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Abstract— This paper describes a  methodology for designing a 

deep learning accelerator system, incorporating RISC-V and 

CNN capabilities within a loosely coupled architecture(LCA), 

had been presented to enhance inference performance on edge 

devices, achieve lower power consumption, and expedite 

response times. First, a microarchitecture had been designed 

for cooperative operation between the main processor and the 

deep learning accelerator, and efficient neural network 

inference had been enabled through a customized instruction 

set. Second, flexible configuration and scalability strategies had 

been adopted, allowing the accelerator to accommodate various 

neural network models and application requirements. Lastly, 

widely-used convolutional neural network models such as 

ResNet-50, YOLOv4-Tiny, and BiSeNet v1 had been selected 

and rapidly deployed on the system. Experiments had been 

conducted on the XC7K410T board, demonstrating the synergy 

advantages between the accelerator and the RISC-V processor. 

Specifically, the system achieved processing speeds up to 871.1 

GOP/s and computational efficiencies up to 96.79 GOP/s/W. 

 

Index Terms— accelerator, CNN, LCA, RISC-V 

I. INTRODUCTION 

  Under the surge of artificial intelligence, machine learning 

within edge computing encounters dual challenges: the rapid 

evolution of emerging applications underscores the necessity 

for generalizability, while local decision-making imposes 

increasingly stringent demands on performance and power 

consumption. Edge devices necessitate real-time 

responsiveness and intelligent decision-making capabilities, 

with interaction modes tending to diversify. Convolutional 

Neural Network (CNN), as potent machine learning 

techniques, have significantly improved the accuracy of tasks 

such as image classification [1], object detection [2], and 

semantic segmentation [3]. However, this enhanced 

performance comes at the expense of increased 

computational complexity and resource consumption.  
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Fig. 1.LCA diagram 

Hardware acceleration technologies help edge devices 

respond in real-time by offloading computational tasks to 
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dedicated neural network accelerators. The RISC-V 

Instruction Set Architecture (ISA) [4] is a popular choice for 

deploying neural networks at the edge because it is open and 

scalable. RISC-V processors and neural network accelerators 

can use either Loosely Coupled Architecture (LCA) or 

Tightly Coupled Architecture (TCA) [5]. As shown in Fig.1, 

LCA is a heterogeneous architecture. The CPU utilizes the 

RISC-V instruction set and sends NAI instructions, generated 

by the inference engine, to the accelerator for neural network 

inference acceleration. Based on the results returned by the 

accelerator, the CPU decides on the next steps. LCA is 

flexible and scalable. It allows the configuration of the 

processor and accelerator to be adapted to the application 

scenario. It also makes it easier to integrate new components 

and reduces the complexity of system integration. This is a 

significant advantage for edge computing applications that 

require rapid iteration and continuous optimisation. 

 

The contributions of this paper are as follows: 

1)   A modular Neural Network Acceleration Instruction 

(NAI) set had been introduced, upon which a convolutional 

neural network accelerator had been designed. 

2) A loosely coupled architecture (LCA), featuring an 

RV32IM RISC-V processor alongside an NAI-powered 

neural network accelerator, had been proposed to investigate 

a neural network heterogeneous computing system with 

reduced power consumption and enhanced inference speed. 

3) Experimental validation had been carried out on the 

XC7K410T board, showcasing the synergistic benefits of the 

accelerator operating in conjunction with the RISC-V 

processor under the LCA. 
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Fig. 2. System Structure Diagram 
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II. RELATED WORK 

Deployment of neural network models has advanced 

FPGA-based deep learning accelerators. Zhang et al. [6] used 

pipelined designs on the ZYNQ-7020 to deploy the 

YOLOv4-Tiny neural network via HLS, speeding up 

inference times. Guo et al [7] developed a 

DeepLabv3+ResNet18 accelerator on a Xilinx Virtex-7 

XC7VX690T board with outstanding performance and 

accuracy. These works show that FPGA is great for 

accelerating CNN inference on edge devices. However, most 

research has focused on performance enhancements, ignoring 

generality and scalability. Heterogeneous computing 

architectures, which integrate processors with RISC-V 

instruction sets and accelerators featuring custom instruction 

sets, have demonstrated impressive performance in 

accelerating inference tasks and model reconfigurations. 

Mani V.R.S. [8] employed ZYNQ boards with ARM 

hardware cores to meet the application requirements for 

processor-controlled systems and data routing. However, the 

proprietary nature of ARM cores limited the system's 

flexibility. RISC-V has gained attention for its openness and 

modular instruction set that can be adapted to various 

application scenarios. By deploying RISC-V as a soft core on 

FPGA boards, new opportunities for general-purpose deep 

learning accelerators have emerged. Wu et al. [9] integrated 

the accelerator as a co-processor onto the RISC-V CPU core, 

achieving high acceleration ratios for convolutional 

computations through extended instruction sets. However, 

tightly coupled architectures are highly dependent on specific 

models, which can lead to significant decreases in accelerator 

efficiency when handling different models or algorithms. To 

accommodate new functional requirements, extensive 

reconfigurations of both the CPU and accelerator are often 

necessary. Alejandra Sanchez-Flores [5] offered 

comprehensive insights into LCA and TCA, supported by 

empirical data showcasing favorable power consumption and 

throughput for LCA centered on RISC-V processors. 

III. SYSTEM STRUCTURE 

A. System Structure Description 

The independence of the LCA facilitates a more flexible and 

efficient implementation on both the software and hardware 

sides. This decoupling of software and hardware components 

also enhances their ability to collaborate effectively. In this 

architecture, the RISC-V processor serves as the main control 

unit, managing low-complexity computations and 

coordinating communication between system components. 

Meanwhile, the CNN accelerator focuses on efficiently 

executing deep neural network computations. To improve 

inference speed, parallel processing and pipeline 

optimization techniques are utilized. Given the high 

computational demands of CNN, the accelerator operates at a 

higher frequency to expedite inference, while the RISC-V 

processor operates at a lower frequency to manage the 

control flow. This dual-frequency approach enhances the 

overall performance and maintainability of the system. The 

system architecture of the LCA, featuring RISC-V CPUs and 

deep learning accelerators, is illustrated in Fig.2. The entire 

inference process of the neural network is controlled by a 

combination of RISC-V instructions for process control and 

NAI for computational tasks. 

The RISC-V processor retrieves instructions and parameters 

from ROM, transfers weight data to DRAM via the AXI bus, 

and sends convolutional layer operation commands to the 

accelerator through the AXI-Lite bus. These commands are 

stored in the accelerator's instruction cache. Upon receiving a 

start or completion signal from the previous layer, the 

instruction cache releases the current layer's instructions to 

the decoder. The decoder then configures the compute kernel, 

memory accesses, and cache control accordingly.Under the 

guidance of the controller, the DMA extracts necessary 

parameters and image data from the DRAM and sends them 

to the computational unit of the accelerator to perform the 

convolution operation. Once completed, the output data can 

be directed to subsequent processing stages, such as pooling 

and activation, minimizing unnecessary data write-backs to 

the DRAM. This approach dramatically reduces data transfer 

latency and energy consumption, improving overall inference 

efficiency.To minimize resource utilization, we adopted a 

lightweight algorithm design approach focused on reducing 

computational load, parameter count, and actual runtime. 

Specifically, we employed weight quantization and operator 

fusion. Weight quantization reduced the model's parameter 

count while maintaining accuracy, thereby enhancing 

computational efficiency. Batch normalization (BN) fusion 

addressed the vanishing gradient problem by enabling a 

single computation to complete the Conv+BN+ReLU layers 

in hardware. This also reduced power consumption on 

DRAM, positively impacting the system's energy efficiency 

ratio. 

 

B. CNN Inference Engine 

Different neural network models typically have distinct 

compositions, as illustrated in Table 1. For example, 

ResNet-50, YOLOv4-Tiny, and BiSeNet v1 exhibit 

substantial differences in operator composition. Even when 

operators are shared, their computational parameters can 

vary. To accommodate the support of various neural network 

models, a CNN inference engine was proposed. This engine 

generates data and instructions corresponding to the 

microarchitecture based on the computational graph.Under 

the LCA, all computational tasks are offloaded to the 

accelerator, leaving the CPU solely for control purposes. 

 

Table 1 Network model information 

 

  

 

As shown in Fig.3(a), the inference engine has two phases: 

translation and optimization. The translation phase extracts 

  ResNet-50 YOLOv4-Tiny BiSeNet v1 

CONV √  √  √  

MaxPooling √  √  √  

AvgPooling √  - √  

Concat √  √  √  

Upsample - √  √  

LeakyRelu - √  √  

Sigmoid - √  √  

Mul - - √  

ADD √  √  √  

Split - - √  

Input Size 224x224 416x416 640x640 

Conv layer  49 21 34 

Operations 8.9 6.8 127.7 

Kernel Size 3 × 3, 7 × 7 1 × 1, 3 × 3 1 × 1, 3 × 3 

Accuracy(FP32) Top-1 75.08% Iou≥ 0.7 56.92% mIoU 68.24% 

Accuracy(INT8) Top-1 74.56% Iou≥ 0.7 56.58% mIoU 67.82% 
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necessary information from the model, performs operator 

fusion on closely related layers in the CNN to reduce 

computation, and quantizes the kernel weights with 

negligible loss of accuracy. The generated quantized data is 

then organized into an intermediate representation (IR). The 

processed weights are reordered according to the results of 

the network slicing and optimization phases.The 

optimization phase parses the translated IR to maximize 

throughput by slicing the network. Finally, the optimized 

demapping generates Neural Network Acceleration 

Instruction (NAI). 
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Fig.3. Engine and instruction flow 

 

C. NAI Instruction 

NAI was defined in this study as a specialized 64-bit 

instruction set architecture. The [63,32] bit range of this 

architecture was designated as the Opcode, which determined 

the instruction type through recognition. As depicted in 

Fig.3(b), the Opcode consisted of read/write operations and 

address information, with the Decode module tasked with 

resolving the corresponding read/write addresses based on 

the Opcode. Subsequently, the module transferred the [31,0] 

bit parameters of NAI to the Controller. NAI was subdivided 

into three primary categories based on its function and 

purpose: Parameter Type (P-Type), Control Type (C-Type), 

and Load/Store Type (L-Type) instructions. The number of 

bits occupied by each instruction type and the details of their 

information were detailed in Fig.4. 

P-Type is the type of core instruction required to configure a 

specific computational task within the accelerator and is used 

to convey basic configuration information. This includes key 

configuration information such as image size, step size, 

input/output channels, bias, scale, and weight count. By 

controlling these parameters, flexible support can be 

provided for various hierarchical structures of the CNN. 

C-Type is an tool for coordinating operations within the 

accelerator and controlling the flow of instructions.The 

C-Type instructions include functions such as initiating 

specific operator operations, synchronizing the accelerator 

state, and reading the accelerator state to determine if a 

computation is complete. 

L-Type instructions specify read and write operations on the 

data, ensuring that the accelerator 's processing units are able 

to fetch the input data and store the results of the computation 

correctly. L-Type allows the accelerator to precisely control 

the data flow and support complex memory access patterns, 

which are particularly important for efficient weight and 

feature map storage, optimized memory access modes, and 

reduced memory latency. 
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Fig. 4. Instruction unit detail 

 

NAI incorporated an event-based triggering mechanism. As 

illustrated in Fig.4, under this mechanism, the execution of  

P-Type and L-Type instructions did not occur immediately 

but remained in a standby state until triggered by a C-Type 

instruction to commence their designated operations. This 

design permitted multiple P-Type and L-Type instructions to 

be grouped together and simultaneously updated by a single 

C-Type instruction, forming a comprehensive parameter 

configuration table. This design avoids the complexity of 

conditional judgment and execution for each instruction, 

improving the efficiency of the instruction pipeline and the 

overall execution speed. 
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D. Accelerate Structure 

The inference-computation intensive nature of  CNN requires 

efficient parallel computing capabilities. This design 

employs a multi-level parallelization strategy. This involves 

loop unfolding of kernel row and column iterations, input 

feature map channel iterations and output feature map 

channel iterations to achieve efficient parallel processing. As 

depicted in Fig.5, W, H,  C, F and K represented the width, 

height, number of input channels, number of output channels, 

and size of the convolution kernel. Meanwhile, TC and TF 

represented the number of input and output channels used in 

the computation.The size of the input sliding block was 

K×K×TC,the weight block was K×K×TC×TF, and the output 

sliding block was K×K×TF.Within each clock cycle, the 

accelerator read the input sliding block and weight block 

sequentially to perform convolution operations. Following 

C/TC clock cycles, an output sliding block was calculated. 

Subsequently, this output sliding block was written back to 

off-chip memory or passed on to subsequent operator 

operations. 

IV. EXPERIMENTAL RESULT 

In order to verify the effectiveness of using LCA, we decided 

to experimentally validate three CNNs (Resnet-50, 

YOLOv4-Tiny and BiSeNet v1) on the XC7K410T board 

shown in Fig.6. Measured by actual RTL code experiments, 

Table 2 displayed a performance comparison between our 

design and existing FPGA-based accelerators. For all 

evaluated networks, LCA outperformed all others in terms of 

energy efficiency (GOP/s/W). We achieved an energy 

efficiency of 82.92 to 96.79 GOP/s/W. The works proposed 

in [6] and [10] utilized 16-bit quantization for computation, 
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resulting in less efficient DSP utilization and lower energy 

efficiency compared to ours. The implementation of the 

YOLOv3-Tiny network on a RISC-V processor, as proposed 

in [10], resulted in power consumption of 3.87W.However, 

due to their low operating frequencies, their throughput was 

approximately one-fifth of ours, resulting in energy 

efficiency being roughly half of what we achieved. Although 

the designs proposed in [11] and [12] had slightly higher 

throughput than ours, their power consumption was three 

times greater, leading to inferior energy efficiency compared 

to our design. 

V. CONCLUSION 

This paper explores a neural network heterogeneous 

computing system with lower power consumption and higher 

inference speeds on a LCA consisting of an RISC-V 

processor and a NAI neural network accelerator. For the 

requirement of deploying new neural network models, 

designs and optimizations were carried out separately on the 

processor and accelerator through decoupling. Experiments 

conducted on various neural network models demonstrated 

that our system, on the strength of its strong generality, 

exhibited superior performance. 

 

 
Fig.6. Evaluation board for LCA 
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