
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 27 www.ijerm.com

Abstract— Convolutional Neural Networks (CNNs) have

demonstrated significant advantages in binocular stereo

matching tasks, but the high computational complexity of their

3D extensions (3D CNNs) limits real-time applicability. This

study proposes a 2D convolutional cost feature-based binocular

matching neural network accelerator, achieving efficient

deployment through algorithm-hardware co-design. Key

innovations include: (1) Designing the FDSCS network

architecture with optimized cost volume generation modules,

integrating enhanced preprocessing and pipeline mechanisms;

(2) Restructuring 2D convolution via an Img2Col-GEMM

strategy to leverage FPGA parallel computing for accelerated

matrix operations; (3) Introducing network weight quantization

and bilinear interpolation modules to reduce memory

requirements while improving output accuracy. Evaluations on

the ZCU102 platform demonstrate that the accelerator achieves

18.72 ms per-frame processing speed and a 3.22% average

error rate on the KITTI dataset, balancing real-time

performance with precision for time-sensitive applications such

as autonomous driving.

Index Terms—Binocular Matching, CNN, FPGA.

I. INTRODUCTION

 Binocular stereo matching is a fundamental technique in

computer vision, with its core objective being to calculate the

parallax between corresponding pixel points in images

captured from two different viewpoints by computing and

aggregating matching costs, thereby recovering the 3D depth

information of the scene. This process entails complex image

processing and matching algorithms, with early methods

primarily relying on local feature matching[1] and global

optimization strategies[2]. However, traditional methods often

struggle to maintain matching accuracy and stability in

complex scenarios, such as occlusion, repeated textures, and

lighting variations.

With the advent of deep learning techniques, particularly

the rapid advancement of convolutional neural networks

(CNNs), deep learning-based binocular matching methods

have become increasingly prevalent[3]. These methods

significantly improve the robustness and accuracy of

matching by learning rich image feature representations.

Early deep learning models, such as DispNet[4], directly

predicted pixel-level depth maps, while later models, such as

GC-Net[5], introduced the cost volume concept, processed

using 3D convolutional networks to achieve more precise

parallax estimation. However, the application of these

Manuscript received March 09, 2025
 Kaijian Zeng, School of computer science and technology, Tiangong

University, Tianjin, China.

Yaofeng Hou, School of computer science and technology, Tiangong
University, Tianjin, China.

models in real-time systems is constrained by their high

computational complexity and stringent hardware resource

demands

Considering the low accuracy of traditional binocular

matching algorithms in low-texture and occluded regions, as

well as the limitations of 3D convolutional networks in

real-time applications, this study proposes the design of an

efficient binocular matching neural network accelerator

based on 2D convolutional cost features, achieving an

optimal balance between accuracy and real-time

performance. The main contributions of this study can be

summarised as follows:

(1) Algorithm-hardware co-optimization: We conduct a

detailed analysis of the FDSCS network architecture and

design a dedicated hardware implementation strategy for its

key operators, significantly reducing computational latency

and resource consumption through customized hardware

modules and optimized memory access patterns.

(2) High-efficiency convolutional implementation: We

employ GEMM as the basis for convolution operations,

combining it with techniques such as loop unrolling and data

caching to fully leverage the parallel processing capabilities

of FPGAs, thereby enhancing processing efficiency.

(3) Comprehensive performance evaluation: We evaluated

our binocular matching method on the ZCU102 FPGA

platform to demonstrate its effectiveness and efficiency. The

experimental results indicate that our method achieves a

processing speed of 53.42 frames per second (fps) for 1242 ×

375 resolution images over a range of 128 parallaxes,

meeting the real-time processing requirements of most

systems. Additionally, the average error rate is 3.22%, which

compares favorably to other implementations.

II. RELATED WORK

To address the computational and deployment challenges

of deep learning models, research on hardware accelerators

has garnered significant attention. Hardware accelerators,

particularly those based on field-programmable gate arrays

(FPGAs) and ASICs, offer superior energy-efficiency and

computational performance compared to general-purpose

processors (CPUs or GPUs) due to their customized designs.

In the field of deep learning, FPGAs are an ideal platform for

implementing efficient neural network accelerators due to

their flexibility and reconfigurability.

In recent years, significant progress has been made in

accelerator designs for binocular stereo matching,

encompassing diverse methodologies. For instance,

Cambuim et al.[6] developed an occlusion-robust stereo vision

system that enhanced robustness and processing speed,

achieving 25 FPS at 1024×768 resolution and 159 FPS at

Design and Implementation of Neural Network

Accelerator for Binocular Matching

Kaijian Zeng, Yaofeng Hou

http://www.ijerm.com/

Design and Implementation of Neural Network Accelerator for Binocular Matching

 28 www.ijerm.com

320×240 resolution. While this approach demonstrated

advantages in resource efficiency, its performance degraded

in low-texture and occluded regions due to insufficient global

context. In contrast, Liang et al.[7] proposed an adaptive

window mechanism integrated with left-right consistency

checks and median filtering post-processing, improving

average matching accuracy by 5.07% compared to

conventional algorithms. Their implementation on a Zynq

UltraScale+ chip achieved 54.24 frames per second (FPS) for

1280×720 resolution images with 64 disparity levels.

Meanwhile, Rahnama et al.[8] implemented a semi-global

matching (SGM) algorithm seeking to balance local and

global optimization for enhanced accuracy. However, all

these FPGA-based accelerators rely on handcrafted features

and traditional algorithms, which fundamentally limits

further precision improvements.

III. ARCHITECTURE

A. Overall Algorithm Flow

As depicted in Fig.1, our stereo matching framework

comprises cost volume construction based on a local

matching method, cost feature transformation and

aggregation using a CNN engine, and post-processing with

bilinear interpolation. In this chapter, we will describe the

implementation of each module in detail.
Left Im age Right Im age

AvgPool

RGB_to_YUV

Census Transform Abs Differences

Initial Cost
Initial CostInitial Cost

1×1 Conv Layer 1

1×1 Conv Layer 2

1×1 Conv Layer N

Unet

Bilinear Upsam pling

C
o
sts Sig

n
a
tu
re

Disparity

C
N
N
 E
n
g
in
e

C
o
sts V

o
lu
m
e

384

35

3

256128

35

Y U&V

1×1 Conv Layer

1

32

Fig.1 Overall Algorithmic Flow

B. Image Pre-processing Module Design

Image Preprocessing

M
U
XImage Data

M
U
X

Buffer

col row

AvgPool
R

G

B

+ Y

Cb

Cr
76

150

29

RGB2YUV

Fig.2 Implementation of the image pre-processing module

The design architecture of the image preprocessing module

is shown in Fig.2. First, the size of the input left and right

images is reduced using the average pooling (AvgPool)

technique. A sliding window is defined, and the average of all

pixel values within each window region is computed. This

average represents the new pixel value for that region. In this

way, the original image is scaled to a smaller size, but the

overall structure and texture information is still preserved.

During this process, a temporary buffer is used to construct

the sliding window, and the image data is imported into the

buffer via a row and column selector. Next, the pixel values

are accumulated using an adder and the average value is

calculated by a right-shift operation.

Next, the image is converted from RGB color space to

YCbCr color space. This conversion is particularly important

for stereo vision tasks because it decomposes the image into

subjective luminance (Y) and color difference (Cb, Cr)

components, helping to separate the effects of luminance

variations in the subsequent Census Transform. Notably, to

adapt to the fixed-point arithmetic characteristics of the

hardware, an approximate color conversion formula is

employed to simplify the originally complex floating-point

operation into a fixed-point one, improving both

computational efficiency and hardware implementability.

C. Census Transform Module Design

FIFO 1

FIFO 2

FIFO 3

FIFO 4

.

.

.

0

1

2

22

.

.

.

23

Y Datas

Census C ode

24 bit

Census Transform

Fig.3 Implementation of the Census Transform module

Fig.3 illustrates the architecture of the Census transform,

designed to efficiently generate Census codes for stereo

matching. The design employs four FIFO buffers to

temporarily store four rows of pixel data. Once these rows are

cached, the system simultaneously outputs five adjacent row

data columns aligned vertically. These data are then fed into a

5×5 register array to form the processing window. At this

stage, the center pixel is compared with all other pixels within

the window to generate the Census code. Specifically, for

each sliding window centered on a target pixel, the

comparison results between the center pixel and its neighbors

(assigned a binary "0" if the neighboring pixel’s grayscale

value is less than or equal to the center pixel, otherwise "1")

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 29 www.ijerm.com

are concatenated bitwise into a binary string, forming the

Census code. This process assigns each pixel a unique

Census signature that encapsulates its local structural

information.

...

128 Regs

M
U
X

Count bits

...R

L

Census C ode

X < W - 128

H am m ing D istance

XORXORXOR

Fig.4 Implementation of the Hamming Distance module

To further process the image data, we employ 128 shift

registers to buffer the Census codes and calculate the

Hamming distance between left-right image Census codes at

corresponding positions through bitwise XOR operations.

The computational workflow is detailed in Fig.4.

Specifically, the Census codes from the left image are first

cached sequentially using 128 shift registers. After buffering,

the stored left-image Census codes are streamed alongside

the corresponding right-image Census codes into XOR gates

for bitwise comparison. Since Hamming distance quantifies

the number of differing bits between two equal-length binary

strings, we count the number of '1's in the XOR results to

determine this metric. The Hamming distance directly

reflects the similarity between matched positions: a larger

Hamming distance indicates lower similarity.

To preserve original image dimensions during edge

processing, the shift registers store left-image Census codes

when the horizontal coordinate satisfies X < W –

128 (where W denotes image width). For the final 128-pixel

columns (X ≥ W – 128), right-image Census codes are stored

instead, with zeros serving as padding values.

D. Design of CNN Engine

Fig.5 illustrates the internal architecture of the pulsed array

and its processing elements (PEs). Each PE cell receives

operands from its port, performs multiplication and addition

operations, and transmits the operands to neighboring PE

cells in the following cycle. By arranging the PE cells in a

Height × Width matrix, a two-dimensional pulsed array

structure is designed. Additionally, a hierarchical design

concept is employed to combine these 2D arrays vertically,

forming a 3D pulsating array topology with dimensions Tile

× Height × Width. This topology enhances data processing

parallelism and improves both throughput rate and

computational density. Cache Unit A stores the output data

from the img2col unit and facilitates efficient data transfer to

the computational array using a ping-pong caching

mechanism and a MUX select-through function. Cache Unit

B stores the weights required for convolutional computation,

with each cache block storing the weights of one output

channel, enabling the computation of convolutional kernels

for up to Tile × Width output channels per operation.

Matrix B

PEPE PE

PE PE PE

PE PE PE

Matrix B

PEPE PE

PE PE PE

PE PE PE

Matrix B

Matrix A

MUX

To next PE

PE

A

B Valid

0

To next PE

PEPE PE

PE PE PE

PE PE PE

RAM

RAM

M
UX

RAM

RAM

M
UX

RAM

RAM

M
UX

RAMRAMRAM

 Fig.5 3D pulsed array architecture

E. Post-processing Module Design

FSM

Col InterpolationRow Interpolation

cache2

x

cache1
IN TP

a

b

z

IN TP
a

b

z

IN TP
a

b

z

IN TP
a

b

z

M
U
X

row [0]

b

a 2

z

M
U
X

FSM

IDLE

Border Center

END

 Fig.6 2×2 Bilinear interpolation architecture

Fig.6 illustrates the architecture of bilinear interpolation.

Shifters and adders are employed to substitute multiplication

and division operations in the interpolation formula, thereby

reducing resource consumption and enabling rounding of the

calculation results. By utilizing a selector and two buffers to

alternately store the results of horizontal interpolation,

continuous output of neighboring points in the vertical

direction is achieved, thereby completing the interpolation

operation vertically. The entire interpolation process is

managed by a state machine, which ensures both the accuracy

of the interpolation results and the correct output order.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Experiment Settings

This study presents a comprehensive evaluation of the

hardware accelerator design, focusing on resource efficiency

and performance. We used Spinal HDL as the RTL source

code generation tool and Xilinx Vivado 2021.2 for synthesis

and implementation. The accelerator was implemented on a

ZCU102 platform, with an operating frequency of 200 MHz.

The architectural parameters of the pulsed array were set to

[Tile, Height, Width] = [8, 8, 32]. We evaluated the accuracy

of the accelerator using the KITTI2015 dataset to compute

the parallax error rate, a widely recognized benchmark in

stereo vision due to its complexity and practical utility[9].”

B. Resource Utilization

Fig.7 illustrates the resource usage of the hardware

accelerator, evaluated under various systolic array

configurations and image resolutions. Fig.7 (a) shows the

impact of different systolic array configurations on resource

consumption at 1242×375 resolution. The results revealed a

significant increase in frame rate from 1.48 FPS (1, 8, 8) to

53.42 FPS (8, 8, 32), a nearly 36-fold increase. This increase

http://www.ijerm.com/

Design and Implementation of Neural Network Accelerator for Binocular Matching

 30 www.ijerm.com

was primarily due to the larger systolic array size,

significantly increasing the number of DSPs (arithmetic

units). However, despite the larger systolic array size

increasing hardware resource usage, it significantly reduced

computational latency.

Fig.7 (a) Resource utilization under different pulsation array

configurations

Fig.7 (b) shows the impact of different resolutions on

resource utilization under the (8, 8, 32) configuration. The

results showed that while the number of DSPs, FFs (registers),

and LUTs (look-up tables) increased by approximately 10%,

BRAM requirements grew disproportionately. This was

attributed to using line buffers for storing feature maps, with

buffer size depending on the number of channels and feature

map width. Under the (8, 8, 32) configuration and 1242×375

resolution, our design consumed 37.3% of LUTs, 15.6% of

FFs, 46% of BRAM, and 82.2% of DSPs, allowing the

system to achieve 53.42 FPS.

Fig.7 (b) Resource utilization at different resolutions

C. Performance Evaluation

Table 1 Comparison of parallax error rate and processing

speed with other methods

Method Error rate Platform Runtime(ms)

FSDCS 3.22 Xilinx ZCU102 18.72

iELAS[10] 19.8 Xilinx Virtex-7 17.39

FP-Stereo[11] 9.81 Xilinx ZCU102 6.21

Lite-Stereo[12] 6.41 Altera Stratix V 7.1

Census + wSGM[13] 6.54 Xilinx VCU-118 -

StereoEngine[14] 6.37 Altera Stratix V 6.07

FSDCS 3.16 Nvidia Titan X 23.21

To assess the performance of our proposed system, we

conducted tests on various hardware platforms and compared

them to existing stereo vision systems. Accuracy was

measured by calculating the percentage of pixels with a

disparity error exceeding three pixels across all regions.

Runtime was defined as the time needed to process image

pairs at a resolution of 1242 × 375. As indicated in Table 1,

our CNN model achieved a 3.22% error rate on the

KITTI2015 dataset, outperforming FPGA-based solutions

reported in the literature ([10] - [14]). Although slower in

terms of processing speed, our system significantly enhanced

accuracy due to its stronger representation capabilities. When

deployed on an Nvidia Titan X, despite only a slight

improvement in error rate, our system demonstrated higher

efficiency in power consumption and hardware resource

utilization compared to GPU platforms, offering advantages

in practical applications.

Table 2 Comparison of different stereo matching FPGA

implementations

 Method Disparities Resolution FPS MDE/s

Ours FSDCS 128
1242 × 375 53.42 3,185

1280 × 960 28.25 4,443

[15] AD-Census 64 480 × 270 41 340

[16] SAD 64 1242 × 375 19.61 584

[7] SGM 64 1280 × 720 54.24 3,199

[10] iELAS 128 1242 × 375 57.5 3,428

[12]
R3SGM +

RES-BNN
128 1280 × 960 52 8,336

[14] BNN + SGM 128 1280 × 960 64.15 10,089

Subsequently, we conducted a detailed comparative

analysis of real-time performance across multiple FPGA

platforms. Real-time capability is typically evaluated using

million disparity estimates per second (MDE/s), a metric

determined by frame rate (fps), image resolution, and

disparity range. In our experiments, two resolutions

(1242×375 and 1280×960) were tested with a disparity range

of 128. Operating at 200 MHz, our system achieved

throughputs of 3,185 MDE/s and 4,443 MDE/s respectively.

Compared with methods in [29, 38], our design

demonstrates superior speed while maintaining competitive

accuracy. When benchmarked against [35, 48], the system

achieves comparable throughput but with significant

improvements in matching precision, alongside support for

higher resolutions and disparity ranges. In contrast to

approaches in [40, 49], although our 8-bit quantized

CNN-based implementation exhibits slightly lower

throughput, it substantially enhances accuracy—particularly

for images with rich details and complex textures—by

capturing subtle structural features more effectively.

Furthermore, the model retains numerical fidelity while

enabling efficient FPGA-based inference, achieving an

optimal balance between precision and real-time

performance.

V. CONCLUSION

This paper presents an accelerator design based on 2D

convolution cost features. To improve hardware efficiency in

the CNN module, we adopted two key pipelining techniques:

a systolic array architecture and a pipelined design for the

CNN. We conducted a comprehensive evaluation of our local

stereo matching system on the KITTI2015 stereo dataset,

comparing it with other methods. The results indicated that

our local method achieved an optimal balance among

matching accuracy, hardware efficiency, and real-time

performance.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 31 www.ijerm.com

REFERENCES

[1] Fan R, Jiao J, Pan J, et al. Real-time dense stereo embedded in a uav for
road inspection[C]//Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops. 2019: 0-0.
[2] Kamasaka R, Shibata Y, Oguri K. An FPGA-oriented graph cut

algorithm for accelerating stereo vision[C]//2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig).
IEEE, 2018: 1-6.

[3] Hamid M S, Abd Manap N F, Hamzah R A, et al. Stereo matching
algorithm based on deep learning: A survey[J]. Journal of King Saud

University-Computer and Information Sciences, 2022, 34(5):

1663-1673.
[4] Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional

networks for disparity, optical flow, and scene flow
estimation[C]//Proceedings of the IEEE conference on computer vision

and pattern recognition. 2016: 4040-4048.

[5] Cao Y, Xu J, Lin S, et al. Gcnet: Non-local networks meet
squeeze-excitation networks and beyond[C]//Proceedings of the

IEEE/CVF international conference on computer vision workshops.

2019: 0-0.
[6] Cambuim L F S, Oliveira Jr L A, Barros E N S, et al. An FPGA-based

real-time occlusion robust stereo vision system using semi-global

matching[J]. Journal of Real-Time Image Processing, 2020, 17(5):

1447-1468.

[7] Liang Y, Lin D, Chen Z, et al. Research and implementation of
adaptive stereo matching algorithm based on ZYNQ[J]. Journal of

Real-Time Image Processing, 2024, 21(2): 46.
[8] Rahnama O, Cavalleri T, Golodetz S, et al. R3SGM: Real-time

raster-respecting semi-global matching for power-constrained

systems[C]//2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 2018: 102-109.

[9] Menze M, Geiger A. Object scene flow for autonomous
vehicles[C]//Proceedings of the IEEE conference on computer vision

and pattern recognition. 2015: 3061-3070.

[10] Gao T, Wan Z, Zhang Y, et al. IELAS: An ELAS-based
energy-efficient accelerator for real-time stereo matching on FPGA

platform[C]//2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, 2021: 1-4.

[11] Zhao J, Liang T, Feng L, et al. FP-Stereo: Hardware-efficient stereo

vision for embedded applications[C]//2020 30th International
Conference on Field-Programmable Logic and Applications (FPL).

IEEE, 2020: 269-276.
[12] Ling Y, He T, Zhang Y, et al. Lite-stereo: a resource-efficient hardware

accelerator for real-time high-quality stereo estimation using binary

neural network[J]. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2022, 41(12): 5357-5366.

[13] Lu Z, Wang J, Li Z, et al. A resource-efficient pipelined architecture
for real-time semi-global stereo matching[J]. IEEE Transactions on

Circuits and Systems for Video Technology, 2021, 32(2): 660-673.

[14] Chen G, Ling Y, He T, et al. StereoEngine: An FPGA-based
accelerator for real-time high-quality stereo estimation with binary

neural network[J]. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020, 39(11): 4179-4190.

[15] Lee Y, Choi S B, Lee E, et al. A real-time AD-census stereo matching

based on FPGA[C]//2019 19th International Conference on Control,
Automation and Systems (ICCAS). IEEE, 2019: 1622-1624.

[16] Firmansyah I, Yamaguchi Y. Fpga-based implementation of the stereo
matching algorithm using high-level synthesis[C]//2021 IEEE 14th

International Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC). IEEE, 2021: 1-7.

http://www.ijerm.com/

	I. Introduction
	II. Related Work
	III. Architecture
	A. Overall Algorithm Flow
	B. Image Pre-processing Module Design
	C. Census Transform Module Design
	D. Design of CNN Engine
	E. Post-processing Module Design

	IV. Analysis Of Experimental Results
	A. Experiment Settings
	B. Resource Utilization
	C. Performance Evaluation

	V. Conclusion
	References

