parameters of the pulsed array were set to 

[Tile, Height, Width] = [8, 8, 32]. We evaluated the accuracy 

of the accelerator using the KITTI2015 dataset to compute 

the parallax error rate, a widely recognized benchmark in 

stereo vision due to its complexity and practical utility[9].” 

B. Resource Utilization 

Fig.7 illustrates the resource usage of the hardware 

accelerator, evaluated under various systolic array 

configurations and image resolutions. Fig.7 (a) shows the 

impact of different systolic array configurations on resource 

consumption at 1242×375 resolution. The results revealed a 

significant increase in frame rate from 1.48 FPS (1, 8, 8) to 

53.42 FPS (8, 8, 32), a nearly 36-fold increase. This increase 
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was primarily due to the larger systolic array size, 

significantly increasing the number of DSPs (arithmetic 

units). However, despite the larger systolic array size 

increasing hardware resource usage, it significantly reduced 

computational latency. 

 
Fig.7 (a) Resource utilization under different pulsation array 

configurations 

Fig.7 (b) shows the impact of different resolutions on 

resource utilization under the (8, 8, 32) configuration. The 

results showed that while the number of DSPs, FFs (registers), 

and LUTs (look-up tables) increased by approximately 10%, 

BRAM requirements grew disproportionately. This was 

attributed to using line buffers for storing feature maps, with 

buffer size depending on the number of channels and feature 

map width. Under the (8, 8, 32) configuration and 1242×375 

resolution, our design consumed 37.3% of LUTs, 15.6% of 

FFs, 46% of BRAM, and 82.2% of DSPs, allowing the 

system to achieve 53.42 FPS. 

 
Fig.7 (b) Resource utilization at different resolutions 

C. Performance Evaluation 

Table 1 Comparison of parallax error rate and processing 

speed with other methods 

Method Error rate Platform Runtime(ms) 

FSDCS 3.22 Xilinx ZCU102 18.72 

iELAS[10] 19.8 Xilinx Virtex-7 17.39 

FP-Stereo[11] 9.81 Xilinx ZCU102 6.21 

Lite-Stereo[12] 6.41 Altera Stratix V 7.1 

Census + wSGM[13] 6.54 Xilinx VCU-118 - 

StereoEngine[14] 6.37 Altera Stratix V 6.07 

FSDCS 3.16 Nvidia Titan X 23.21 

To assess the performance of our proposed system, we 

conducted tests on various hardware platforms and compared 

them to existing stereo vision systems. Accuracy was 

measured by calculating the percentage of pixels with a 

disparity error exceeding three pixels across all regions. 

Runtime was defined as the time needed to process image 

pairs at a resolution of 1242 × 375. As indicated in Table 1, 

our CNN model achieved a 3.22% error rate on the 

KITTI2015 dataset, outperforming FPGA-based solutions 

reported in the literature ([10] - [14]). Although slower in 

terms of processing speed, our system significantly enhanced 

accuracy due to its stronger representation capabilities. When 

deployed on an Nvidia Titan X, despite only a slight 

improvement in error rate, our system demonstrated higher 

efficiency in power consumption and hardware resource 

utilization compared to GPU platforms, offering advantages 

in practical applications. 

Table 2 Comparison of different stereo matching FPGA 

implementations 

 Method Disparities Resolution FPS MDE/s 

Ours FSDCS 128 
1242 × 375 53.42 3,185 

1280 × 960 28.25 4,443 

[15] AD-Census 64 480 × 270 41 340 

[16] SAD 64 1242 × 375 19.61 584 

[7] SGM 64 1280 × 720 54.24 3,199 

[10] iELAS 128 1242 × 375 57.5 3,428 

[12] 
R3SGM + 

RES-BNN 
128 1280 × 960 52 8,336 

[14] BNN + SGM 128 1280 × 960 64.15 10,089 

Subsequently, we conducted a detailed comparative 

analysis of real-time performance across multiple FPGA 

platforms. Real-time capability is typically evaluated using 

million disparity estimates per second (MDE/s), a metric 

determined by frame rate (fps), image resolution, and 

disparity range. In our experiments, two resolutions 

(1242×375 and 1280×960) were tested with a disparity range 

of 128. Operating at 200 MHz, our system achieved 

throughputs of 3,185 MDE/s and 4,443 MDE/s respectively. 

Compared with methods in [29, 38], our design 

demonstrates superior speed while maintaining competitive 

accuracy. When benchmarked against [35, 48], the system 

achieves comparable throughput but with significant 

improvements in matching precision, alongside support for 

higher resolutions and disparity ranges. In contrast to 

approaches in [40, 49], although our 8-bit quantized 

CNN-based implementation exhibits slightly lower 

throughput, it substantially enhances accuracy—particularly 

for images with rich details and complex textures—by 

capturing subtle structural features more effectively. 

Furthermore, the model retains numerical fidelity while 

enabling efficient FPGA-based inference, achieving an 

optimal balance between precision and real-time 

performance. 

 

V. CONCLUSION 

This paper presents an accelerator design based on 2D 

convolution cost features. To improve hardware efficiency in 

the CNN module, we adopted two key pipelining techniques: 

a systolic array architecture and a pipelined design for the 

CNN. We conducted a comprehensive evaluation of our local 

stereo matching system on the KITTI2015 stereo dataset, 

comparing it with other methods. The results indicated that 

our local method achieved an optimal balance among 

matching accuracy, hardware efficiency, and real-time 

performance. 
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