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Abstract—  The application of Convolutional Neural Networks 

(CNNs) has significantly accelerated the development of 

semantic segmentation, particularly in the domain of 

autonomous driving. Semantic segmentation is crucial for 

enabling autonomous vehicles to accurately perceive their 

surroundings and make real-time decisions. However, the 

increasing computational complexity has led to a substantial 

rise in power consumption, hindering the progress of 

self-driving technology. While Field Programmable Gate 

Arrays (FPGAs) offer a means to accelerate network inference, 

achieving an optimal balance between accuracy and speed 

remains a significant challenge. This paper investigates 

state-of-the-art semantic segmentation models and their 

corresponding optimization techniques. We summarize the 

critical requirements for system flexibility when mapping 

models to embedded FPGAs. Based on these requirements, we 

propose a reconfigurable semantic segmentation accelerator 

that integrates hardware optimization and data quantization 

strategies. The data quantization strategy reduces the bit width 

to 8 bits without any discernible loss in accuracy. To further 

reduce inference time, the network operators are implemented 

and optimized directly in hardware. Additionally, an 

instruction-controlled data flow is employed to support future 

updates and scalability. To enhance coding efficiency and 

reusability, we utilize SpinalHDL, an emerging hardware 

description language embedded in Scala, a high-level 

programming language, for the development of the proposed 

accelerator. The performance of the design is evaluated on the 

Virtex UltraScale+ VU9P FPGA platform, yielding accuracies 

of 74.3% on the CamVid dataset and 72.1% on the Cityscapes 

dataset, with a processing speed of 24 FPS, approaching 

real-time performance. This work paves the way for more 

energy-efficient and scalable solutions for autonomous driving 

systems, with potential for real-world deployment in various 

safety-critical environments. 

 
Index Terms—FPGA, Semantic segmentation, Scalable 

design, Accelerator 

 

I. INTRODUCTION 

The advent of Convolutional Neural Networks (CNNs) has 

initiated a revolutionary transformation in the field of 

computer vision. Compared to traditional methods, CNNs 

offer significant advantages. including the ability to 

automatically learn and extract image features, effectively 

handle large-scale image datasets, and enhance accuracy 

across various tasks[1]. Semantic segmentation, a vital 

component of CNNs, plays a crucial role in numerous 

industries, particularly in the realm of self-driving 

technology. By precisely classifying of each pixel captured 

by onboard cameras, semantic segmentation enables 
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autonomous vehicles to achieve a comprehensive 

understanding of their surrounding environment, including 

roads, pedestrians, and other vehicles. This detailed 

perception is essential for the safe navigation and 

decision-making processes of autonomous vehicles. 

Specifically, self-driving cars must accurately segment cars, 

pedestrians, road signs, and other objects in real-time to make 

precise control decisions, ensuring safety and robustness in 

diverse driving conditions[2]. 

  Nevertheless, in practical contexts, the pursuit of accuracy 

alone is insufficient. Improving accuracy often leads to 

increased computational complexity, which in turn results in 

a sharp decline in recognition speed. To enhance the 

processing speed of self-driving systems, the utilization of 

Graphics Processing Units (GPUs) has become a prevalent 

approach for network training and inference tasks. The 

parallel processing capabilities of GPUs enable low latency 

and real-time performance when handling large models[3]. 

Despite the high efficiency, the significant power 

consumption of GPUs presents a challenge for the 

advancement of self-driving technology. It is imperative that 

self-driving systems process substantial quantities of 

real-time data in a timely and efficient manner while 

simultaneously maintaining low power consumption. This is 

crucial for ensuring the safety and stability of the system. 

  In order to reduce power consumption, researchers have 

initiated an investigation into the potential of using 

embedded processors for the execution of self-driving tasks. 

Compared to GPUs, embedded processors exhibit markedly 

reduced power consumption, thereby rendering them more 

appropriate for real-time applications. Notable among these 

are field-programmable gate arrays (FPGAs) and 

application-specific integrated circuits (ASICs), which have 

attracted considerable interest from researchers. While 

ASICs could potentially achieve significant energy savings 

due to their custom-designed circuits, they lacked flexibility 

and had lengthy development cycles, which proved 

disadvantageous in the context of the rapidly evolving field 

of self-driving[4]. In contrast, FPGAs have the potential to 

markedly enhance the speed of inference by modifying a 

series of internal ASIC modules, including DSP blocks, 

block RAM, and the necessary interface cores[5]. Compared 

to software implementations on multi-core processors and 

GPUs, FPGAs achieved competitive energy efficiency 

(approximately 10-50 GOP/s/W) and low-latency inference , 

which is especially important for applications in the 

self-driving field that required low latency and long-term 

stable operation[7]. 

  This paper presents a reconfigurable hardware accelerator 

designed to address the limitations of existing semantic 

segmentation solutions, particularly regarding the balance 
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between accuracy and computational efficiency. We selected 

the BiSeNetV1[8] network, a lightweight architecture known 

for achieving a trade-off between model complexity and 

segmentation accuracy. To facilitate deployment on 

resource-constrained hardware platforms, we employed a 

quantization strategy that effectively reduces model size 

without compromising inference accuracy. This approach 

optimizes resource utilization, making it feasible for 

implementation on platforms with limited capacity.The 

proposed quantization method was rigorously validated 

across multiple datasets, demonstrating its effectiveness in 

maintaining high accuracy while minimizing resource 

consumption. To further enhance computational efficiency, 

we integrated several optimization techniques, including loop 

unrolling, tiling, and data swapping, which improve 

parallelism in convolution operations and streamline the 

overall computation process, thereby reducing processing 

time.DSP optimization was applied to minimize on-chip 

memory access frequency and reduce data transmission 

overhead, resulting in more efficient use of hardware 

resources — an essential consideration for devices with 

constrained capabilities. The design of other operators was 

tailored to hardware constraints, further accelerating network 

inference and achieving simultaneous optimization of both 

resources and processing speed.Additionally, the use of 

SpinalHDL, a high-level hardware description language, 

allowed for flexible configuration of FPGA parameters. This 

flexibility ensures that developers can adjust hardware 

implementations without focusing on low-level details, 

thereby enhancing adaptability across various hardware 

configurations. An instruction-based execution flow control 

was also implemented to support future network upgrades, 

significantly improving the flexibility and reconfigurability 

of the hardware design.The proposed accelerator was 

deployed on the Virtex UltraScale+ VU9P FPGA and 

evaluated on the CamVid and CityScapes datasets. It 

achieved an accuracy of 74.3% on CamVid and 72.7% on 

CityScapes, with processing speeds nearing real-time 

performance. These results demonstrate the accelerator's 

potential in real-time semantic segmentation tasks, offering 

both enhanced speed and resource efficiency compared to 

existing solutions. 

  This document is organized as follows. Section 2 introduces 

related work and highlights its shortcomings. Section 3 

introduces the design workflow and the specific hardware 

architecture. It includes an analysis of the network structure 

and the implementation of specific hardware operators, along 

with proposed optimization strategies for the accelerator. 

Section 4 presents the performance results of the final 

solution, including experimental process, accelerator 

execution time, and comparisons with other FPGA-based 

works. Section 5 concludes the work and providing 

suggestions for future work. 

 

II. RELATED WORK 

  An autonomous driving system is comprised of four 

principal components:perception,self-localization, 

prediction, and decision-making. Among these, perception is 

of fundamental importance, as subsequent prediction and 

decision-making are contingent upon it. The process of 

perception, however, begins with the acquisition of relevant 

information from the vehicle's surroundings[9]. In recent 

years, there has been a notable increase in interest in object 

detection. This surge in interest has led to the proposal of 

various optimization schemes, aimed to enhance the 

performance of object detection[10]-[11]-[12]. Moreover, 

perception is not solely concerned with object detection; it 

also encompasses semantic segmentation. A principal 

distinction between semantic segmentation and object 

detection is that the former offers a more comprehensive 

understanding of the scene, thereby enabling more precise 

prediction and decision-making[13]. Consequently, the 

existing solution cannot be readily applied to optimize 

semantic segmentation. 

  Initial developments in semantic segmentation were 

initiated by Fully Convolutional Networks (FCNs), which 

expanded network models to facilitate pixel-level predictions, 

thereby pioneering end-to-end training[14]. In order to 

enhance the precision of their results, numerous semantic 

segmentation models started encoding more spatial 

information or expanding the receptive field[15]-[16]-[17], 

resulting in a significant increase in the overall model size. 

Networks such as U-Net and SegNet applied an 

encoder-decoder architecture to enhance segmentation 

accuracy by recovering spatial information[18]-[19]. However, 

some information remained difficult to recover. which 

greatly enhance the capture of multi-scale contextual 

information and significantly improve segmentation 

performance[15]-[20]-[21]. Despite these advancements in 

accuracy, these methods also increased model complexity 

and computational cost, rendering real-time applications 

challenging.The BiSeNetV1 network adopts a bilateral 

network structure to cope with the loss of spatial information 

and the shrinkage of receptive fields, while preserving spatial 

details as much as possible and reducing computational costs, 

using fewer convolutional layers. There has been a certain 

improvement in real-time performance[8]. 

  Previous research sought to accelerate inference by 

reducing the size of the input image[22] or by pruning network 

channels[23]. Nevertheless, this approach frequently resulted 

in a reduction in accuracy, which was inadequate to fulfill the 

criteria for precision. To address these issues, a pipelined 

structure using depthwise separable convolutions was 

proposed[24], which decomposes standard convolutions into 

depthwise convolutions (for filtering) and pointwise 

convolutions (for combining features), resulting in the 

significant reduction of the computational load by 

approximately nine times. However, this approach might lead 

to the isolation of information between channels, thereby 

impairing the network's ability to capture inter-channel 

correlations and affecting overall performance. Consequently, 

focusing solely on the network was insufficient to achieve an 

optimal balance between speed and accuracy. This led 

researchers to investigate the potential of embedded 

processors. 

  Nevertheless, inexpensive embedded processors are 

capable of achieving a processing speed of tens of GFLOPs 

(one billion floating-point operations) per second, which is 

insufficient for near real-time processing of semantic 

segmentation. If speed is pursued without consideration of 
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other factors, dedicated design circuits can achieve optimal 

performance and energy efficiency. For example, Li 

described a dedicated CMOS image sensor (CIS) chip that 

achieves optimal computational efficiency and power 

consumption through the use of specialized circuit design[25]. 

However, the configurability of customized circuits is 

severely limited, which presents a significant challenge in 

subsequent algorithm optimization. FPGA serves as a 

compromise solution, offering the potential for specialized 

hardware accelerators for various neural network models. Its 

internal hardware circuits are fixed, while its 

reconfigurability is superior to that of ASICs. High 

performance efficiency in network inference is demonstrated 

by FPGA primarily due to its ability to be reconfigured 

optimally for different network models. 

  A number of hardware accelerators for semantic 

segmentation have already been put forth for consideration. 

For example, Ghielmetti introduced a hardware acceleration 

scheme based on ENet, implemented using HLS4ml[3]. This 

scheme was converted to hardware code through high-level 

synthesis (HLS) and reduced resource utilization through 

quantization and filter pruning, achieving an image 

processing latency of 4.9 ms. However, only 36.8% of the 

mean Intersection over Union (mIoU) was achieved in the 

dataset. Despite the advantages of HLS in providing a more 

abstract representation of external modules and interfaces, 

thereby facilitating the implementation of intricate control 

logic, it is currently deficient in the capacity to pursue the 

optimization potential inherent to RTL design at a more 

granular level. To further enhance precision, Mori proposed 

the implementation of the DeepLabv3+ network structure, 

which has demonstrated considerable advancements in 

algorithmic accuracy[26]. In an effort to reduce inference time, 

genetic pruning of channels was employed to minimize the 

model's parameter count. Nevertheless, data transfer 

optimization was insufficient, resulting in significant delays. 

Furthermore, the network itself was highly intricate, with an 

ultimate inference time of 0.67s, rendering it unsuitable for 

real-time applications. 

  In order to reduce the complexity of the network and 

facilitate its deployment to hardware accelerators, a number 

of optimization techniques have been proposed. A common 

method is to employ quantization techniques to reduce the 

size of the data model by utilizing more straightforward 

weight representations[27]. Quantitative techniques reduce the 

bit width representation of parameters from 32-bit 

floating-point to lower bit widths, thereby markedly reducing 

the area and power consumption of model inference[28].  

Moreover, ternary weight networks[29] and binary neural 

networks employ quantization of weights to lower bit widths 

(such as ternary and binary), thereby reducing storage 

requirements and computational complexity. It is important 

to note, however, that extreme quantization can have a 

significant impact on the accuracy of the model. For instance, 

while binarized networks, while optimal in data size, require 

2 to 11 times more operations and weights than networks 

with 8-bit fixed-point weights to achieve similar accuracy on 

small networks[30]. Analysis in Gysel demonstrated that 8-bit 

fixed-point data is almost as accurate as 32-bit floating-point 

data[31]. 

  An additional approach to model optimization is model 

compression, which entails the reduction of the number of 

weights or activations to lower memory and computational 

requirements. For instance, Han applied Huffman coding to 

trim and compress model data, predominantly in fully 

connected layers, resulting in a 91% reduction in the number 

of weights without compromising accuracy[32]. However, 

weight trimming was less effective in convolutional layers, 

where activation functions were more commonly employed 

to set outputs to zero rather than trimming weights, thereby 

reducing computation. Given that semantic segmentation 

networks lack fully connected layers, this technique is more 

suited to object detection. 

  A multitude of hardware accelerators have endeavored to 
achieve a balance between efficiency and flexibility through 
the implementation of diverse optimization techniques. 
However, the rapid evolution of algorithms presents a 
significant challenge for hardware architects. This difficulty 
increases the gap between algorithms and hardware 
accelerators[33]. To address this bottleneck, a synchronous 
dataflow architecture based on hardware reconfiguration 
technology was proposed by[34]. The FPGA is reconfigured, 
allowing the architecture and hardware resources to be 
adjusted according to different network layers. This 
adjustment achieves significant acceleration. However, a 
drawback exists: the accelerator needs to be reconfigured for 
different sub-graphs. 

  This paper proposes a novel configurable semantic 

segmentation accelerator using SpinalHDL, which is more 

user-friendly compared to traditional methods. SpinalHDL 

simplifies RTL code generation, making it easier for 

researchers to understand and apply these codes while 

providing greater flexibility in hardware configuration. 

Concurrently, the hardware implementation of the operators 

within the network has been completed, and through network 

analysis, optimization operations have been performed on 

convolutions with excessive computational complexity, 

thereby conserving resources and enhancing computational 

efficiency. In particular, a lightweight instruction set was 

devised. The controller parses instructions to control the data 

flow, ensuring that the accelerator is not limited to supporting 

specific network architectures. In future development, the 

corresponding data flow configuration can be rapidly 

modified to align with different algorithmic models. This 

modification markedly enhances the efficiency of the 

development process, rendering it well-suited to a multitude 

of application scenarios. 

 

III. THE PROPOSED METHOD 

A. Network Model Analysis 

  BiSeNetV1 is designed to balance accuracy and processing 

efficiency in semantic segmentation by utilizing a 

dual-branch structure. The Spatial Path focuses on extracting 

high-resolution features, preserving image details and 

maintaining real-time performance through shallow 

convolutional layers. In contrast, the Context Path captures 

global semantic features, which are aggregated using deep 

convolutional layers and global average pooling[8]. The 

network operates in five stages. In the first stage, spatial 

details are extracted using convolutional layers. The second 

stage reduces the feature map size via max pooling, which 
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increases the receptive field. In the third stage, rich 

contextual information is captured during downsampling, 

facilitated by the ResNet18 backbone. The fourth stage 

integrates spatial and semantic information through the 

Feature Fusion Module. Finally, the fifth stage restores the 

resolution of the segmentation map through upsampling.An 

analysis of the latency and floating-point operations (FLOPs) 

distribution of various operators in the BiSeNetV1 model (as 

shown in Fig.1 revealed that most computational resources 

are allocated to the stages responsible for spatial feature 

extraction and deep semantic information capture. 

Convolution operations dominate in terms of both latency 

and FLOPs, indicating their significant impact on overall 

computation. Convolution primarily involves 

multiply-accumulate operations, and while these operations 

are computationally straightforward, their volume makes 

sequential execution on a CPU time-consuming. Thus, 

parallel computation on hardware provides an effective 

optimization strategy, with the primary focus on accelerating 

convolution operators.In addition to convolution, operators 

such as addition (add), multiplication (mul), and mean 

pooling also contribute to the computational load. Although 

their frequency is lower, these operations can still be 

optimized through hardware acceleration to improve overall 

performance. To further conserve hardware resources, the 

network backbone is trained using ResNet18, and the 

network model is modified by adjusting the activation 

function to Leaky ReLU. Large convolution kernels are 

uniformly replaced with standard 3x3 convolution kernels. 

After training, the network achieved accuracies of 75.4% on 

the CamVid dataset and 73.6% on the CityScapes dataset. 

Detailed optimization strategies and techniques will be 

discussed further in subsequent sections. 

 
Fig.1 Latency and FLOPs Distribution of Operations 

B. Hardware Implementation Workflow Overview 

  The proposed hardware accelerator workflow is illustrated 

in Fig.2. The workflow is comprised of five stages which 

integrate the design of the hardware accelerator with the 

corresponding instructions. The initial stage of the process 

entails training the model using the PyTorch framework. This 

involves training the dataset, optimizing the network 

hyperparameters, and quantizing the model to reduce the 

number of MAC operations, thereby facilitating the 

deployment of the model on hardware with greater ease. The 

second stage entails the description of the hardware 

architecture corresponding to the network model, which is 

achieved through the use of SpinalHDL. SpinalHDL's highly 

parameterized nature facilitates rapid automated hardware 

design, including hardware implementation and parameter 

configuration. The third stage involves using Vivado IDE to 

simulate, synthesize, and implement the RTL code and TCL 

scripts generated by SpinalHDL, producing the necessary 

hardware bitstream. The fourth stage involves transferring 

the instructions, model data, and weight information from the 

PC to the FPGA device. This stage ensures the accurate 

transmission of data and the establishment of an appropriate 

interface for communication with the FPGA. Ultimately, the 

network application runs on the FPGA in the fifth stage. 

 
Fig.2 Workflow overview 

C. The Proposed Hardware Architecture 

  We adopted a collaborative approach where the PC and 

FPGA worked in close conjunction to execute data-intensive 

tasks, as illustrated in Fig.3. The initialization process, which 

entailed the loading of input feature maps, weight vectors, 

and operation instructions, was conducted by the PC, while 

the FPGA was responsible for the efficient processing of data. 

Control signals and instructions were transmitted from the 

PC to the FPGA via the AXI-Lite bus and stored in the 

instruction register. Moreover, the transfer of computational 

data and results were efficiently transferred between the PC 

and FPGA's DRAM was conducted with optimal efficiency 

via the high-throughput AXI-Stream bus. Upon accelerator 

initialization, the instructions stored within the register were 

parsed by the controller, which also scheduled computational 

resources and managed data flow between DRAM and 

on-chip buffers. A DRAM interface module was designed to 

optimize data flow and memory access performance. To 

enhance isolation and efficiency, the on-chip buffers were 

partitioned into weight, output, and data buffers. The 

computation module was subdivided into two distinct 

sub-modules, namely the Conv and Shape sub-modules. The 

Conv module was responsible for performing convolution 

operations, while the shape module included units such as 

maximum pooling, concatenation (concat), add, upsampling, 

mul, and mean pooling, which were utilized to support 

diverse operations. The ports of the multiplexer and 

demultiplexer, as well as the arbitration module, were 

described using SpinalHDL, facilitating parameterization and 

configuration to accommodate different numbers of 

functional modules and markedly enhancing iterative 

development efficiency. When data flowed to the Shape 

module, the demultiplexer module orderly distributed tasks, 

and after operations were completed, the results were 

collected by the multiplexer module and transmitted to 

DRAM in accordance with the instructions. 
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Fig.3 Accelerator process 

  CONV   As indicated in Fig.1, convolution is the most 

resource-intensive and time-consuming computation in the 

network. During the convolution process,  the energy 

consumed by data movement and memory access was found 

to be considerably higher than that of the convolution 

computation itself[35]-[36]. Due to the limitations of bandwidth, 

the cost of transferring data from external memory to internal 

memory was considerably higher than the transfer cost 

between on-chip memories[28]. The convolution operation 

primarily comprises a series of multiplication and 

accumulation cycles,which are performed as the window 

slides. To enhance efficiency, we opt to perform unfolding 

parallel computation on specific layers of the convolutional 

loop, encompassing the kernel size, input channel, and output 

channel. This approach leads to a notable reduction in 

computation time.This approach enhances computational 

efficiency while avoiding an unacceptable increase in 

hardware resources and power consumption. 

  We propose an efficient convolutional module design, 
capable of flexibly handling 3x3 and 1x1 convolution 
operations. The design employs loop optimization techniques, 
including loop unrolling, loop tiling, and loop permutation [29], 
to enhance computational efficiency and reduce energy 
consumption associated with data movement and memory 
access. As illustrated in Fig.4, prior to entering the 
convolutional module, the feature maps are rearranged and 
concatenated into a 3x3 convolution form through a 
multiplexer to guarantee data flow consistency and module 
reusability. 

 
Fig.4 Implementation of convolution 

  The padding requirements are determined by the padding 

module based on instructions, thus avoiding performance 

degradation. A double-buffering strategy is employed by the 

data generation module to cache two rows of input feature 

map data, thereby reducing external memory access and 

accelerating the computation process. The convolution 

computation order is adjusted by adopting a channel-first 

strategy, extracting data blocks of size 𝑘𝑥 × 𝑘𝑥 ×  𝐶  from 

local input feature maps and simultaneously computing the 𝑘𝑥 × 𝑘𝑥 points of the C convolution kernels are 

simultaneously computed. This approach achieved 

parallelism in terms of input channels, output channels, and 

convolution kernel size. 

  Following the completion of each computation, the next 

set of C channel data is calculated using the current 

convolution kernel's subsequent set of C channel data. The 

data is accumulated in the temporary buffer until all channels 

of the point have been computed, resulting in a complete 

output feature map point for the C channels. Subsequently, 

the input feature map is traversed from the initial channel of 

the aforementioned point. The calculations are performed 

with the C channels of the next set of P convolution kernels. 

This process continued until all convolution kernels and all 

channels of the local point in the input feature map have been 

computed. The sliding window is then moved along the row 

direction to the next pixel, continuing until the entire row is 

processed. It then moved down to the next row, repeating this 

process until the entire output feature map had been 

computed. 

  In the design of our accelerator, the input channel N is 

divided into N/C groups, with each group containing C 

channels. This transformation results in the conversion of the 

original single-layer loop into a two-layer loop structure. This 

allows acceleration of the C iterations of the inner loop by 

leveraging hardware parallelism, resulting in a speedup of 

N/C compared to the original serial computation. 

Furthermore, it enables an input channel parallelism of C. 

During each computation, the C channels of the input feature 

map are processed with the corresponding C channels of the 

convolution kernel, resulting in intermediate accumulation 

for one output channel, which is temporarily stored in a 

buffer. Once the computation and accumulation for a single 

C-channel block are complete, N/C iterations are necessary to 

compute all channels of the input feature map, thereby 

obtaining the complete output for a single channel. Following 

the completion of the convolution, quantization is required. 

However, if the output channels are not computed in parallel, 

each quantization would process only a single point from a 

given output channel of the feature map, thereby 

underutilizing the FPGA's parallelism. 

  To address this issue, the output channels are grouped. 

The M convolution kernels are divided into M/P groups, and 

the kernels within each group are computed simultaneously, 

achieving an output channel parallelism of P. The results of 

each group are stored in a temporary buffer and are 

accumulated with the results from the next group of P 

convolution kernels. This requires M/P iterations to compute 

the partial sums for all output feature map channels for one 

point. 

  Furthermore, convolution kernels are typically of a 

relatively small size, and larger kernels could be replaced by 

multiple smaller ones. Therefore, the  𝑘𝑥 × 𝑘𝑥 window of the 

input feature map and the corresponding convolution kernel 

rows and columns are fully unrolled, allowing the 

computation of  𝑘𝑥 × 𝑘𝑥  pixels in parallel within a single 

clock cycle. The  𝑘𝑥 × 𝑘𝑥  sized input feature map and kernel 

weights are transmitted in conjunction to the corresponding 

DSP units, where their computations are synchronized within 

a single clock cycle. This is achieved through the use of an 
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adder tree, which accumulates the partial results and 

temporarily stores them in a buffer. 

  The input feature map is reused N/C times, and the 

weights were reused  𝑂ℎ × 𝑂𝑤 times, effectively reducing 

memory access costs. The convolution quantization module 

maps the output, ensuring efficient representation and 

transmission within the constraints of the FPGA resource 

constraints, and producing the final quantized convolution 

result. 

  Maxpool  The max pooling layer is employed as a 

downsampling technique, whereby the spatial dimensions of 

the feature maps are reduced by selecting the maximum value 

within the pooling window. Typically, a 2x2 pooling window 

is utilized, which not only minimizes the computational load 

of subsequent layers but also enhances the model's resistance 

to spatial transformations and distortions, thereby preserving 

critical features such as edges and textures[37]. The data 

processing in our max pooling implementation, depicted in 

Fig.5 is carried out based on row parity using a Mux. Odd 

rows are initially stored in the col buffer, and upon the arrival 

of even rows, they are element-wise compared with the data 

in the col buffer, with the maximum values then stored in the 

row buffer. This approach optimizes both data flow and 

processing speed, thereby reducing the frequency of memory 

accesses. 

  

 
Fig.5  Implementation of MaxPool 

  Concat, Add  The process of feature integration typically 

entails the concatenation and addition of data. The concat 

operation merges input tensors along a specified dimension, 

thereby maintaining the independence of each feature. This 

enables the network to learn diverse features. The add 

operation performs an element-wise addition of two tensors 

along the same dimension, effectively fusing the features. 

This operation is commonly employed in residual networks 

to mitigate issues related to gradient vanishing.  We proposes 

an efficient hardware implementation method for integrating 

feature maps through Concat and Add operations. As 

illustrated in Fig.6, this method employs flexible instruction 

control to enable dynamic switching between concat and add 

operations, thereby optimizing hardware resource utilization 

and enhancing processing efficiency. Initially, the input data 

is stored in buffers to ensure its proper formatting prior to 

quantization. The quantization operation converts input data 

from high-precision format to optimized fixed-point 

representation, thereby reducing the computational load and 

adapting to hardware constraints, and minimizing precision 

loss. Based on instructions specific to neural network layers, 

the hardware unit selects between the add or concat 

operations. Add involves the element-wise addition of data 

from disparate buffers, whereas concat integrates data from 

two buffers along a specified dimension, thereby facilitating 

enhanced information integration. Subsequent to the 

execution of these operations, the processed data is 

forwarded to the subsequent network layer or utilized for 

further analysis, thereby achieving effective feature map 

integration and downsampling. 

 
Fig.6 Implementation of Concat, Add 

  Upsampling  In the process of extracting network features, 

the dimensions of the input feature map frequently undergo a 

gradual reduction. It is common practice to employ 

upsampling techniques in order to restore the feature map to 

its original dimensions. Among these techniques, 

interpolation methods enlarge the feature map by inserting 

new pixels between existing ones. The most prevalent 

methods include nearest neighbor and bilinear interpolation. 

Nearest neighbor interpolation is preferred method for 

real-time processing tasks due to its rapid computation time. 

As illustrated in Fig.7, the input feature map is initially stored 

in the input buffer for the purpose of temporarily holding the 

current feature map data. The operational unit executes a 

copy operation on each buffer element, duplicating resulting 

in the replication of each input element into multiple output 

elements aligned in rows or columns. This procedure directly 

generates an enlarged feature map and temporarily stores the 

duplicated data elements in the row buffer. As new input data 

entered the input buffer, the row buffer data is output 

synchronously within the same clock cycle, facilitating 

pipeline operation and enhancing data processing efficiency. 

This pipeline strategy ensures processing continuity, 

maximizes throughput, significantly reduces time costs, and 

enhances FPGA performance in upsampling tasks. 

 
Fig.7 Implementation of Upsampling 

  Mul  Due to differing levels of feature representation 

between the two types of features in the network, direct 

merging is impractical. The mul operator plays a critical role 

in the reweighting of features through the utilisation of 

weight vectors. This process enables the dynamic adjustment 

of the spatial feature map within each channel, with varying 

weights assigned to different spatial regions. The objective is 

to preserve and enhance high-weight features while 

attenuating low-weight ones. This adaptive weighting 

strategy enables the network to focus on regions rich in 

information content, thereby enhancing sensitivity to crucial 

features and refining boundary delineation precision in 

segmentation tasks[8]. As illustrated in Fig.8, this module 

receives inputs from two distinct buffers: one containing 

activated weights and the other comprising the input feature 

map. These weights serve as the primary filters for feature 

extraction, remaining static throughout the computations. 

The input feature map data streams continuously. Within the 

operational unit, each element of the input feature map 

undergoes element-wise multiplication with its 

corresponding weight value. During each processing cycle, 

the operational unit multiplies the weights from the weight 

buffer with corresponding feature map data from the input 

buffer, accumulating the results to derive a single output 

feature value. These accumulated results are subsequently 

quantized and directly forwarded to the next network layer. 
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Fig.8  Implementation of Mul 

  Meanpool In order to guarantee the greatest possible 

receptive field and to incorporate global contextual 

information into the feature map, global average pooling is 

employed, thus enabling the network to capture 

comprehensive semantic information. This process involves 

the condensation of spatial features into a single vector, while 

ensuring the preservation of the channel dimension. 

Subsequently, the vector is subjected to a 1x1 convolution 

and batch normalization, resulting in the generation of a 

channel attention map. This approach not only reduces the 

model's complexity but also enhances the network's ability to 

learn essential features by globally aggregating information, 

thereby improving semantic integration across different 

scales[8]. Illustrated in Fig.9, input feature map data first 

enters a multiplexer, then row-wise temporarily resides in the 

column buffer based on buffer availability. The column 

buffer temporarily holds single-row feature map data for 

subsequent accumulation. As each row is accumulated in the 

column buffer, new feature map data arriving is accumulated 

element-wise with existing data at corresponding positions in 

the buffer. This accumulation ensures merging of feature map 

data at identical positions, forming the basis for subsequent 

average value computation. Once all input data is processed, 

the accumulated values are divided by the total number of 

elements in the feature map within the operational unit in 

order to compute the global average value for each channel. 

These calculated averages undergo further processing via the 

quantization unit, which enables the data format to be 

adjusted. This results in a reduction in representation 

complexity and an optimization of overall computational 

efficiency and resource utilization. Finally, the processed 

data, which are now quantized averages, are output for use in 

subsequent layers of the deep neural network. 

 
Fig.9  Implementation of Meanpool 

  Controller  The controller employs 32-bit fixed-length 

instructions to oversee the data path of the accelerator. A 

specialized instruction set is defined for the purpose of 

executing neural networks. This includes control and status 

instructions for conv and shape operations, configuration 

parameters for operators, and direct memory access (DMA) 

control instructions, as shown in Table 1. Upon the 

commencement of an operator's execution, the initial 

instruction is first retrieved from the register by the controller, 

the operator type is determined, and the corresponding 

computational task is assigned to the appropriate processing 

unit. In order to guarantee the reconfigurability of the 

network, the instructions were responsible for controlling the 

configuration parameters of the computational units. By 

analyzing the configuration parameter instructions, different 

configurations could be applied to various operators, thereby 

markedly enhancing the efficiency of the development 

process. Furthermore, the controller is responsible for 

managing data transmission throughout the computation 

process. To enhance data transfer efficiency, the accelerator 

employs DMA control. Consequently, the DMA is informed 

by the controller of the data size and address space for read 

and write operations during each computation, ensuring 

optimal data processing. After completing the computation of 

each layer, the controller returns the status information of that 

layer. Upon receiving the correct return signal, the controller 

initiates the computation for the next layer. 
Table1 Example of supported instructions 

Instruction Width Section R/W Description 

Conv/shape 
control 

32 [3:0] W Execute specific operator 

Conv/shape 
state 

32 [3:0] R Read the operator state 

 
IMG_in shape  

32 [31:22] W Channel_in  
32 [21:11] W Col_in 
32 [10:0] W Row_in  

 
IMG_out shape 

32 [31:22] W Channel_out 
32 [21:11] W  Col_out 
32 [10:0] W Row_out 

Quan param  32 [31:0] W Scale、Zero 

 
 

Conv Config 

32 [31]  W En_Stride 
32 [30] W En_Padding 
32 [29] W En_Activation 
32 [28:27] W Conv Type 
32 [26:0]  W Weight Num 

DMA Size 32 [31:0] W Write/Read Size 
DMA Addr 32 [31:0] W Write/Read Addr 

D. The proposed Optimization Method 

  Agile Development Technique  In the contemporary field 

of hardware design, the enhancement of design efficiency has 

emerged as a prominent area of focus, alongside the 

optimization of performance.  The popularity of agile 

development techniques, which were renowned for their high 

abstraction capability and robust encapsulation, has grown 

considerably in recent times[38]. These techniques offer 

several advantages: (i) high flexibility, which facilitates the 

integration of reusable circuit modules in large-scale designs 

and simplifies circuit topology design. (ii) high coding 

efficiency, which allows for the straightforward instantiation 

and interconnection of diverse circuit modules, while its 

comprehensive error-checking functionality minimizes the 

necessity for supplementary electronic design automation 

(EDA) tools for code verification. (iii) Advanced 

development tools: notable examples include Chisel and 

SpinalHDL. In our accelerator design, the selection of 

SpinalHDL is informed by the decision to leverage the Scala 

library, with the objective of reducing design complexity[39]. 

This approach allows users to modify accelerator-relevant 

parameters in order to adapt different resources without 

requiring in-depth knowledge of internal details. 

  Quantization  Typically, a CNN is trained with 32-bit 

floating-point data on a GPU. The latest generation of GPUs 

is capable of handling 16-bit floating-point formats, yet these 

remain more complex than fixed-point data formats. The 

reduction in bit width necessitates the coarse quantization of 

data. The range of data values observed across different 

layers in a CNN is typically quite broad. Therefore, a uniform 

quantization with a fixed-point data format for all layers may 

result in a significant performance degradation. To address 

this issue, we propose an 8-bit mixed quantization strategy, 

with the objective of adapting more effectively to the diverse 

characteristics of the data. Symmetric quantization is 

employed for data exhibiting minor variations, thereby 
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facilitating the process. In contrast, asymmetric quantization 

is employed for data exhibiting significant variations, thereby 

ensuring the maintenance of precision while minimizing 

information loss during quantization. The initial step in our 

quantization process involves training the network using a 

floating-point (Float32) data format. After the training phase, 

we perform a layer-by-layer analysis to gather statistical 

information about the data. Specifically, we calculate the 

skewness and range values of the parameters in each layer. 

These statistics help guide the determination of the optimal 

threshold values for quantization.For each layer, we evaluate 

multiple potential threshold positions by quantizing the 

floating-point data to an 8-bit integer (Int8) format. After 

quantization, the accuracy of the model is tested to assess the 

impact of each threshold on the performance. Based on this 

evaluation, the optimal set of thresholds that minimizes 

accuracy loss is selected and stored for each layer.In some 

cases, a specific layer may exhibit sensitivity to quantization, 

meaning it is not well-suited for direct application of this 

strategy. When this occurs, additional adjustments are made

—such as using mixed-precision formats or adjusting the 

quantization scale— to ensure that there is no significant 

degradation in accuracy. This process allows us to achieve 

efficient quantization while maintaining the overall 

performance of the network. By carefully optimizing the 

quantization thresholds and making layer-specific 

adjustments, we are able to reduce the model's bit width from 

Float32 to Int8 without significantly sacrificing accuracy. 

This approach ensures that the network can be deployed on 

resource-constrained hardware platforms while maintaining a 

high level of performance.The efficacy of this strategy is 

demonstrated by achieving 74.3% mIoU on the CamVid 

dataset and 72.7% mIoU on the CityScapes dataset. These 

outcomes illustrate the capacity of this approach to 

effectively reduce model size and inference time while 

maintaining accuracy. 

  DSP Optimize  The most computationally intensive 

operations in neural networks, such as matrix multiplication 

and convolution, are typically executed by Digital Signal 

Processors (DSPs). While INT8 quantization reduces 

memory storage and bandwidth requirements while 

maintaining accuracy, the bit width of modern DSPs is 

significantly larger than the quantized data, leading to 

inefficiencies in DSP utilization. To address this issue, we 

implemented specific DSP optimization techniques, 

including the use of the DSP48E2 module, which is equipped 

with an 18× 27-bit multiplier.For INT8 operands, each 

DSP48E2 module is capable of computing two dot products 

in parallel, instead of just one, by processing two sets of INT8 

weights and one feature map simultaneously. This 

parallelism is achieved by concatenating two INT8 weights 

to align with the DSP bit width, allowing the module to 

handle twice the amount of data per cycle. In our design, this 

method efficiently utilizes DSP resources, as matrix 

multiplication and convolution are highly parallel operations. 

Generating two dot products with three vectors is a common 

approach in neural networks, and this optimization 

significantly accelerates the computation.Through this 

approach, two dot products are computed simultaneously 

within a single clock cycle, effectively doubling DSP 

throughput and reducing the required DSP resources by half. 

This optimized design not only improves hardware resource 

utilization but also significantly lowers the power 

consumption of the accelerator. By processing two 

computations in parallel within each clock cycle, the overall 

energy efficiency of the system is greatly enhanced, making 

it suitable for deployment in resource-constrained 

environments. 

 

IV. EXPERIMENT 

A. Experimental Setup and Workflow 

  The workflow for the designed hardware accelerator is 
illustrated in Fig.1. In this process, we first utilized the 
PyTorch framework for model training and quantization. 
During the actual operation of the hardware accelerator, the 
FPGA's DRAM was transferred with the quantized data and 
instructions from the host computer via the PCIe bus. The 
network inference tasks were executed by the accelerator 
based on these instructions, and the result data was returned 
to the host computer via the same PCIe bus upon task 
completion. It is noteworthy that the core focus of this study 
was the acceleration of the network inference process, 
excluding other stages such as image preprocessing and 
display. Detailed evaluation reports and information were 
provided in the later sections of the document. 

In this section, experiments were conducted based on the 

aforementioned workflow. The model was trained and 

quantized using PyTorch 2.2.1 and the CUDA 11.8 toolkit on 

an NVIDIA RTX3070ti GPU. Finally, the accelerator was 

deployed on a Virtex UltraScale+ VU9P FPGA, with all 

hardware implementations developed using SpinalHDL and 

synthesized and implemented using Vivado 2021.2. 

B. Datasets 

  CamVid  This dataset is the first video dataset with object 

class semantic labels, containing 701 images of urban street 

scenes, all with a resolution of $960\times720$. It is divided 

into a training set (367 images), a test set (233 images), and a 

validation set (101 images). The dataset includes eleven 

major feature types: Sky, Building, Pole, Road, Pavement, 

Tree, SignSymbol, Fence, Car, Pedestrian, and Bicyclist. 

  CityScapes  This dataset focuses on the semantic 

understanding of urban street scenes, containing images from 

50 different cities. It includes 5000 high-quality pixel-level 

annotated images of driving scenes in urban environments, 

all with a resolution of 2048x1024. It is divided into a 

training set (2975 images), a test set (1525 images), and a 

validation set (500 images). The dataset includes nineteen 

major feature types: road, sidewalk, building, wall, fence, 

pole, traffic light, traffic sign, vegetation, terrain, sky, person, 

rider, car, truck, bus, train, motorcycle, and bicycle. 

C. Preprocessing and Hyperparameters 

  For all images, we resize them to 640x640 during both 

training and inference. Additionally, for the training set, we 

use standard data augmentation techniques, including 

random scaling, random horizontal flipping, normalization, 

and data shuffling.  

  The training hyperparameters are as follows: Learning 

rate scheduling follows a "poly" policy with an initial 
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learning rate of 0.005.Weight decay is set to 0.5x10−4.The 

number of iterations is 20,000.Batch size is 8.Cross-entropy 

loss is used as the loss function.  

D. Quantization Accuracy Evaluation 

  In this study, we use mIoU as the evaluation metric to 

measure segmentation performance on the CamVid and 

CityScapes datasets. The purpose of quantization is to reduce 

model complexity and hardware resource usage.  In the 

experiments, we tested three different quantization methods, 

as shown in Table 2, all using INT8 format: symmetric 

quantization for weights and inputs, asymmetric 

quantization, and a hybrid quantization combining both 

symmetric and asymmetric methods. Hybrid quantization 

strategy performed best on both datasets, achieving mIoU of 

74.3% on the CamVid dataset and 72.7% on the CityScapes 

dataset. 
Table 2 Quantization Method Performance 

                                                       Accuracy (%) 

Method CamVid CityScapes 

Original Accuracy 75.4 73.6 
Symmetric Quantization 73.5 72.2 
Asymmetric Quantization 73.9 72.6 
Mixed Precision Quantization 74.3 72.7 

  In further experiments, as illustrated in the Fig.10, drop in 

model accuracy is not significant at higher quantization bit 

widths, mainly because the model size did not significantly 

reduce. When the quantization bit width drops below 8 bits, 

the accuracy loss becomes very noticeable. Based on this 

observation, we selected 8-bit quantization as our strategy. 

mIoU on the CamVid dataset decreased by 1.6 percentage 

points compared to 32-bit floating-point computation, and by 

1.9 percentage points on the CityScapes dataset. Despite this 

reduction in accuracy, our model size was reduced by a factor 

of four. Loss in quantization accuracy is primarily due to 

clipping and rounding errors during the quantization process, 

which often conflict with each other. Semantic segmentation 

tasks are more sensitive to low bit-width quantization 

compared to image classification tasks, resulting in more 

pronounced accuracy loss in semantic segmentation.  

 
Fig.10 Impact of Quantization Bit Width on Accuracy 

E. Comparison of Previous Work 

  We compare our work with previous studies on two 

datasets, with detailed results presented in Tables 3 and 4. Yu  

primarily contributed an 8-bit quantization strategy, which 

minimized accuracy loss to only 2.04%. In contrast, our 

post-training quantization method resulted in a mere 1.6% 

accuracy drop, precision of the OpenCL accelerator was also 

limited by the network's structure[41]. Miyama used a basic 

U-Net architecture with quantized weights and activations[27]. 

Due to the network's simplicity and reduced input image size, 

low-bit quantization had minimal impact on accuracy, 

leading to impressive results. However, its practicality is 

limited due to its narrow applicability. Shimoda focused on 

optimizing networks with a large number of parameters using 

filter pruning methods[42]. While effective, the rise of 

lightweight deep learning models has reduced the relative 

benefits of this approach. Lightweight models maintain high 

accuracy with fewer parameters, significantly improving 

efficiency and applicability. 

CamVid 
work OpenCL 

accelerator[41] 
3-bit 

Quantized 
CNN[27] 

SDCN 
accelerator[42] 

our 

Device Arria-10 
FPGA 

Alveo 
U200 

 zcu102 VU9P 

Precision 8-bit quant 3-bit quant - 8-bit 
fix-quan 

Net SegNet-basic Unet Alex 
Net-based 

SFCN 

BiSeNetV1 

Input size 360x480 256x256 300x225 640x640 
Frame rate 

(FPS) 
57 123 165 25 

Frequency 
(MHz) 

- 300 100 200 

DSPs - 882 - 1188 
mIoU(%) 57.91 67.8 42.62 74.3 

  In contrast, Jia used the E-Net network and the Xilinx 

Vitis-AI compiler to convert floating-point models into 

fixed-point models executed by the DPU. The limitation of 

their method is its applicability to specific network structures, 

lacking generalization[43]. Mori adopted the lightweight 

DeepLabV3+ network, focusing on pruning model 

parameters. Although it showed significant performance 

improvement over CPU, it still fell short of real-time 

requirements[26]. Le utilized a U-Net-based structure with 

4-bit quantization, excelling in resource utilization but 

achieving the lowest accuracy among all compared works, 

highlighting a trade-off between accuracy and resource 

usage[44]. 

CityScapes 
work Real-time 

FPGA 
accelerator[43] 

channel 
pruning 
CNN[26] 

SDCN 
accelerator[44] 

our 

Device ZYNQ 7035 
FPGA 

Arria-1
0 FPGA 

 Alveo U250 
FPGA 

VU9P 

Precision 8-bit quant - 4-bit quant 8-bit 
fix-quant 

Net E-Net DeepLa
bV3+ 

U-Net BiSeNetV1 

Input size  1024x512 960x96
0 

256x256 640x640 

Frame rate 
(FPS) 

 32.9 1.4 22.6 24 

Frequency 
(MHz) 

- 200 152 200 

DSPs 689 - 1043 1188 
mIoU(%) 63.9  65.29 62.9 72.7 

  Our method employs the BiSeNetV1 network with an input 

size of 640x640. On the CamVid dataset, it achieved 25 FPS 

at a 200 MHz operating frequency with a mIoU of 74.3%. On 

the CityScapes dataset, it reached 24 FPS and a mIoU of 

72.7%. This performance is crucial for practical applications, 

demonstrating an excellent balance between accuracy and 

real-time performance. Our work proves to be a 
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general-purpose solution suitable for a wide range of 

datasets, meeting high-performance requirements. This dual 

optimization strategy not only enhances the adaptability of 

the network but also ensures the efficiency of hardware 

accelerator deployment. 

  Part of semantic segmentation results are shown in Fig.11, 

the two results on the left are from the CamVid dataset, and 

the two results on the right are from the CityScapes dataset. 

 
Fig.11 semantic segmentation result samples 

 

V. CONCLUSION 

  In this paper, we proposed a reconfigurable semantic 

segmentation accelerator that addresses the issue of speed 

and accuracy imbalance in semantic segmentation. The 

design was rendered more user-friendly by virtue of the fact 

that SpinalHDL is highly parameterized, thereby facilitating 

adaptation to a variety of neural networks through a modular 

design. To address the complexity of scheduling between 

advanced algorithms and hardware, a lightweight controller 

was designed for the purpose of controlling the execution of 

data flow instructions. This had the potential to significantly 

reduce the time required for subsequent network iterations 

during the development process. 

  To reduce inference time, we adopted a mixed 

quantization strategy, which had proven effective. 

Additionally, we optimized convolution computations to 

fully exploit FPGA parallelism. The accelerator was 

implemented on the Virtex UltraScale+ VU9P FPGA and 

tested on two common datasets, showing significantly better 

performance than previous works. 
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