
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 101 www.ijerm.com

Abstract—. Transformer models based on attention

mechanisms have shown superior performance in the field of

computer vision. Designing dedicated accelerators for

Transformers can significantly enhance inference performance

and reduce power consumption. In this paper, we first employ

an integer quantization strategy for both features and weights

to reduce the storage requirements and computational

complexity of the model. Then, based on the computational

characteristics of convolution and attention mechanisms, we

design an efficient and flexible hardware architecture,

including a multidimensional systolic array and nonlinear

normalization acceleration units. This architecture efficiently

maps algorithms to the systolic array, optimizing data storage

efficiency and minimizing data movement. Additionally, the

accelerator design is implemented on an FPGA. Experimental

results show that the proposed FPGA accelerator improves

model inference speed with minimal accuracy loss. The

ViT-base model achieves an average throughput of 626.2 GOPS

on this accelerator, with a synthesized power consumption of

16.4W at a 200MHz clock frequency.

Index Terms—FPGA, Systolic Array, Transformer,

Hardware Accelerator

I. INTRODUCTION

 In recent years, Transformer networks based on attention

mechanisms [1][2][3] have demonstrated superior performance

compared to traditional Convolutional Neural Networks

(CNNs) [4][5], primarily due to their ability to model

long-range dependencies and allow parallelization across

input sequences. This has made them a hot research topic in

the field of computer vision. For certain applications, such as

autonomous driving and drone navigation, computer vision

tasks require real-time performance on edge devices. This

demand has driven the development of energy-efficient

hardware accelerators [6][7] for inference based on traditional

CNN models. Due to their high parallelism, low latency, and

low power consumption, Field-Programmable Gate Arrays

(FPGAs) have demonstrated higher energy efficiency

compared to Graphics Processing Units (GPUs) and Central

Processing Units (CPUs), and are therefore widely used for

accelerating deep learning algorithms [8][9].

One of the primary challenges in accelerating ViT on

hardware platforms is the enormous number of parameters in

Transformer models. The attention mechanism in

Transformer networks involves multiple large matrix

multiplications and data interactions, which results in high

computational and storage overhead. This makes it difficult

for some embedded devices and mobile terminals to directly

store such large parameter sizes. As attention-based

Manuscript received March 20, 2025

Yu Shi, School of Software, Tiangong University, Tianjin, 300387,
China

Transformer models continue to scale up, the computational

load also increases, with ViT-H/14 having a parameter size of

632MB [10]. Additionally, Transformer networks heavily rely

on complex nonlinear operations such as LayerNorm and

Softmax, which are embedded into the ViT architecture to

improve performance [11]. For instance, LayerNorm is applied

after each self-attention mechanism or Multi-Layer

Perceptron (MLP) sub-layer, normalizing the output of each

layer to have zero mean and unit variance. The Softmax

function uses the natural exponent as a nonlinear function to

amplify small differences in input values, thereby increasing

classification accuracy. These nonlinear operations

significantly increase the computational load due to

floating-point arithmetic. One potential solution is integer

quantization. Li et al.[12] proposed a mixed-precision

quantization method for vision transformers, combining

fixed-point and exponential quantization. By modeling the

total computational resources and target frames per second

(FPS) of the FPGA, the optimal ratio between fixed-point and

exponential quantization was determined. However, this

mixed-precision quantization approach is challenging to train.

In contrast, Li et al.[13] introduced an integer-only

quantization model for ViT, enabling inference entirely with

integer arithmetic and bit-shifting. Nevertheless, this design

is based on GPU platforms, and the quantization scheme still

requires a significant number of division operations, which

may be unsuitable for resource-constrained edge devices.

To address the above challenges, this paper proposes a

high-performance ViT accelerator. The main contributions of

this paper are as follows:

Contribution 1: We analyze the data flow of ViT and

extract key operations such as convolution, matrix

multiplication, and nonlinear functions. Based on the

computational characteristics of attention mechanisms and

convolutions, we design a multidimensional systolic array

architecture. This architecture optimizes data selection and

arrangement, supports convolutions and matrix

multiplications of various sizes, significantly enhances the

computation density and energy efficiency of the accelerator,

and reduces system power consumption.

Contribution 2: Through an integer quantization strategy,

we compress the parameter size of the ViT model to

one-quarter of the original size in image classification tasks,

while controlling the accuracy loss to within 2.4%.

Additionally, we split the fixed-point computation of

nonlinear operations like Softmax and LayerNorm into

multiple stages and designed hardware-friendly nonlinear

computing units, thereby significantly reducing memory

consumption and computational costs.

Contribution 3: Based on the algorithm and hardware-level

optimizations proposed above, we implemented the hardware

A High Performance Vision Transformer Accelerator

Yu Shi

http://www.ijerm.com/

A High Performance Vision Transformer Accelerator

 102 www.ijerm.com

accelerator on the Xilinx FPGA platform. The ViT-base

model achieved an average throughput of 626.2 GOPS on

this accelerator. Compared to existing FPGA-based

accelerators, the average throughput increased by 1.6x to

3.3x. Compared to CPU and GPU implementations, energy

efficiency improved by 7.8x and 1.6x, respectively.

II. PROCEDURE FOR PAPER SUBMISSION

A. Vision Transformer

The Vision Transformer (ViT) is the first

Transformer-based model proposed for image classification

tasks, and it has demonstrated performance superior to CNNs

on large-scale datasets[10]. ViT is composed of three modules:

the embedding layer, the Transformer encoder, and the MLP

Head. The embedding layer is designed to convert the input

three-dimensional image data into a one-dimensional token

sequence required by the Transformer. The Transformer

encoder is responsible for extracting global features from the

input image and is formed by stacking L identical layers (L =

12 in ViT). Each layer consists of two sub-layers: a

multi-head attention layer and a multi-layer perceptron

(MLP).

Figure1 Architecture of the Vision Transformer network.

Specifically, after feeding the class embedding vector into

the encoder, the Transformer encoder achieves interaction or

aggregation of image features through the self-attention layer

and then passes the class token to the MLP Head for

classification prediction. The MLP Head is responsible for

the final multi-class classification task. It takes the global

features as input and computes the classification prediction

by using the class embedding vector from the encoder and the

image label loss, which backpropagates to constrain the

network during training.

B. Quantization of Vision Transformer

 Quantization is a hardware-friendly model optimization

technique in deep learning that aims to reduce storage and

computation resource consumption by converting

high-precision data into low-precision data, thereby

improving computational efficiency on specialized hardware.

Uniform Quantization[14] is widely applied on hardware

platforms. In this design, the Conv, Linear, and MatMul

modules all adopt a uniform MinMax quantization strategy.

As deep learning models continue to expand, particularly in

large-scale data processing and complex tasks, computational

overhead and energy consumption have become major

bottlenecks in real-world deployment. The introduction of

quantization techniques effectively alleviates these issues,

enabling models to run efficiently on resource-constrained

devices such as mobile and embedded systems, while

significantly reducing storage requirements and

computational costs when deployed in the cloud.

The challenge of quantization lies in balancing accuracy

and performance. To preserve model performance as much as

possible, various techniques are employed during the

quantization process, such as quantization-aware training

(QAT). This approach allows the model to account for the

impact of quantization on accuracy during training and make

necessary adjustments. As a result, despite using lower

precision after quantization, the model can maintain

performance close to that of the original floating-point model

in most application scenarios.

FQ-ViT [15] fully quantizes the ViT model and introduces

the Power-of-Two Factor (PTF) to handle severe

inter-channel variations in the inputs to LayerNorm.

Additionally, it proposes an integrated quantization solution,

Log-Int-Softmax (LIS), to achieve 4-bit quantization of the

attention map. During inference, BitShift operators are used

in place of matrix multiplication (MatMul), effectively

reducing hardware resource requirements. PoT[12] leverages

weights and activations represented as powers of two,

typically using 2-4 bits per value, leading to smaller memory

footprints and faster computation. However, the accuracy

loss from PoT quantization is greater than that from FQ-ViT

quantization. For example, the benchmark for FP32 DeiT-s

shows up to 79.85% TOP-1 accuracy. With FQ-ViT

quantization, accuracy drops to 78.4%, while PoT

quantization results in a 77.97% accuracy. In this design,

both LayerNorm and Softmax adopt the FQ-ViT quantization

scheme.

The quantization process primarily consists of the

following three steps:

(1) Dynamic Range Mapping: In symmetric quantization,

the absolute maximum value of the input data is typically

used to determine the dynamic range. In asymmetric

quantization, the dynamic range is usually calculated as the

difference between the minimum and maximum values. The

purpose of computing the dynamic range is to determine the

number of bits used for quantization. A linear method is then

applied to map the floating-point value to the

lower-precision target range, as expressed in Equation(1).

 （1）

(2)Quantized Computation: Using the previously defined

formula, the quantized value (Q(x)) is computed to

discretize floating-point numbers, converting weights and

activation values into low-precision integers.

(3)Dequantization: During the inference phase, the

quantized values Q(x) are restored to floating-point values

using a fixed scaling factor to complete necessary

computations, as described in Equation (2).

 （2）

C. Accelerators of Transformer

Before designing accelerators, pre-processing operations

such as pruning and compression are typically applied to the

network model to reduce the number of parameters, simplify

computational complexity, and lower hardware resource

consumption. Liu et al. [16] proposed Fully Quantized BERT

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 103 www.ijerm.com

(FQ-BERT) to introduce variable bit-widths. Since different

layers of BERT have varying bit-widths, a reconfigurable

module design with variable bit-widths was adopted. They

presented a bit-level reconfigurable multiplier accelerator,

which supports 8/4-bit and 8/8-bit multiplications. Wang et

al. [17] designed an accelerator called SpAtten to co-process

the self-attention layers in NLP tasks. This accelerator

supports a novel token pruning technique to reduce memory

access and computational load in self-attention layers. The

entire accelerator module is fully pipelined, with each

module corresponding to a specific operation, thereby

minimizing data movement and greatly reducing the

overhead associated with data transfers.

III. HPVIA ACCELERATOR DESIGN

A. Hardware Accelerator Architecture

Based on the modular partitioning of partial mapping

schemes, the overall architecture of the hardware accelerator

can be further designed, as shown in Figure 2. To efficiently

allocate computing tasks, optimize data flow, and enhance

hardware utilization, the hardware architecture incorporates a

2D systolic array cluster, nonlinear computation units, and a

three-tier memory hierarchy.

The three-tier memory hierarchy consists of Off-Chip

Memory, On-Chip Memory (SRAM), and Local Registers

(Reg). As the primary storage unit for large-scale model

parameters and input data, Off-Chip Memory is connected to

On-Chip Memory (SRAM) via a high-speed data bus to

ensure fast data access. In each attention mechanism

computation, the local registers (Reg) buffer intermediate

results to reduce repeated access to SRAM, thereby lowering

overall power consumption. The Q matrix and K matrix

obtained from the input module are stored in the left and right

registers, respectively. The intermediate Attention matrix is

stored in the Softmax register and processed by the Softmax

unit. Afterward, the Q matrix in the left register is refreshed

and multiplied with the V matrix stored in the right register.

Once an MSA (Multi-Head Self-Attention) computation is

completed, the results are quantized to 16-bit precision and

written back to SRAM0.

For matrix multiplication in MLP (Multi-Layer Perceptron)

computations, the left and right inputs of the systolic array

come from SRAM1 and Parameter SRAM, respectively. The

block-wise output of FC1 (first fully connected layer)

undergoes GELU activation, is quantized to 16-bit precision

to reduce computational and storage costs, and is written

back to SRAM1. The FC2 (second fully connected layer)

computation results are also quantized to 16-bit and stored in

SRAM0.

The Off-Chip Memory communicates with SRAM0 via

the Data Bus, reading results and writing the next set of

inputs for subsequent computations. Meanwhile, MSA and

MLP parameters are stored in Parameter SRAM using an

alternating buffering strategy to reduce data transfer latency.

Figure2 Architecture of Hardware Accelerator.

B. Data Layout Scheme

FPGA-based convolution acceleration schemes typically

achieve efficiency by parallelizing the core convolution

operations, such as multiplication and addition, thereby

directly executing convolution calculations without relying

on additional algorithms for transforming convolution into

matrix multiplications. However, one major limitation of this

approach is its inability to flexibly support convolution

operations of varying kernel sizes. Consequently, each

distinct convolution kernel size necessitates specific

hardware logic development. To maximize the reuse of

FPGA logic and memory resources, this research proposes

mapping convolution operations into an Im2Col

representation combined with a General Matrix

Multiplication (GEMM) layout. Through this approach, all

types of general matrix multiplication computations can be

executed using identical computation kernels and on-chip

memory structures, substantially improving hardware

resource utilization and computational efficiency.

Figure3 illustrates the Im2Col + GEMM data layout,

where 'N' denotes the batch size, [H,W] represents the output

feature map’s height and width, [K,K] signifies the filter

dimensions of the current convolutional layer, is the

channel depth of the current convolutional layer, and

denotes the output channel depth. In this scheme, the Feature

Map Matrix A is obtained through the Im2Col operation

based on the parameters of the neural network under

consideration. Depending on the tensor layout, the order of

elements within each row of matrix A may vary. Assuming

an element ordering of [N, H, W,] in matrix A, the

convolution kernel weights and each sliding window are

unfolded along the channel dimension. Consequently, each

row in matrix A corresponds to one batch of the input feature

map, sequentially flattened in the order [H, W,].

The columns of the Weight Map Matrix B represent

convolutional weights for each output channel, flattened

sequentially following the order [K, K,]. Meanwhile, the

rows of Output Feature Map Matrix C correspond to all

channels of each pixel within the output feature map. Taking

the embedding layer of a ViT-base model as an example, a

convolution kernel with dimensions [K, K, ,] = [16,

16, 3, 768]' is employed. With a stride of 16, the input feature

map of size (H, W) = (224, 224) is segmented into

sub-images of size '(14, 14)'. After flattening, each sub-image

is treated as a token input into the encoder, wherein each

token corresponds to a distinct row in matrix C.

http://www.ijerm.com/

A High Performance Vision Transformer Accelerator

 104 www.ijerm.com

Figure3 Layout of the Im2Col + GEMM.

C. Systolic Array Cluster

To enhance the throughput and energy efficiency of the

systolic array, this paper proposes increasing the number of

systolic array clusters to elevate parallelism levels. Existing

systolic array architectures can thus be scaled to form a

cluster-based systolic array, as []. Every rows of

matrix A will progressively interact with columns

from matrix B, producing a resultant matrix of size [,

].

Taking the ViT-base model as an example, we consider the

calculation of multi-head self-attention (MHA) using a

two-dimensional systolic array cluster. The input activation

tensor is sized [197, 768], and the weight matrices , ,

and each have dimensions of [768,768]. After performing

matrix multiplications, three Query-Key-Value matrices,

each sized [197,768], are obtained.

In the multi-head self-attention mechanism, these matrices

are reshaped based on the number of attention heads.

Assuming a total of 12 attention heads, each Q-K-V matrix is

reshaped into a three-dimensional tensor with dimensions

[12,197,64]. The context information is calculated by

performing where Q represents the Query matrix and

 the transposed Key matrix. Given that Q, K, and V

matrices are high-dimensional tensors, they must be

segmented into smaller submatrices. This segmentation

introduces data discontinuity, complicating deployment on

edge devices. Furthermore, when multiple attention heads are

employed, additional data movements such as reshaping,

transposing, and concatenation operations are required,

resulting in extra time overhead.

To mitigate this issue, we observe that the systolic array

inherently outputs data in a column-first manner, traversing

from left to right and top to bottom. Consequently, when data

are fed into the systolic array in a fixed direction, the

transpose operation on the Key matrix K can be eliminated.

Leveraging the predictability of linear layer weights, we

propose rearranging these weights at compile time to match

the systolic array's computation requirements. These

reordered weights, combined with outputs from the

Embedding layer, enable efficient computation of the

multi-head self-attention mechanism.

Figure4 Architecture of the Systolic Array Cluster.

D. Hardware design of LayerNorm

In the ViT model, Layer Normalization (LN) normalizes

the outputs of each layer to have zero mean and unit variance,

which is performed individually for each layer rather than

across batches. This normalization method contributes to a

more rapid and stable training process and can be expressed

as follows when combined with the PTF quantization

method:

 (3)

E. Hardware Design of LayerNorm

Unlike BatchNorm, which obtains fixed parameters during

training and allows preprocessing during inference,

LayerNorm (LN) requires dynamic computation of statistical

parameters. This involves an initial pass over all input data to

determine the mean before proceeding with further

calculations, making it highly hardware-unfriendly.

To address this, the integer-based LN computation is

divided into two stages, as illustrated in Figure 5.

Figure5 Architecture of the Interger-based LayerNorm.

F. Hardware Design of Softmax

In multi-head self-attention (MHSA), the Transformer

model computes multiple attention heads in parallel to

capture different semantics and dependencies in the input

sequence. As a crucial component of MHSA, Softmax

converts attention scores into probabilities, ensuring the

model's sensitivity to different inputs. Softmax accounts for a

significant portion of the total runtime of the Transformer

network.

The computation of exponential and logarithmic functions

is often a performance bottleneck. However, it can be

approximated using linear function shifts, multiplications,

and additions, reducing the reliance on complex

mathematical operations. This approach effectively utilizes

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 105 www.ijerm.com

hardware resources, enabling accelerated computation and

lower power consumption.

Figure6 Architecture of the Interger-based Softmax.

IV. EXPERIMENT

The experimental environment consists of two parts: the

host and the FPGA, with specific configurations shown in

Table 5-1. The host is equipped with an i9-12900H CPU for

running software programs of the hardware accelerator and

an NVIDIA Tesla V100 GPU server for training the ViT

model. The server software environment includes Python

3.6.10, PyTorch 1.4.0, GCC 7.3.0, and CUDA 10.1.

On the FPGA side, the Vivado 2022.2 development suite is

used for logic simulation and bitstream generation. The

accelerator is implemented in C and compiled in the GCC

7.3.0 environment. The Vivado HLS development tool is

used to convert C code, along with pipeline and parallel

optimization instructions, into functionally equivalent

Verilog code to realize the hardware accelerator's

functionality. After exporting the hardware IP core, the

IP-based peripheral circuit design is completed in Vivado,

and the bitstream is generated. Finally, system-level testing

and verification are conducted on the board.

Through software-hardware co-design, the hardware

accelerator in the PL (Programmable Logic) side directly

interacts with the processor system via the AXI protocol. The

PS (Processing System) side configures and schedules the

accelerator by sequentially reading toolchain-generated

instructions, enabling efficient task execution and resource

management. Instructions are first tested in software before

being transmitted and stored in on-chip memory, while input

data and model parameters are stored in off-chip memory.

After designing the accelerator, a testbench file needs to be

written for on-board verification to ensure functional

accuracy. This board integrates an ARM core (PS side) and

FPGA logic units (PL side), providing hardware resources

such as 274K LUTs, 548K FFs, 2520 DSP blocks, and 912

on-chip Block RAMs, with an operating frequency of up to

200 MHz.

During system operation, the ARM core acts as the

software control unit within the hardware architecture. It first

stores input data and model parameters in off-chip DDR

memory and loads instructions into on-chip BRAM memory.

During execution, the ARM core controls data and parameter

transfers through interrupt requests, coordinating hardware

computation units to complete computation tasks.

In software, models typically use float16 or float32 for

parameters and input feature images. However, on FPGA

reconfigurable devices with limited resources, as the data

volume increases, excessively high numerical precision may

lead to reduced computational efficiency and increased

inference latency, thereby limiting the parameter scale of

deployable models.

To address this issue, this study adopts the

hardware-friendly quantization strategy FQ-ViT and inserts

quantization nodes between each ViT operator to monitor

quantization errors and accuracy loss. The experiment trains

and quantizes three ViT networks—ViT-Base, ViT-Small,

and ViT-Tiny—on the ImageNet 2012 dataset. The

quantization method effectively reduces the computational

burden and storage demand of ViT on FPGA and other

hardware platforms while minimizing the impact of

quantization on model accuracy. This improves both the

computational efficiency and resource utilization of ViT

deployment on FPGA. The error statistics between the

quantized lightweight model and the full-precision

floating-point model are shown in Figure 7.

Figure7 Result of Quantization.

Due to the unavoidable rounding operations during

quantization, model accuracy decreases by 1.62%, 1.31%,

and 1.06%, respectively, but remains within an acceptable

range. Additionally, using INT8 computation significantly

reduces on-chip resource usage. On FPGA devices, INT8

storage resources require only 1/4 of the storage needed for

FP32, and the hardware resources required for fixed-point

8-bit computations are far lower than those for 32-bit

floating-point computations. This ensures high

computational efficiency while significantly improving

hardware resource utilization.

After determining the size of the systolic array, the

hardware resource utilization of the development board, as

shown in Table 1, was analyzed.

First, the systolic array, responsible for intensive matrix

computation tasks, accounts for 92.4% of the total DSP usage.

This proportion aligns with the computational requirements

of ViT hardware acceleration, indicating that the

computation load is primarily concentrated in the matrix

operation module. This proportion is consistent with ViT’s
need for large-scale matrix computations, ensuring high

inference efficiency for the ViT model on FPGA. The

GEMM, Im2col, Transpose, and Bit-Width Conversion

http://www.ijerm.com/

A High Performance Vision Transformer Accelerator

 106 www.ijerm.com

modules are primarily used for data rearrangement, format

conversion, and access, functioning as data flow optimization

components. These modules rely mainly on look-up tables

(LUTs) and flip-flops (FFs) for data block rearrangement and

access, without consuming DSP resources, thereby

effectively reducing computation resource usage. The

remaining hardware resources, after accounting for the

systolic array, are mainly allocated to the non-linear

operations Softmax, LayerNorm, and GELU. These modules

involve exponential calculations, normalization, and

activation functions, which typically require a certain amount

of DSP resources. However, compared to matrix operations,

their computational burden is relatively small. Finally, the

AXI and DDR-related logic is mainly used for optimizing

data transmission, ensuring efficient interaction between the

accelerator and off-chip memory. These components

additionally occupy 4.3% of the total LUT usage and 1% of

FF usage, serving storage control and data management

functions to ensure efficient data flow and maintain high

throughput for ViT inference tasks.

Table1 Resource utilization

ZCU102 LUT FF BRAM DSP

Systolic Array 149977 145524 0 2048

GEMM 1200 877 16 0

Im2Col 1664 1630 38.5 0

On-chip Memory 2116 870 512 0

Transpose 953 838 8 0

Softmax 1834 1735 8 46

LayerNorm 1716 1682 6 43

GELU 10163 5992 0 32

Concat&Add 1019 1878 8 8

Bit-With Conversion 770 128 8 0

AXI and DDR related 7825 16403 15 40

Total 182743 177557 637 2217

To comprehensively evaluate the performance of the

proposed accelerator, we decomposed the entire neural

network task and tested the accelerator’s performance in

processing each network layer. The entire ViT neural

network consists of three parts: an embedding layer that

partitions image input data, a Transformer encoder layer that

extracts global feature information, and a classification layer

that outputs classification results. Taking the ViT-base model

as an example, this model includes 12 Transformer modules,

each with 12 attention heads, a patch size of 16, 196 patches,

a patch depth of 768, and an encoder dimension of 768. Table

5-2 summarizes detailed information about the ViT-base

model, including input and output tensor data shapes,

throughput, and acceleration latency for each operation.

As shown in Table 2, the total latency for the entire

network is only 53.7 milliseconds, with an average

throughput of 626.2 GOP/s. The overall power consumption

of the accelerated ViT network is approximately 16.4W,

offering a superior energy efficiency ratio compared to GPUs,

making it suitable for high-efficiency computing scenarios.

The most time-consuming operations are convolution

(Convolution) and matrix multiplication (Linear), both of

which involve extensive linear transformations and feature

computations, requiring significant computational resources.

Table2 Performance of accelerator

 Operation
Delay

(ms)

Throughput

(GOP/s)

Embed

Convolution 0.946 684.4

Concat 0 -

LayerNorm 0.107 -

Encoder

12

M

S

A

Linear 0.976 714.5

0.201 312.9

Softmax 0.028 -

0.22 465.7

Add 0.096 -

M

L

P

LayerNorm 0.108 -

Linear+Gelu 1.355 653.3

Linear+Add 1.339 693.9

MLP
LayerNorm 0.108 -

Full Connection 0.061 26.68

Total - - 53.7 626.2

V. CONCLUSION

In this paper, we propose a high-performance FPGA-based

ViT accelerator architecture. By adopting INT8 quantization

and co-designing the hardware and software, we enable the

execution of nonlinear operations and other inference

processes in ViT using integer arithmetic or shift operations.

Additionally, we developed a unified data encapsulation

strategy and optimized both on-chip and off-chip data storage

and transfer strategies to minimize memory access time and

enhance overall efficiency. We also designed a configurable

multi-dimensional systolic array to execute various matrix

multiplication operations with high parallelism. This

acceleration scheme has been implemented on the Xilinx

ZCU102 FPGA platform and applied to accelerate three

typical ViT network models: ViT-base, ViT-small, and

ViT-tiny. Experimental results show that the proposed

accelerator achieves an average throughput of 626.2 GOPS

on the ViT-base model, representing a 1.8x to 3.7x

improvement in average throughput compared to existing

FPGA accelerators. Moreover, compared to traditional CPU

and GPU implementations, the energy efficiency is improved

by 8x and 1.7x, respectively.

REFERENCES

[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].

Advances in neural information processing systems, 2017, 30.
[2] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual

models from natural language supervision[C]//International

conference on machine learning. PmLR, 2021: 8748-8763.
[3] Liu Y, Ott M, Goyal N, et al. Roberta: A robustly optimized bert

pretraining approach[J]. arXiv preprint arXiv:1907.11692, 2019.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 107 www.ijerm.com

[4] Zeiler M D, Fergus R. Visualizing and understanding convolutional
networks[C]//Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part I 13. Springer International Publishing, 2014: 818-833.

[5] He K, Zhang X, Ren S, et al. Deep residual learning for image

recognition[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016: 770-778.

[6] Bai L, Zhao Y, Huang X. A CNN accelerator on FPGA using
depthwise separable convolution[J]. IEEE Transactions on Circuits and

Systems II: Express Briefs, 2018, 65(10): 1415-1419.

[7] Lian X, Liu Z, Song Z, et al. High-performance FPGA-based CNN
accelerator with block-floating-point arithmetic[J]. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 2019, 27(8):
1874-1885.

[8] Mittal S. A survey of FPGA-based accelerators for convolutional

neural networks[J]. Neural computing and applications, 2020, 32(4):
1109-1139.

[9] Venieris S I, Kouris A, Bouganis C S. Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future

directions[J]. ACM Computing Surveys (CSUR), 2018, 51(3): 1-39.

[10] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16
words: Transformers for image recognition at scale[J]. arXiv preprint

arXiv:2010.11929, 2020.

[11] Yu J, Park J, Park S, et al. NN-LUT: Neural approximation of

non-linear operations for efficient transformer

inference[C]//Proceedings of the 59th ACM/IEEE Design Automation
Conference. 2022: 577-582.

[12] Li Z, Sun M, Lu A, et al. Auto-vit-acc: An fpga-aware automatic
acceleration framework for vision transformer with mixed-scheme

quantization[C]//2022 32nd International Conference on

Field-Programmable Logic and Applications (FPL). IEEE, 2022:
109-116.

[13] Li Z, Gu Q. I-vit: Integer-only quantization for efficient vision
transformer inference[C]//Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2023: 17065-17075.

[14] Jacob B, Kligys S, Chen B, et al. Quantization and training of neural
networks for efficient integer-arithmetic-only inference[C]

//Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018: 2704-2713.

[15] Lin Y, Zhang T, Sun P, et al. Fq-vit: Fully quantized vision transformer

without retraining[J]. arXiv preprint arXiv:2111.13824, 2021, 1.
[16] Liu Z, Li G, Cheng J. Hardware acceleration of fully quantized bert for

efficient natural language processing[C]//2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2021:

513-516.

[17] Wang H, Zhang Z, Han S. Spatten: Efficient sparse attention
architecture with cascade token and head pruning[C]//2021 IEEE

International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021: 97-110.

http://www.ijerm.com/

	I. INTRODUCTION
	II. Procedure for Paper Submission
	A. Vision Transformer
	B. Quantization of Vision Transformer
	C. Accelerators of Transformer

	III. HPVIA ACCELERATOR DESIGN
	A. Hardware Accelerator Architecture
	B. Data Layout Scheme
	C. Systolic Array Cluster
	D. Hardware design of LayerNorm
	E. Hardware Design of LayerNorm
	F. Hardware Design of Softmax

	IV. Experiment
	V. Conclusion
	References

