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Abstract— Composed image retrieval, a critical computer vision 

task enhancing retrieval via multi-modal fusion, faces 

challenges in accurately extracting subject features and 

minimizing irrelevant interference during fusion; this paper 

addresses these by proposing a subject feature extraction-based 

method integrating text-guided segmentation and multi-modal 

fusion. The approach combines CLIP's cross-modal alignment 

with Swin Transformer's hierarchical feature learning, 

dynamically focusing segmentation on text-relevant regions via 

cross-modal attention and skip-layer fusion to generate precise 

masks for visual features. A two-stage framework first filters 

irrelevant image details through segmentation, then uses 

bidirectional multi-head cross-attention in an image-text fusion 

module to enable fine-grained interactions, decouple redundant 

semantics, and reinforce discriminative feature correlations. 

Validated on FashionIQ and CIRR datasets, the method 

demonstrates improved retrieval accuracy, with segmentation 

preserving text-relevant details and fusion enhancing semantic 

consistency, offering robust solutions for e-commerce and 

security while advancing multi-modal feature decoupling and 

alignment. 

 
Index Terms—compositional image retrieval, subject feature 

extraction, text-guided segmentation, multi-modal fusion.  

 

I. INTRODUCTION 

  Composed Image Retrieval (CIR) aims to achieve precise 

retrieval through the joint constraints of reference images and 

textual descriptions. Its core task involves matching target 

images via text-guided descriptions of reference images. Due 

to the need to align cross-modal semantic differences 

between reference and target images, researchers have 

recently proposed various technical frameworks to overcome 

the limitations of traditional unimodal retrieval. Current 

mainstream methods perform retrieval by simply fusing 

global image features with textual description features. 

However, these approaches struggle to accurately extract 

semantically relevant image subject features during image 

processing, leading to retrieval results often deviating from 

users' actual requirements. Additionally, during feature 

fusion, they fail to effectively distinguish between 

text-relevant and irrelevant information in images, resulting 

in fusion features contaminated by substantial irrelevant data 

and hindering improvements in retrieval precision. Therefore, 

this paper focuses on extracting subject features and 

managing irrelevant information.  

To address the challenge of accurately extracting 

semantically aligned image subject features in CIR, a 

text-guided image segmentation method is proposed to 
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isolate image subjects for subsequent feature extraction. This 

method uses the CLIP model to encode user descriptions into 

semantic embedding vectors, then employs attention 

mechanisms to interact text semantic embeddings with image 

features, dynamically guiding the segmentation network to 

focus on text-relevant regions and generating segmentation 

masks consistent with textual semantics. This provides 

precise visual information for cross-modal feature fusion. To 

tackle irrelevant information in fused features degrading 

retrieval precision, a compositional retrieval method based 

on subject feature extraction is introduced. It leverages 

text-guided segmentation to isolate text-relevant regions and 

suppress irrelevant backgrounds, then fuses segmented image 

features with text features to generate discriminative retrieval 

vectors. These vectors are further combined with text features 

to enhance retrieval accuracy and efficiency. 

II. RELATED WORKS 

A. ResNet 

ResNet[1] (Residual Network), proposed by Kaiming He 

et al. in 2015, is a revolutionary convolutional neural network 

(CNN) architecture. Its core innovation is the introduction of 

residual connections to address the gradient vanishing and 

degradation problems in deep neural networks. By allowing 

information to bypass layers through "shortcut connections," 

ResNet enables the training of extremely deep models (e.g., 

over 100 layers) without performance degradation. 

A residual block in ResNet has the form (F(x) = x + H(x)), 

where x is the input, and (H(x)) is the learned residual 

function. This design preserves original features while 

learning incremental improvements, significantly enhancing 

training stability and accuracy.ResNet achieved 

groundbreaking results in the ImageNet competition, 

demonstrating that deeper networks can surpass prior 

state-of-the-art models when properly optimized. It has since 

become a foundational backbone for various computer vision 

tasks, including image classification, object detection, and 

semantic segmentation.  

B. Swin Transformer 

Developed by Microsoft Research Asia in 2021, Swin 

Transformer[2] is a vision Transformer model that addresses 

computational bottlenecks in traditional Transformers 

through its hierarchical architecture and shifted window 

mechanism. Mimicking CNN's pyramidal structure, its 

hierarchical design generates multi-scale features via 

progressive downsampling, enabling the model to capture 

both local details and global context, which inherently suits 

multi-task scenarios like object detection and segmentation. 

The shifted window mechanism restricts self-attention 

calculations to local windows, avoiding quadratic complexity 
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and ensuring efficiency in processing high-resolution images, 

while window shifting allows information exchange between 

adjacent regions to balance local and global modeling. 

Additionally, its modular architecture supports flexible 

adjustments to window size, depth, and channel dimensions, 

optimizing model scalability for diverse tasks and hardware 

constraints. These attributes establish Swin Transformer as a 

versatile backbone for vision tasks, driving the widespread 

adoption of Transformers in real-world applications. 

C. CLIP 

Developed by OpenAI in 2021, CLIP[3] is a 

groundbreaking multi-modal model that bridges language 

and vision through contrastive learning, embedding images 

and text into a unified semantic space for cross-modal 

understanding and generation. Its core design leverages 

large-scale unsupervised pretraining on publicly available 

internet image-text pairs, learning generalizable feature 

representations by maximizing the similarity of matched 

image-text pairs and minimizing that of mismatched ones. 

This training strategy endows CLIP with robust zero-shot 

transfer capabilities, enabling it to perform tasks like image 

classification and object detection without task-specific 

fine-tuning, even for unseen concepts. Compared to 

traditional models, CLIP significantly reduces reliance on 

labeled data, driving advancements in open-domain 

multi-modal applications such as cross-lingual retrieval and 

image generation. Its architecture and training philosophy 

have laid the foundation for subsequent multi-modal 

large-scale models. 

D. DeepLabv3+ 

DeepLabv3+[4], proposed by Google in 2018, is a 

semantic segmentation model that enhances the original 

DeepLabv3 by introducing an encoder-decoder architecture 

to balance global semantic context and local detail extraction. 

Its key innovations include: an encoder leveraging depthwise 

separable convolutions in backbone networks (e.g., 

Xception[5]) alongside multi-scale dilated convolutions via 

the Atrous Spatial Pyramid Pooling (ASPP) module to 

capture objects of varying sizes; a decoder that restores 

spatial resolution through upsampling and fuses low-level 

high-resolution features to improve boundary localization; 

and a lightweight design minimizing computational 

redundancy for real-time inference. Demonstrating superior 

performance on benchmarks like PASCAL VOC, 

DeepLabv3+ is widely applied in autonomous driving, 

medical image analysis, and other scenarios requiring precise 

scene understanding. 

III. METHODS 

A. Text-driven Segmentation 

Our approach combines multi-modal pretrained models 

CLIP and Swin Transformer, consisting of three integrated 

modules: the Text Guide Module (TGM) uses cross-attention 

to embed text semantics into image features, enabling 

text-driven guidance; the Skip-layer Fusion Module (SFM) 

decodes fused features by leveraging skip connections and 

multi-receptive-field aggregation to enhance spatial detail 

retention; and the Mask Generator Module (MGM) employs 

dilated convolutions to capture multi-scale image context, 

generating hierarchical masks for loss computation and 

training optimization. This architecture synergistically aligns 

textual guidance with visual feature learning, ensuring 

precise semantic localization while maintaining 

computational efficiency. 

1) Text Guide Module (TGM) 

The TGM dynamically aligns textual and visual features 

through CLIP and Swin Transformer collaboration, 

consisting of two phases. First, the CLIP text encoder extracts 

text features 𝐹𝑡 , while input images are downsampled via 
Patch Partition and processed through four Swin Transformer 
stages to generate hierarchical image features 𝐹1−𝐹4  with 
resolutions 𝐻4 × 𝑊4 , 𝐻8 × 𝑊8 , 𝐻16 × 𝑊16 , 𝐻32 × 𝑊32 . In the text 

guidance phase, bidirectional cross-attention mechanisms are 

applied at each Swin Transformer stage: image features 𝑄𝑖  

Fig 1 Text-driven Segmentation Framework 
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interact with text 𝐾𝑡/𝑉𝑡 as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑡 , 𝑉𝑡) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝑖𝐾𝑡𝑇√𝑑𝑘 ) 𝑉𝑡 (1) 

generating text-guided features mapped to 𝑄𝑡 through an 
MLP. These 𝑄𝑡  then recompute attention with image 𝐾𝑖/𝑉𝑖 
as: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑡 , 𝐾𝑖 , 𝑉𝑖) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝑡𝐾𝑖𝑇√𝑑𝑘 ) 𝑉𝑖 (2) 

 producing refined text-guided image features 𝐹1′ − 𝐹4′ 
provide semantically aligned visual inputs for downstream 
segmentation tasks, improving precision through progressive 
text-image alignment. 

2) Skip-layer Fusion Module (SFM) 

The SFM integrates multi-scale text-guided features 𝐹1′ −𝐹4′ via parallel convolutions (3×3, 5×5, 7×7), channel concat 

-enation, and skip connections. It captures local context 

through hierarchical receptive fields, reduces dimensions 

with 1×1 convolutions, and preserves details via residual 

connections. Upsampling restores spatial resolution for 

decoder-stage alignment, iteratively refining features 𝐹1" − 𝐹4". 
This design enhances discriminative multi-scale represent- 

tations, balancing global semantics and local details to 

improve segmentation accuracy. 

3) Mask Generator Module (MGM) 

The MGM generates semantically aligned segmentation 

masks using multi-scale dilated convolutions and multi-level 

supervision. Taking hierarchical features( 𝐹1" − 𝐹4" )from the 

skip-layer fusion module, each feature map undergoes 3×3 

convolution, followed by parallel dilated convolutions 

(dilation rates 1, 2, 3) to capture multi-scale context. Features 

are then dimension-reduced via 1×1 convolution to produce 

corresponding masks (𝑀𝑎𝑠𝑘1 − 𝑀𝑎𝑠𝑘4) at their respective 
resolutions. During training, all masks contribute to loss 
calculation, enforcing fine-grained text-image alignment 
across scales. At inference, only the highest-resolution mask 
(𝑀𝑎𝑠𝑘1) is used for segmentation, while others (𝑀𝑎𝑠𝑘2 −𝑀𝑎𝑠𝑘4 ) provide auxiliary supervision. This approach 
enhances boundary precision and semantic consistency 
through multi-scale aggregation and hierarchical supervision, 
ensuring reliable region localization for compositional 
retrieval tasks. 

4) Loss Function 

Inspired by DeepLabV3+, our segmentation loss combines 

Cross Entropy (CE) and Dice Loss through a joint 

optimization strategy to enhance robustness in text-guided 

segmentation. The CE loss ： 

𝐿𝐶𝐸 =  − 1𝑁 ∑ ∑ 𝑦𝑖,𝑐 log(𝑝𝑖,𝑐)𝐶
𝑐=1

𝑁
𝑖=1 (3) 

 minimizes pixel-wise prediction errors for fine-grained 

classification, while Dice Loss : 𝐿𝐷𝑖𝑐𝑒 = 1 − 2 ∑ 𝑦𝑖𝑝𝑖𝑁𝑖=1∑ 𝑦𝑖𝑁𝑖=1 + ∑ 𝑝𝑖 + 𝜖𝑁𝑖=1 (4) 

 optimizes region overlap for semantic consistency. The 

total loss is defined as: 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝐶𝐸 + 𝛽𝐿𝐷𝑖𝑐𝑒 (5) 

with experimentally determined weights 𝛼 = 1.0 and 𝛽 = 

0.5. CE prioritizes pixel-level classification accuracy, while 

Dice Loss reinforces boundary integrity. This combination 

improves semantic alignment and spatial precision of segm 

-entation masks, balancing local detail and global structure 

optimization. 

 

B. Composed Image Retrieval 

The model is composed of three processes: keyword 
extraction using Spacy, the multi-modal pre-trained CLIP, 
and text-guided image segmentation. The compositional 
image retrieval process includes text keyword extraction, 
text-guided segmentation, image-text feature fusion, and 
retrieval feature generation. First, the query image and text 
are input. Spacy extracts nouns from the text as keywords to 
guide image segmentation, generating a semantically 
consistent segmented image and reducing interference from 
irrelevant backgrounds. The segmented image is then fed into 
the CLIP image encoder to extract features. The output 
features of its four levels are fused with the text features 
extracted by CLIP via the ITFM module. The ITFM module 
uses an attention mechanism and a multi-layer perceptron 
(MLP) to adjust feature dimensions, obtaining fused features 
at four levels. In the retrieval feature generation stage, the 
final retrieval features are generated using the formula： 𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 =  𝐹𝑡𝑒𝑥𝑡 + ∑ 𝐹𝑓𝑢𝑠𝑖𝑜𝑛𝑖4

𝑖=1 (6) 

Where 𝐹𝑡𝑒𝑥𝑡  is the original text feature encoded by CLIP 

and 𝐹𝑓𝑢𝑠𝑖𝑜𝑛𝑖  is the fused feature at the i -th level. During 

retrieval, the similarity between the retrieval features and the 

image features in the retrieval library is calculated and sorted 

to return results, improving retrieval accuracy. The ITFM 

module achieves fine-grained alignment of image and text 

features. First, query, key, and value vectors are generated 

from the text feature 𝐹𝑡𝑒𝑥𝑡  and the image feature  𝐹𝑖𝑚𝑎𝑔𝑒  

through linear transformation. The multi-head cross-attention 

Fig 2 Composed Image Retrieval Framework 
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mechanism (MCA) is adopted. The cross-attention of image 

features to text features is calculated as: 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝑘𝑡 , 𝑣𝑡) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑞𝑖𝑘𝑡𝑇√𝑑𝑘 ) 𝑣𝑡 (7) 

and that of text features to image features is: 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑡 , 𝑘𝑖 , 𝑣𝑖) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑞𝑡𝑘𝑖𝑇√𝑑𝑘 ) 𝑣𝑖 (8) 

The MCA output is concatenated and linearly transformed 

as: 𝑀𝐶𝐴(𝑞𝑖 , 𝑘𝑡 , 𝑣𝑡) = 𝑊0𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2 , … , ℎ𝑒𝑎𝑑ℎ)(9) 

and then goes through layer normalization (LN) and a 
feed-forward network (FFN) to get the intermediate features: 𝐹𝑖 = 𝐹𝐹𝑁 (𝐿𝑁(𝑀𝐶𝐴(𝑞𝑖 , 𝑘𝑡 , 𝑣𝑡))) (10) 𝐹𝑡 = 𝐹𝐹𝑁 (𝐿𝑁(𝑀𝐶𝐴(𝑞𝑡 , 𝑘𝑖 , 𝑣𝑖))) (11) 

Finally, 𝐹𝑖  and 𝐹𝑡  are concatenated in the channel dimension and the dimension is adjusted by MLP: 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑀𝐿𝑃(𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑖, 𝐹𝑡)) (12) This fused feature supports subsequent retrieval and enhances the discriminative ability of retrieval features. 
C. Loss Function To optimize retrieval tasks, this paper employs BBCL, which outperforms Triplet Loss on complex datasets with superior discriminative power and faster convergence. Each training batch contains B query pairs, each consisting of a reference image, modified text, and their target image. The loss function is defined as: 𝐿𝐵𝐵𝐶𝐿 = 1𝐵 ∑ − log ( exp(𝜅(𝑞𝑖 , 𝑡𝑖))∑ exp (𝐵𝑗=1 𝜅(𝑞𝑖 , 𝑡𝑗)))𝐵

𝑖=1 (13) Here, 𝑞𝑖denotes the fused features of the i-th query sample, 𝑡𝑖represents the features of the i-th target image, and κ(⋅,⋅)  is an arbitrary distance metric function (e.g., cosine distance). Combining the segmentation loss from Chapter 3, the overall loss function of this method is: 𝐿𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐿𝐵𝐵𝐶𝐿 + 𝐿𝑡𝑜𝑡𝑎𝑙 (14) 

IV. EXPERIMENT 

A. Dataset 

The experiments utilize two datasets: FashionIQ [50] 

and CIRR [24]. FashionIQ, a benchmark for natural 

language-based image retrieval, contains 77,684 fashion 

product images (Dress, Toptee, Shirt) organized into triplets: 

reference image, relative text description, and target image. 

These triplets illustrate attribute modifications between the 

reference and target images. CIRR addresses limitations in 

domain-specific datasets like FashionIQ by introducing 

21,552 real-world images from the NLVR² dataset, forming 

36,554 triplets with 80%-10%-10% splits. Its design 

mitigates visual complexity constraints and reduces false 

negatives by leveraging real-life scenarios. Both datasets are 

critical for evaluating the model's compositional retrieval 

performance across controlled fashion and diverse real-world 

contexts. 

B. Evaluation Metrics 

Recall, also known as the true positive rate, is calculated 

as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (15) 

Here, TP (True Positive) represents the number of positive 

instances correctly identified by the model, while FN (False 

Negative) refers to positive instances misclassified as 

negative. As shown in the formula, Recall measures the 

proportion of actual positive samples that the model 

successfully retrieves. 

C. Experimental Results 

This section evaluates the performance of our method on 

the FashionIQ[15] and CIRR[9] datasets through 

quantitative experiments, comparing it with existing 

approaches. For FashionIQ, we use Recall@K as the 

evaluation metric, focusing on Recall@10 

(R@10) and Recall@50 (R@50). On CIRR, following the 

standard evaluation protocol proposed by the dataset authors, 

we report Recall@K at four different ranks (1, 5, 10, 50). 

Additionally, leveraging CIRR’s unique design, we 

report RecallSubset, which considers only images within the 

query subset. Since the ground-truth labels of the test set were 

not publicly available during manuscript preparation, all 

experimental results were computed on the validation set. 

The results demonstrate that our method achieves significant 

performance improvements across multiple evaluation 

metrics. 

1) CIRR 

On the CIRR dataset (Table 1), our method 

achieves 44.21%/ 76.57%/ 86.67%/ 97.88% in Recall@ 

1/5/10/50, representing +5.24%/ +3.95%/ +4.70%/ +1.15% 

gains over the best baseline SSN. Subset evaluation metrics 

(R_subset@1/2/3: 71.37%/ 88.14%/ 94.91%) show +5.41%/ 

+3.34%/ +1.52% improvements compared to SSN, 

demonstrating the model’s robust fine-grained retrieval 

capability in scenarios with high-similarity distractors. 

 

Table 1 CIRR result 

 Recall@K  RecallSubset@K 

Methods K=1 K=5 K=10 K=50  K=1 K=2 K=3 

TIGR[6] 14.61 48.37 64.08 90.03  22.67 44.97 65.14 

MAAF[7] 10.31 33.03 48.30 80.06  21.05 41.81 61.60 

ARTEMIS[8] 16.96 46.10 61.31 87.73  39.99 62.20 75.67 

CIRPLANT[9] 19.55 52.55 68.39 92.38  39.20 63.03 79.49 

CLIP4Cir[10]  33.59 65.35 77.35 95.21  62.39 81.81 92.02 

SSN[11] 38.97 72.62 81.97 96.73  65.96 84.80 93.39 

Our 44.21 76.57 86.67 97.88  71.37 88.14 94.91 

 

2) FashionIQ 

On the FashionIQ dataset (Table 2), our method 

achieves 42.91% average Recall@10 across Dress/ Toptee/ 

Shirt categories (with the highest single-category value 

of 46.65%), representing a 6.41% improvement over SSN. 
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For Recall@50, the average reaches 68.69% (highest 

single-category: 72.13%), outperforming SSN by 6.04%. 

These results highlight the model’s ability to capture 

fine-grained text-image semantic alignment, significantly 

enhancing retrieval accuracy. 

 

Table 2 FashionIQ result 

 Dress  Toptee  Shirt  Average 

 Methods R@10 R@50  R@10 R@50  R@10 R@50  R@10 R@50 

CoSMo[12] 25.64 50.30  29.21 57.46  24.90 49.18  26.58 52.32 

DCNet[13] 28.95 56.07  30.44 58.29  23.95 47.30  27.78 53.89 

CIRPLANT 17.45 40.41  21.64 45.38  17.53 38.81  18.87 41.53 

SAC[14] 26.52 51.01  32.70 61.23  28.02 51.86  29.08 54.70 

MAAF 23.80 48.60  27.90 53.60  21.30 44.20  24.30 48.80 

CLIP4Cir 31.63 56.67  38.19 62.42  36.36 58.00  35.39 59.03 

SSN 32.18 58.05  41.01 66.12  36.33 63.80  36.50 62.65 

Our 38.52 63.16  43.57 72.13  46.65 70.78  42.91 68.69 

 

3) Ablation 

Ablation studies on the CIRR dataset (Table 3) revealed 

that the Text Guide and Image-Text Fusion Module (IT 

-FM)  had the most significant impact on performance. The 

full model, leveraging the synergy of text-guided segmen 

-tation, skip-layer fusion, mask generation, and cross-modal 

feature fusion, outperformed all variant models. 

 

Table 3 Ablation studies on the CIRR 

 Recall@K  RecallSubset@K 

Moudle K=1 K=5 K=10 K=50  K=1 K=2 K=3 

baseline 33.59 65.35 77.35 95.21  62.39 81.81 92.02 

w/o Text Guide 41.78 76.23 86.37 97.63  68.38 85.64 94.04 

w/o Skip-layer 42.43 76.29 86.24 97.77  69.21 86.41 94.21 

w/o Mask Generator 42.64 76.63 86.10 97.65  69.07 86.56 94.28 

w/o Text-Driven 40.23 74.81 85.19 97.27  66.85 84.36 93.75 

w/o Image-Text 40.90 75.46 86.39 97.20  67.16 85.52 93.87 

Full Model 44.21 76.57 86.67 97.88  71.37 88.14 94.91 

 

V. CONCLUSION 

Composed image retrieval faces challenges in accurately 

modeling user intent due to difficulties in extracting 

semantically aligned subject features and severe interference 

from irrelevant features during fusion. This paper addresses 

these issues by proposing a subject feature extraction-based 

method that combines text-guided segmentation and 

multi-modal feature fusion to enhance retrieval accuracy and 

efficiency. The approach first leverages the CLIP model to 

extract text semantic embeddings, then uses a cross-modal 

attention module to dynamically guide a segmentation 

network to focus on text-related regions. By integrating 

hierarchical features from Swin Transformer with a 

skip-layer fusion mechanism, pixel-level semantic alignment 

is achieved, providing high-purity visual features for 

subsequent retrieval tasks. Additionally, a text-guided 

segmentation module filters irrelevant background 

information while an Image-Text Fusion Module (ITFM) 

employs bidirectional multi-head cross-attention to enable 

fine-grained interactions between visual and textual features, 

generating discriminative retrieval features that reduce 

interference from non-subject elements. This synergy 

between Swin Transformer’s hierarchical architecture, 

cross-modal attention, and text-guided segmentation bridges 

the gap between text and image semantics, advancing 

compositional retrieval in complex scenarios. 
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