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Abstract—. Transformer models based on attention 

mechanisms have shown superior performance in the field of 

computer vision. Designing dedicated accelerators for 

Transformers can significantly enhance inference performance 

and reduce power consumption. In this paper, we first employ 

an integer quantization strategy for both features and weights 

to reduce the storage requirements and computational 

complexity of the model. Then, based on the computational 

characteristics of convolution and attention mechanisms, we 

design an efficient and flexible hardware architecture, 

including a multidimensional systolic array and nonlinear 

normalization acceleration units. This architecture efficiently 

maps algorithms to the systolic array, optimizing data storage 

efficiency and minimizing data movement. Additionally, the 

accelerator design is implemented on an FPGA. Experimental 

results show that the proposed FPGA accelerator improves 

model inference speed with minimal accuracy loss. The 

ViT-base model achieves an average throughput of 626.2 GOPS 

on this accelerator, with a synthesized power consumption of 

16.4W at a 200MHz clock frequency. 

Index Terms—FPGA, Systolic Array, Transformer, 

Hardware Accelerator 

 

I. INTRODUCTION 

 In recent years, Transformer networks based on attention 

mechanisms [1][2][3] have demonstrated superior performance 

compared to traditional Convolutional Neural Networks 

(CNNs) [4][5], primarily due to their ability to model 

long-range dependencies and allow parallelization across 

input sequences. This has made them a hot research topic in 

the field of computer vision. For certain applications, such as 

autonomous driving and drone navigation, computer vision 

tasks require real-time performance on edge devices. This 

demand has driven the development of energy-efficient 

hardware accelerators [6][7] for inference based on traditional 

CNN models. Due to their high parallelism, low latency, and 

low power consumption, Field-Programmable Gate Arrays 

(FPGAs) have demonstrated higher energy efficiency 

compared to Graphics Processing Units (GPUs) and Central 

Processing Units (CPUs), and are therefore widely used for 

accelerating deep learning algorithms [8][9].  

One of the primary challenges in accelerating ViT on 

hardware platforms is the enormous number of parameters in  

Transformer models. The attention mechanism in 

Transformer networks involves multiple large matrix 

multiplications and data interactions, which results in high 

computational and storage overhead. This makes it difficult 

for some embedded devices and mobile terminals to directly 

store such large parameter sizes. As attention-based 
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Transformer models continue to scale up, the computational 

load also increases, with ViT-H/14 having a parameter size of 

632MB [10]. Additionally, Transformer networks heavily rely 

on complex nonlinear operations such as LayerNorm and 

Softmax, which are embedded into the ViT architecture to 

improve performance [11]. For instance, LayerNorm is applied 

after each self-attention mechanism or Multi-Layer 

Perceptron (MLP) sub-layer, normalizing the output of each 

layer to have zero mean and unit variance. The Softmax 

function uses the natural exponent as a nonlinear function to 

amplify small differences in input values, thereby increasing 

classification accuracy. These nonlinear operations 

significantly increase the computational load due to 

floating-point arithmetic. One potential solution is integer 

quantization. Li et al.[12] proposed a mixed-precision 

quantization method for vision transformers, combining 

fixed-point and exponential quantization. By modeling the 

total computational resources and target frames per second 

(FPS) of the FPGA, the optimal ratio between fixed-point and 

exponential quantization was determined. However, this 

mixed-precision quantization approach is challenging to train. 

In contrast, Li et al.[13] introduced an integer-only 

quantization model for ViT, enabling inference entirely with 

integer arithmetic and bit-shifting. Nevertheless, this design 

is based on GPU platforms, and the quantization scheme still 

requires a significant number of division operations, which 

may be unsuitable for resource-constrained edge devices. 

To address the above challenges, this paper proposes a 

high-performance ViT accelerator. The main contributions of 

this paper are as follows:   

Contribution 1: We analyze the data flow of ViT and 

extract key operations such as convolution, matrix 

multiplication, and nonlinear functions. Based on the 

computational characteristics of attention mechanisms and 

convolutions, we design a multidimensional systolic array 

architecture. This architecture optimizes data selection and 

arrangement, supports convolutions and matrix 

multiplications of various sizes, significantly enhances the 

computation density and energy efficiency of the accelerator, 

and reduces system power consumption.   

Contribution 2: Through an integer quantization strategy, 

we compress the parameter size of the ViT model to 

one-quarter of the original size in image classification tasks, 

while controlling the accuracy loss to within 2.4%. 

Additionally, we split the fixed-point computation of 

nonlinear operations like Softmax and LayerNorm into 

multiple stages and designed hardware-friendly nonlinear 

computing units, thereby significantly reducing memory 

consumption and computational costs.   

Contribution 3: Based on the algorithm and hardware-level 

optimizations proposed above, we implemented the hardware 
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accelerator on the Xilinx FPGA platform. The ViT-base 

model achieved an average throughput of 626.2 GOPS on 

this accelerator. Compared to existing FPGA-based 

accelerators, the average throughput increased by 1.6x to 

3.3x. Compared to CPU and GPU implementations, energy 

efficiency improved by 7.8x and 1.6x, respectively. 

II. PROCEDURE FOR PAPER SUBMISSION 

A. Vision Transformer 

The Vision Transformer (ViT) is the first 

Transformer-based model proposed for image classification 

tasks, and it has demonstrated performance superior to CNNs 

on large-scale datasets[10]. ViT is composed of three modules: 

the embedding layer, the Transformer encoder, and the MLP 

Head. The embedding layer is designed to convert the input 

three-dimensional image data into a one-dimensional token 

sequence required by the Transformer. The Transformer 

encoder is responsible for extracting global features from the 

input image and is formed by stacking L identical layers (L = 

12 in ViT). Each layer consists of two sub-layers: a 

multi-head attention layer and a multi-layer perceptron 

(MLP). 

 
Figure1 Architecture of the Vision Transformer network. 

Specifically, after feeding the class embedding vector into 

the encoder, the Transformer encoder achieves interaction or 

aggregation of image features through the self-attention layer 

and then passes the class token to the MLP Head for 

classification prediction. The MLP Head is responsible for 

the final multi-class classification task. It takes the global 

features as input and computes the classification prediction 

by using the class embedding vector from the encoder and the 

image label loss, which backpropagates to constrain the 

network during training. 

B. Quantization of Vision Transformer 

 Quantization is a hardware-friendly model optimization 

technique in deep learning that aims to reduce storage and 

computation resource consumption by converting 

high-precision data into low-precision data, thereby 

improving computational efficiency on specialized hardware. 

Uniform Quantization[14] is widely applied on hardware 

platforms. In this design, the Conv, Linear, and MatMul 

modules all adopt a uniform MinMax quantization strategy. 

As deep learning models continue to expand, particularly in 

large-scale data processing and complex tasks, computational 

overhead and energy consumption have become major 

bottlenecks in real-world deployment. The introduction of 

quantization techniques effectively alleviates these issues, 

enabling models to run efficiently on resource-constrained 

devices such as mobile and embedded systems, while 

significantly reducing storage requirements and 

computational costs when deployed in the cloud. 

The challenge of quantization lies in balancing accuracy 

and performance. To preserve model performance as much as 

possible, various techniques are employed during the 

quantization process, such as quantization-aware training 

(QAT). This approach allows the model to account for the 

impact of quantization on accuracy during training and make 

necessary adjustments. As a result, despite using lower 

precision after quantization, the model can maintain 

performance close to that of the original floating-point model 

in most application scenarios. 

FQ-ViT [15] fully quantizes the ViT model and introduces 

the Power-of-Two Factor (PTF) to handle severe 

inter-channel variations in the inputs to LayerNorm. 

Additionally, it proposes an integrated quantization solution, 

Log-Int-Softmax (LIS), to achieve 4-bit quantization of the 

attention map. During inference, BitShift operators are used 

in place of matrix multiplication (MatMul), effectively 

reducing hardware resource requirements. PoT[12] leverages 

weights and activations represented as powers of two, 

typically using 2-4 bits per value, leading to smaller memory 

footprints and faster computation. However, the accuracy 

loss from PoT quantization is greater than that from FQ-ViT 

quantization. For example, the benchmark for FP32 DeiT-s 

shows up to 79.85% TOP-1 accuracy. With FQ-ViT 

quantization, accuracy drops to 78.4%, while PoT 

quantization results in a 77.97% accuracy. In this design, 

both LayerNorm and Softmax adopt the FQ-ViT quantization 

scheme. 

The quantization process primarily consists of the 

following three steps: 

(1) Dynamic Range Mapping: In symmetric quantization, 

the absolute maximum value of the input data is typically 

used to determine the dynamic range. In asymmetric 

quantization, the dynamic range is usually calculated as the 

difference between the minimum and maximum values. The 

purpose of computing the dynamic range is to determine the 

number of bits used for quantization. A linear method is then 

applied to map the floating-point value  to the 

lower-precision target range, as expressed in Equation(1). 

            （1） 

(2)Quantized Computation: Using the previously defined 

formula, the quantized value ( Q(x) ) is computed to 

discretize floating-point numbers, converting weights and 

activation values into low-precision integers. 

(3)Dequantization: During the inference phase, the 

quantized values Q(x) are restored to floating-point values 

using a fixed scaling factor to complete necessary 

computations, as described in Equation (2). 

             （2） 

C. Accelerators of Transformer 

Before designing accelerators, pre-processing operations 

such as pruning and compression are typically applied to the 

network model to reduce the number of parameters, simplify 

computational complexity, and lower hardware resource 

consumption. Liu et al. [16] proposed Fully Quantized BERT 
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(FQ-BERT) to introduce variable bit-widths. Since different 

layers of BERT have varying bit-widths, a reconfigurable 

module design with variable bit-widths was adopted. They 

presented a bit-level reconfigurable multiplier accelerator, 

which supports 8/4-bit and 8/8-bit multiplications. Wang et 

al. [17] designed an accelerator called SpAtten to co-process 

the self-attention layers in NLP tasks. This accelerator 

supports a novel token pruning technique to reduce memory 

access and computational load in self-attention layers. The 

entire accelerator module is fully pipelined, with each 

module corresponding to a specific operation, thereby 

minimizing data movement and greatly reducing the 

overhead associated with data transfers. 

III. HPVIA ACCELERATOR DESIGN 

A. Hardware Accelerator Architecture 

Based on the modular partitioning of partial mapping 

schemes, the overall architecture of the hardware accelerator 

can be further designed, as shown in Figure 2. To efficiently 

allocate computing tasks, optimize data flow, and enhance 

hardware utilization, the hardware architecture incorporates a 

2D systolic array cluster, nonlinear computation units, and a 

three-tier memory hierarchy. 

The three-tier memory hierarchy consists of Off-Chip 

Memory, On-Chip Memory (SRAM), and Local Registers 

(Reg). As the primary storage unit for large-scale model 

parameters and input data, Off-Chip Memory is connected to 

On-Chip Memory (SRAM) via a high-speed data bus to 

ensure fast data access. In each attention mechanism 

computation, the local registers (Reg) buffer intermediate 

results to reduce repeated access to SRAM, thereby lowering 

overall power consumption. The Q matrix and K matrix 

obtained from the input module are stored in the left and right 

registers, respectively. The intermediate Attention matrix is 

stored in the Softmax register and processed by the Softmax 

unit. Afterward, the Q matrix in the left register is refreshed 

and multiplied with the V matrix stored in the right register. 

Once an MSA (Multi-Head Self-Attention) computation is 

completed, the results are quantized to 16-bit precision and 

written back to SRAM0. 

For matrix multiplication in MLP (Multi-Layer Perceptron) 

computations, the left and right inputs of the systolic array 

come from SRAM1 and Parameter SRAM, respectively. The 

block-wise output of FC1 (first fully connected layer) 

undergoes GELU activation, is quantized to 16-bit precision 

to reduce computational and storage costs, and is written 

back to SRAM1. The FC2 (second fully connected layer) 

computation results are also quantized to 16-bit and stored in 

SRAM0. 

The Off-Chip Memory communicates with SRAM0 via 

the Data Bus, reading results and writing the next set of 

inputs for subsequent computations. Meanwhile, MSA and 

MLP parameters are stored in Parameter SRAM using an 

alternating buffering strategy to reduce data transfer latency. 

 
Figure2 Architecture of Hardware Accelerator. 

B. Data Layout Scheme 

FPGA-based convolution acceleration schemes typically 

achieve efficiency by parallelizing the core convolution 

operations, such as multiplication and addition, thereby 

directly executing convolution calculations without relying 

on additional algorithms for transforming convolution into 

matrix multiplications. However, one major limitation of this 

approach is its inability to flexibly support convolution 

operations of varying kernel sizes. Consequently, each 

distinct convolution kernel size necessitates specific 

hardware logic development. To maximize the reuse of 

FPGA logic and memory resources, this research proposes 

mapping convolution operations into an Im2Col 

representation combined with a General Matrix 

Multiplication (GEMM) layout. Through this approach, all 

types of general matrix multiplication computations can be 

executed using identical computation kernels and on-chip 

memory structures, substantially improving hardware 

resource utilization and computational efficiency. 

Figure3 illustrates the Im2Col + GEMM data layout, 

where 'N' denotes the batch size, [H,W] represents the output 

feature map’s height and width, [K,K] signifies the filter 

dimensions of the current convolutional layer,  is the 

channel depth of the current convolutional layer, and  

denotes the output channel depth. In this scheme, the Feature 

Map Matrix A is obtained through the Im2Col operation 

based on the parameters of the neural network under 

consideration. Depending on the tensor layout, the order of 

elements within each row of matrix A may vary. Assuming 

an element ordering of [N, H, W, ] in matrix A, the 

convolution kernel weights and each sliding window are 

unfolded along the channel dimension. Consequently, each 

row in matrix A corresponds to one batch of the input feature 

map, sequentially flattened in the order [H, W, ]. 

The columns of the Weight Map Matrix B represent 

convolutional weights for each output channel, flattened 

sequentially following the order [K, K, ]. Meanwhile, the 

rows of Output Feature Map Matrix C correspond to all 

channels of each pixel within the output feature map. Taking 

the embedding layer of a ViT-base model as an example, a 

convolution kernel with dimensions [K, K, , ] = [16, 

16, 3, 768]' is employed. With a stride of 16, the input feature 

map of size (H, W) = (224, 224) is segmented into 

sub-images of size '(14, 14)'. After flattening, each sub-image 

is treated as a token input into the encoder, wherein each 

token corresponds to a distinct row in matrix C. 
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Figure3 Layout of the Im2Col + GEMM. 

C. Systolic Array Cluster 

To enhance the throughput and energy efficiency of the 

systolic array, this paper proposes increasing the number of 

systolic array clusters to elevate parallelism levels. Existing 

systolic array architectures can thus be scaled to form a 

cluster-based systolic array, as [ ]. Every  rows of 

matrix A will progressively interact with  columns 

from matrix B, producing a resultant matrix of size [ , 

]. 

Taking the ViT-base model as an example, we consider the 

calculation of multi-head self-attention (MHA) using a 

two-dimensional systolic array cluster. The input activation 

tensor is sized [197, 768], and the weight matrices , , 

and  each have dimensions of [768,768]. After performing 

matrix multiplications, three Query-Key-Value matrices, 

each sized [197,768], are obtained.  

In the multi-head self-attention mechanism, these matrices 

are reshaped based on the number of attention heads. 

Assuming a total of 12 attention heads, each Q-K-V matrix is 

reshaped into a three-dimensional tensor with dimensions 

[12,197,64]. The context information is calculated by 

performing  where Q represents the Query matrix and 

 the transposed Key matrix. Given that Q, K, and V 

matrices are high-dimensional tensors, they must be 

segmented into smaller submatrices. This segmentation 

introduces data discontinuity, complicating deployment on 

edge devices. Furthermore, when multiple attention heads are 

employed, additional data movements such as reshaping, 

transposing, and concatenation operations are required, 

resulting in extra time overhead. 

To mitigate this issue, we observe that the systolic array 

inherently outputs data in a column-first manner, traversing 

from left to right and top to bottom. Consequently, when data 

are fed into the systolic array in a fixed direction, the 

transpose operation on the Key matrix K can be eliminated. 

Leveraging the predictability of linear layer weights, we 

propose rearranging these weights at compile time to match 

the systolic array's computation requirements. These 

reordered weights, combined with outputs from the 

Embedding layer, enable efficient computation of the 

multi-head self-attention mechanism. 

 

Figure4 Architecture of the Systolic Array Cluster. 

D. Hardware design of LayerNorm 

In the ViT model, Layer Normalization (LN) normalizes 

the outputs of each layer to have zero mean and unit variance, 

which is performed individually for each layer rather than 

across batches. This normalization method contributes to a 

more rapid and stable training process and can be expressed 

as follows when combined with the PTF quantization 

method: 

 (3) 

E. Hardware Design of LayerNorm 

Unlike BatchNorm, which obtains fixed parameters during 

training and allows preprocessing during inference, 

LayerNorm (LN) requires dynamic computation of statistical 

parameters. This involves an initial pass over all input data to 

determine the mean before proceeding with further 

calculations, making it highly hardware-unfriendly. 

To address this, the integer-based LN computation is 

divided into two stages, as illustrated in Figure 5. 

 

Figure5 Architecture of the Interger-based LayerNorm. 

F. Hardware Design of Softmax 

In multi-head self-attention (MHSA), the Transformer 

model computes multiple attention heads in parallel to 

capture different semantics and dependencies in the input 

sequence. As a crucial component of MHSA, Softmax 

converts attention scores into probabilities, ensuring the 

model's sensitivity to different inputs. Softmax accounts for a 

significant portion of the total runtime of the Transformer 

network.  

The computation of exponential and logarithmic functions 

is often a performance bottleneck. However, it can be 

approximated using linear function shifts, multiplications, 

and additions, reducing the reliance on complex 

mathematical operations. This approach effectively utilizes 
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hardware resources, enabling accelerated computation and 

lower power consumption. 

 

Figure6 Architecture of the Interger-based Softmax. 

 

IV. EXPERIMENT 

The experimental environment consists of two parts: the 

host and the FPGA, with specific configurations shown in 

Table 5-1. The host is equipped with an i9-12900H CPU for 

running software programs of the hardware accelerator and 

an NVIDIA Tesla V100 GPU server for training the ViT 

model. The server software environment includes Python 

3.6.10, PyTorch 1.4.0, GCC 7.3.0, and CUDA 10.1. 

On the FPGA side, the Vivado 2022.2 development suite is 

used for logic simulation and bitstream generation. The 

accelerator is implemented in C and compiled in the GCC 

7.3.0 environment. The Vivado HLS development tool is 

used to convert C code, along with pipeline and parallel 

optimization instructions, into functionally equivalent 

Verilog code to realize the hardware accelerator's 

functionality. After exporting the hardware IP core, the 

IP-based peripheral circuit design is completed in Vivado, 

and the bitstream is generated. Finally, system-level testing 

and verification are conducted on the board. 

Through software-hardware co-design, the hardware 

accelerator in the PL (Programmable Logic) side directly 

interacts with the processor system via the AXI protocol. The 

PS (Processing System) side configures and schedules the 

accelerator by sequentially reading toolchain-generated 

instructions, enabling efficient task execution and resource 

management. Instructions are first tested in software before 

being transmitted and stored in on-chip memory, while input 

data and model parameters are stored in off-chip memory.  

After designing the accelerator, a testbench file needs to be 

written for on-board verification to ensure functional 

accuracy. This board integrates an ARM core (PS side) and 

FPGA logic units (PL side), providing hardware resources 

such as 274K LUTs, 548K FFs, 2520 DSP blocks, and 912 

on-chip Block RAMs, with an operating frequency of up to 

200 MHz. 

During system operation, the ARM core acts as the 

software control unit within the hardware architecture. It first 

stores input data and model parameters in off-chip DDR 

memory and loads instructions into on-chip BRAM memory. 

During execution, the ARM core controls data and parameter 

transfers through interrupt requests, coordinating hardware 

computation units to complete computation tasks. 

In software, models typically use float16 or float32 for 

parameters and input feature images. However, on FPGA 

reconfigurable devices with limited resources, as the data 

volume increases, excessively high numerical precision may 

lead to reduced computational efficiency and increased 

inference latency, thereby limiting the parameter scale of 

deployable models. 

To address this issue, this study adopts the 

hardware-friendly quantization strategy FQ-ViT  and inserts 

quantization nodes between each ViT operator to monitor 

quantization errors and accuracy loss. The experiment trains 

and quantizes three ViT networks—ViT-Base, ViT-Small, 

and ViT-Tiny—on the ImageNet 2012 dataset. The 

quantization method effectively reduces the computational 

burden and storage demand of ViT on FPGA and other 

hardware platforms while minimizing the impact of 

quantization on model accuracy. This improves both the 

computational efficiency and resource utilization of ViT 

deployment on FPGA. The error statistics between the 

quantized lightweight model and the full-precision 

floating-point model are shown in Figure 7. 

 

Figure7 Result of Quantization. 

Due to the unavoidable rounding operations during 

quantization, model accuracy decreases by 1.62%, 1.31%, 

and 1.06%, respectively, but remains within an acceptable 

range. Additionally, using INT8 computation significantly 

reduces on-chip resource usage. On FPGA devices, INT8 

storage resources require only 1/4 of the storage needed for 

FP32, and the hardware resources required for fixed-point 

8-bit computations are far lower than those for 32-bit 

floating-point computations. This ensures high 

computational efficiency while significantly improving 

hardware resource utilization. 

After determining the size of the systolic array, the 

hardware resource utilization of the development board, as 

shown in Table 1, was analyzed.  

First, the systolic array, responsible for intensive matrix 

computation tasks, accounts for 92.4% of the total DSP usage. 

This proportion aligns with the computational requirements 

of ViT hardware acceleration, indicating that the 

computation load is primarily concentrated in the matrix 

operation module. This proportion is consistent with ViT’s 
need for large-scale matrix computations, ensuring high 

inference efficiency for the ViT model on FPGA. The 

GEMM, Im2col, Transpose, and Bit-Width Conversion 
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modules are primarily used for data rearrangement, format 

conversion, and access, functioning as data flow optimization 

components. These modules rely mainly on look-up tables 

(LUTs) and flip-flops (FFs) for data block rearrangement and 

access, without consuming DSP resources, thereby 

effectively reducing computation resource usage. The 

remaining hardware resources, after accounting for the 

systolic array, are mainly allocated to the non-linear 

operations Softmax, LayerNorm, and GELU. These modules 

involve exponential calculations, normalization, and 

activation functions, which typically require a certain amount 

of DSP resources. However, compared to matrix operations, 

their computational burden is relatively small. Finally, the 

AXI and DDR-related logic is mainly used for optimizing 

data transmission, ensuring efficient interaction between the 

accelerator and off-chip memory. These components 

additionally occupy 4.3% of the total LUT usage and 1% of 

FF usage, serving storage control and data management 

functions to ensure efficient data flow and maintain high 

throughput for ViT inference tasks. 

Table1 Resource utilization 

ZCU102 LUT FF BRAM DSP 

Systolic Array 149977 145524 0 2048 

GEMM 1200 877 16 0 

Im2Col 1664 1630 38.5 0 

On-chip Memory 2116 870 512 0 

Transpose 953 838 8 0 

Softmax 1834 1735 8 46 

LayerNorm 1716 1682 6 43 

GELU 10163 5992 0 32 

Concat&Add 1019 1878 8 8 

Bit-With Conversion 770 128 8 0 

AXI and DDR related 7825 16403 15 40 

Total 182743 177557 637 2217 

 

To comprehensively evaluate the performance of the 

proposed accelerator, we decomposed the entire neural 

network task and tested the accelerator’s performance in 

processing each network layer. The entire ViT neural 

network consists of three parts: an embedding layer that 

partitions image input data, a Transformer encoder layer that 

extracts global feature information, and a classification layer 

that outputs classification results. Taking the ViT-base model 

as an example, this model includes 12 Transformer modules, 

each with 12 attention heads, a patch size of 16, 196 patches, 

a patch depth of 768, and an encoder dimension of 768. Table 

5-2 summarizes detailed information about the ViT-base 

model, including input and output tensor data shapes, 

throughput, and acceleration latency for each operation.  

As shown in Table 2, the total latency for the entire 

network is only 53.7 milliseconds, with an average 

throughput of 626.2 GOP/s. The overall power consumption 

of the accelerated ViT network is approximately 16.4W, 

offering a superior energy efficiency ratio compared to GPUs, 

making it suitable for high-efficiency computing scenarios. 

The most time-consuming operations are convolution 

(Convolution) and matrix multiplication (Linear), both of 

which involve extensive linear transformations and feature 

computations, requiring significant computational resources. 

 

Table2 Performance of accelerator 

 Operation 
Delay 

(ms) 

Throughput 

(GOP/s) 

Embed 

Convolution 0.946 684.4 

Concat 0 - 

LayerNorm 0.107 - 

 

 

Encoder 

12 

 

 

 

 

 

M

S 

A 

 

Linear 0.976 714.5 

 

0.201 312.9 

Softmax 0.028 - 

 

0.22 465.7 

Add 0.096 - 

M

L 

P 

LayerNorm 0.108 - 

Linear+Gelu 1.355 653.3 

Linear+Add 1.339 693.9 

MLP 
LayerNorm 0.108 - 

Full Connection 0.061 26.68 

Total - - 53.7 626.2 

V. CONCLUSION 

In this paper, we propose a high-performance FPGA-based 

ViT accelerator architecture. By adopting INT8 quantization 

and co-designing the hardware and software, we enable the 

execution of nonlinear operations and other inference 

processes in ViT using integer arithmetic or shift operations. 

Additionally, we developed a unified data encapsulation 

strategy and optimized both on-chip and off-chip data storage 

and transfer strategies to minimize memory access time and 

enhance overall efficiency. We also designed a configurable 

multi-dimensional systolic array to execute various matrix 

multiplication operations with high parallelism. This 

acceleration scheme has been implemented on the Xilinx 

ZCU102 FPGA platform and applied to accelerate three 

typical ViT network models: ViT-base, ViT-small, and 

ViT-tiny. Experimental results show that the proposed 

accelerator achieves an average throughput of 626.2 GOPS 

on the ViT-base model, representing a 1.8x to 3.7x 

improvement in average throughput compared to existing 

FPGA accelerators. Moreover, compared to traditional CPU 

and GPU implementations, the energy efficiency is improved 

by 8x and 1.7x, respectively. 
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