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Abstract— In modern surveillance systems, the quality of 

real-time images is often affected by noise, especially under 

low-light conditions, which can significantly impact the system's 

accuracy and reliability. To overcome this challenge, infrared 

images have been widely regarded as an effective alternative. 

Infrared images are not affected by visible light interference 

and can provide clearer and more stable surveillance data in 

various complex environments. 

However, infrared images also have noise problems, 

particularly during long-term monitoring, where image quality 

may gradually deteriorate. To effectively reduce noise in 

infrared images, this paper proposes a noise reduction 

algorithm based on non-uniformity correction with parameter 

updates. Firstly, the algorithm dynamically adjusts correction 

parameters to achieve efficient real-time non-uniformity 

correction. Compared to traditional methods, the algorithm not 

only improves correction accuracy and image stability but also 

significantly reduces system response time, meeting the 

requirements of complex surveillance environments. Finally, a 

hardware design based on Field-Programmable Gate Array 

(FPGA) is used to implement this algorithm, which significantly 

enhances its performance. 

Experimental results show that for a 640×512 resolution 

image, the frame rate can reach 66 frames per second, for a 

1280×1024 resolution image, it can achieve 30 frames per 

second, and for a 640×640 resolution image, the frame rate can 

reach 50 frames per second, with a latency time of under 40ms. 

 
Index Terms—Parameter update, Non-uniformity correction,

FPGA,Denoising.  

I. INTRODUCTION 

  Image denoising plays a crucial role in computer vision 

and image processing, enhancing image quality and 

improving the performance of subsequent tasks such as 

object detection and recognition. Real-time image processing 

is particularly important in fields like video surveillance, 

autonomous driving, and medical imaging. Therefore, 

developing efficient real-time denoising algorithms is of 

practical significance. Infrared images are widely used in 

military, security, and night vision applications because they 

provide reliable imaging in low light and complex 

environments. Unlike visible light images, infrared images 

capture thermal radiation information.  

The infrared focal plane array (IRFPA) [1] is the core 

component of infrared imaging systems but is often affected 

by fixed-pattern noise (FPN) [2]and pixel response 

nonuniformity, which degrade image quality. To improve 

image quality, an effective non-uniformity correction (NUC) 

[3] algorithm is needed and should be implemented on 
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embedded hardware platforms. The FPGA[4]platform offers 

parallel computing and optimization, reducing memory 

latency and enhancing processing speed and real-time 

performance. 

By deploying the parameter-update-based NUC algorithm 

onto an FPGA platform, the goal is to achieve real-time 

parameter updates, ensuring the timeliness and effectiveness 

of the correction to meet real-time requirements, improve 

processing performance, reduce system costs and power 

consumption, and adapt to the needs of different sensors and 

application scenarios. 

The main contributions of this paper are as follows: 

(1) We propose a parameter-update-based NUC algorithm 

that fully utilizes fixed-point arithmetic during 

nonuniformity correction. The algorithm consists of video 

stream processing and adaptive parameter updates. 

(2) The adaptive parameter update allows the algorithm to 

dynamically adjust parameters based on the number of image 

frames currently being processed. This real-time 

responsiveness enables the algorithm to quickly adapt to 

varying input conditions and environmental changes without 

requiring pre-fixed parameters. 

(3) The DeNoise module is accelerated based on the 

runtime of each module, and Gaussian blur within the module 

is also optimized. Finally, other parameter update modules 

are accelerated using multi-core processing. 

(4) The proposed parameter-update-based NUC algorithm 

is implemented on FPGA. With a 200 MHz clock, it achieves 

66 FPS[5] for 640×512 resolution images, 30 FPS for 

1280×1024 resolution images, and 50 FPS for 640×640 

resolution images, with denoising performance equivalent to 

the original NUC algorithm. 

II. RELATED WORK 

With the continuous development of hardware 

acceleration technology, FPGA has been widely used in 

image processing tasks, demonstrating its unique advantages 

in image denoising. In order to improve the effectiveness of 

image denoising, researchers have begun to explore the 

application of FPGA technology in image denoising tasks, 

using hardware acceleration to enhance processing speed and 

efficiency. 

Rong Shenghui et al. [6] proposed an improved version of 

the neural network-based NUC algorithm and implemented it 

on FPGA hardware. This method combines guided image 

filtering and projection-based motion detection technology. 

The memory consumption is less than 45% of the chip’s 
capacity, and the usable block memory utilization rate is 72%. 

Additionally, by increasing the frame rate of the input 

infrared video, the processing speed can be boosted to 180 

FPS (256×256 pixels). Rodolfo Redlich et al. [7] proposed an 
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embedded hardware implementation of the Scribner 

algorithm for non-uniformity correction. On infrared video 

with a resolution of 320×240 pixels, the system achieved a 

processing speed of over 130 frames per second using the 

XC3S1200E, with a power consumption of 329mW.  

Javier Contreras et al. [8] designed a digital hardware filter 

for non-uniformity noise estimation and real-time correction 

of infrared focal plane arrays. The NUC board, implemented 

on the XC3S500E, operates at a frequency of 75 MHz with a 

dynamic power consumption of 17.3mW, utilizing only 10% 

of the FPGA's logic resources. After calibration with a 

reference black body at two points, the system achieves a 

peak signal-to-noise ratio (PSNR) [13] of 35dB within 50 

frames, and the error in its double-precision Matlab 

implementation is less than 0.35dB, allowing the system to 

process 1,254 frames per second for 320×240 pixel video.  

Liang Zou et al. [9] designed a pipelined circuit structure 

based on Very Large Scale Integration (VLSI) [14]FPGA that 

efficiently executes real-time non-uniformity correction 

algorithms for infrared focal plane arrays. This architecture, 

implemented on the EP2C35F672C8, uses 12,548 logic units, 

11,320 combinational logic units, and 6,207 dedicated logic 

registers, supporting a global clock frequency of 96 MHz. For 

320×256-sized corrected images, data acquisition uses a 16 

MHz local clock, and the time for correcting and transmitting 

each image is approximately 5,122 microseconds, with a 

system throughput of 100 frames per second, i.e., a 

processing time of about 10 milliseconds per frame.  

In 2023, Andrejs Cvetkovs et al. [10] designed an 

FPGA-based digital circuit for infrared image acquisition and 

preprocessing, which includes non-uniformity correction 

functionality, implemented on the XCZU9EG SoC platform. 

The system can process 320×240 infrared images and 

1024×720 RGB images, with a maximum throughput of 30 

frames per second, using 445 hardware multipliers, 57,474 

logic units, 79,894 registers, and 171 BRAM blocks. In 2021, 

Huawei Wang et al. [11] designed an FPGA-based short-wave 

infrared camera logic architecture, implemented on the 

XC4VS55. This design supports two operating modes and 

can achieve 25 FPS at a resolution of 640×512 and 4000 FPS 

at a resolution of 64×48. Sheng Yicheng et al. [12] proposed a 

hardware system for IRFPA real-time two-point calibration 

(TPC) [15]algorithm, using the EP3C120F780 as the controller. 

The system completes operations such as module design, 

ping-pong memory, high and low-temperature image 

processing, correction coefficient calculation, and 

non-uniformity correction within the FPGA. 

III. NUC ALGORITHM BASED ON PARAMETER UPDATES  

A. The design idea of the algorithm 

Non-uniformity noise (NU) in infrared images is caused by 

sensor non-uniformity, environmental changes, and other 

factors, affecting image quality and accuracy. NUC 

algorithms are typically divided into two types: 

reference-based and scene-based. Scene-based algorithms are 

flexible but complex, making them unsuitable for hardware 

acceleration platforms. In contrast, the Two-Point Correction  

method is simple and computationally light, making it 

suitable for embedded hardware, but it has limitations such as 

reliance on reference sources and poor adaptability. 

To address these issues, this paper proposes a 

hardware-friendly parameter update-based NUC algorithm. 

This algorithm adjusts calibration parameters in real time, 

avoiding the dependency on fixed reference sources and 

improving calibration performance in dynamic environments. 

It can automatically learn and adjust parameters, reducing 

manual calibration and enhancing system intelligence. The 

adaptive update strategy based on image frame counting, 

combined with parallel processing techniques, optimizes 

denoising performance and algorithm efficiency. The Figure 

1 illustrates the architecture of the NUC algorithm based on 

parameter updates. 

 
Fig.1 The architecture of the parameter update-based NUC 

algorithm 

B. The overall process of the algorithm. 

When the algorithm performs non-uniformity noise 

removal, it uses fixed-point arithmetic exclusively. The basic 

rules for fixed-point implementation of the algorithm are as 

follows: 

(1) The data is first scaled up and then scaled down to 

improve the precision of intermediate calculations. 

(2) 32-bit variables are preferred, and 64-bit variables are 

used sparingly. 

(3) Data scaling is achieved using shift operations to 

enhance efficiency. 

The parameter update-based NUC algorithm consists of 

two parts: video stream processing and adaptive parameter 

updates. The algorithm relies on adaptive parameters to 

perform non-uniformity correction tasks, while the adaptive 

parameter update and correction processes are executed in 

parallel. The flow of the algorithm is shown in Figure 2. 

Fig.2 The flow of the parameter update-based NUC 

algorithm 

 

First, based on the input image frame count, the algorithm 
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makes a judgment to determine one of the four choices for 

adaptive parameter updates: updating the DeShading 

parameter, updating the DeFPN parameter, updating the 

DeStrip parameter, or not updating any parameters. Then, the 

Shading, FPN, and Strip noise removal processes are 

completed. If the previous judgment indicates that an 

adaptive parameter needs to be updated, a new sub-thread is 

created to update the adaptive parameters in parallel during 

the noise removal process.  

The updates for DeShading, DeFPN, and DeStrip 

parameters correspond to the orange, blue, and green 

processes in the diagram, with dashed lines indicating 

parallel processing. Next, the NU noise is removed, which 

also depends on the image frame count to determine whether 

the corresponding adaptive parameters need to be updated. If 

needed, a sub-thread concurrently updates them without 

affecting the main correction process. Finally, the DeNoise 

module, which involves updating the parameter sigmaN, also 

updates in a sub-thread concurrently. After all the modules 

have processed the image, the non-uniformity noise 

correction of the infrared image is complete. 

C. Overall performance and analysis of the algorithm 

All modules are activated to process the infrared image. 

The results of the algorithm after fixed-point processing are 

compared with those of double precision processing, and the 

maximum error for each frame of the image is recorded. As 

shown in Figure 3, tests were conducted in an outdoor scene. 

From the figure, it can be seen that the maximum error is 

around 16, and it is only brief. For most of the time, the error 

stays within 10. Since this is a test in an outdoor scene, and 

considering the high dynamic range of outdoor environments, 

this error is within an acceptable range. The test results for 

the indoor scene are shown in Figure 4. It can be seen that the 

error is smaller indoors, with the maximum error value not 

exceeding 4, so the impact on the results is minimal. The 

reason why the error is much smaller than in the outdoor 

scene is that the dynamic range of the indoor scene is smaller 

than that of the outdoor scene. 

Fig.3 Maximum error of the algorithm (outdoor scene) 

Fig.4 Maximum error of the algorithm (indoor scene) 

Next, the actual imaging results are shown in Figures 5 and 

6. From an overall perspective, whether in indoor or outdoor 

scenes, there is no noticeable difference between the 

floating-point results and the fixed-point results to the naked 

eye. The noise reduction effects have also achieved the 

desired results. The center point marked by the red box in the 

image is the point with the maximum error in that frame. 

Even at the location with the maximum error, the difference 

is virtually invisible to the naked eye. 

Fig.5 Outdoor scene effect (left - floating-point, right - 

fixed-point, maximum error 12) 

Fig.6 Indoor scene effect (left - floating-point, right - 

fixed-point, maximum error 4) 

IV. FPGA-BASED HARDWARE DESIGN 

A. Runtime analysis 

First, the runtime of each module of the algorithm was 

measured, as shown in Table 1. This time is without the O2 

optimization enabled. The original algorithm's frame rate 

parameter is 25, which means that the 0th and 12th frames 

will be updated at half the frame rate, and at one-fifth of the 

frame rate, the 0th, 5th, 10th, 15th, 20th, and 25th frames will 

be updated. The main purpose is to observe the 

computationally intensive parts of each module, analyze 

acceleration methods, and determine how to accelerate them. 

Based on these test data, the following explanations and 

analyses can be made: 

DeNoise module: From the data, it can be seen that the 

runtime of the DeNoise module is 0.511408 seconds/frame, 

making it the most time-consuming module in single-frame 

processing. This is likely because the module requires 

complex denoising algorithms, involving image processing, 

filtering, and other operations, which results in a longer 

runtime. 

Internal time-consuming parts of the module: The data 

shows that the Gaussian blur part of the DeNoise module 

takes up a large portion of its total runtime (about 63.21%). 

This indicates that the Gaussian blur operation in the 

DeNoise module is a time-consuming step that requires 

special attention and optimization. 

Parameter update module: It can also be observed that the 

runtime of the parameter update modules (DeShading, 

DeFPN s32, DeStrip2, DeNU s32) is relatively short, but still 

occupies a certain proportion of the total time. These modules 
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often require parameter updates based on different input 

conditions and environments, which may necessitate more 

frequent calculations and adjustments 

 

Table 1 O2 optimized runtime is not enabled on ZYNQ 

Module Name Runtime Image Update Method 

Denoising Time 
without Parameter 

Update 

0.691538 per frame 

DeNoise 0.511408 per frame 

Gaussian blur in 

DeNoise 
0.323404 per frame 

DeShading (parameter 

update) 
0.073489 Half the frame rate 

DeFPN s32 (parameter 

update) 
0.068231 Half the frame rate 

DeStrip2 (parameter 
update) 

9.077074 Half the frame rate 

DeNU s32 (parameter 
update) 

1.260932 Frame rate one-fifth 

 

B. The DeNoise module accelerates analysis and 

implementation 

The DeNoise module has the longest runtime, occupying 

the majority of the total runtime (about 74.02%), indicating 

that the DeNoise module takes up a significant portion of the 

system's performance consumption. Implementing the 

DeNoise module can increase the system's frame rate by 

three to four times. 

It is necessary to analyze the data dependencies and 

memory access patterns in the algorithm. The algorithm 

involves multiple matrix operations and data copying. In 

FPGA design, data copying can directly move the data. The 

data flow is quite complex, involving multiple matrix 

calculations. The data required later is temporarily stored in 

FIFO, and the subsequent data is processed using 

computation to ensure efficient data flow and storage. The 

entire module can be pipelined for hardware acceleration. 

The estimated data throughput design is expected to reach 

200 MHz, with one pixel of data (1 ppc) processed per cycle. 

The image size is 640×512, requiring a total of 327,040 

cycles to complete the computation, with a calculation delay 

of several thousand clock cycles. Considering the data 

transmission delay, the total computation time will not 

exceed 2ms, achieving a good acceleration ratio. 

Using the PS, the XAxiDma_SimpleTransfer function 

configures the source address, destination address, and 

transfer length registers to transfer data from DDR to the PL 

side for the DeNoise module to compute. DMA configuration 

commands and DeNoise configuration commands are passed 

through the AXI interconnect module to the AXI_DMA 

module and the DeNoise module, respectively. 

Once the DeNoise module receives the control data, it 

begins waiting for data to be transferred from the PS-side 

DDR via the DMA's M_AXIS_MM2S port. The results 

obtained by DeNoise are transferred to the S_AXIS_S2MM 

module, and the DMA transfers the data back to the PS-side 

DDR, allowing the CPU to perform other computations. 

C. Gaussian fuzzy acceleration analysis and 

implementation 

The time test shows that the Gaussian blur occupies 

46.76% of the total runtime without parameter updates. After 

FPGA acceleration, the frame rate can be roughly improved 

by less than half. Therefore, the first step is to accelerate the 

Gaussian blur module. The Gaussian blur consists of three 

parts: 

(1) Gaussian function computation: The input parameters 

are fixed, so the results are always the same. Therefore, 

preprocessing can be performed to obtain the data, avoiding 

the need for real-time computation during the acceleration 

process. 

(2) Row-column separated convolution for acceleration: 

To speed up the Gaussian blur computation, a row-column 

separation convolution method is used to reduce the 

computational load. In the row convolution, padding is 

applied first, and in FPGA, this can be achieved by changing 

the data path. 

(3) Subsequent multiply-accumulate operations: These 

operations can be parallelized and pipelined in FPGA for 

acceleration. The row-column convolution can be reused in 

the hardware-accelerated code. 

The algorithm contains multiple Gaussian blur modules, 

with differences in the image sizes they accept, the 

configurable kernel size (ksize), and the corresponding 

Gaussian weight matrix used for calculation. The rest of the 

data flow remains mostly the same. Therefore, using 

SpinalHDL to implement the Gaussian blur requires support 

for different ksize configurations. Different ksize values lead 

to different padding, mirrored padding data flows, different 

weights, and a varying number of multiply-accumulate 

operations. While describing this in Verilog may be difficult, 

SpinalHDL allows for recursive functions, describing 

addition trees, separating the code from the logic, and 

configuring different data flows. The data flow architecture 

for the hardware-accelerated Gaussian blur implementation is 

shown in Figure 7. 

 
Fig.7 Gaussian fuzzy hardware accelerates the 

implementation of data flow architecture 

D. Multi-core computing and algorithm optimization 

To accelerate the parameter update time, the approach is to 

offload all non-parameter updates to be computed in the 

FPGA. Two CPU cores are reserved for parameter updates. 

Non-parameter update denoising acceleration: Data is 

passed through the interface and then shifted left on the PL 

side to calculate the average value. The data is then stored in 

DDR, and an interrupt is triggered to the main core. The main 

core configures the DMA register to move the data and 

compute the DeNoise module. A weight loading module 

needs to be implemented, while the remaining tasks such as 

averaging, left shifting, and subtraction involve very little 

workload. 
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Fig.8 Multi-core computational flowchart 

 

Figure 8 is the multi-core computing flowchart. The input 

image is transmitted through the Ethernet interface and stored 

in the FPGA's DDR memory. The main core and slave core 

inside the FPGA exchange data via an internal bus. The main 

core is mainly responsible for accelerating the DeNoise 

(denoising) module, while the slave core is responsible for 

accelerating the parameter update module. These two cores 

work in parallel without interference. The processed image 

data is then stored back in the DDR memory and sent through 

the Ethernet interface to the display interface for 

presentation. 

CPU0 core: handles DeShading, DeFPN, updateSigmaN, 

and DeNU s32. Among these, DeNU s32 has a higher update 

frequency and is a computational bottleneck, requiring 

acceleration on the FPGA. The Gaussian blur for the DeNU 

module has a ksize of 17, and using Int64 bits is significantly 

faster than previous accelerations. The Gaussian blur can be 

modified, and operations such as sub and abs have already 

been implemented and can be directly invoked and pipelined. 

CPU1 core: handles DeStrip2 acceleration. The loop of 9 

iterations occupies 98% of the computation, so the focus is 

mainly on optimizing the loop. For loop unrolling 

optimization, after the calculation, the matGetMedCol and 

matGetMedRow are optimized to avoid expanding the matrix 

size, resulting in 640 and 512 numbers, respectively. By 

using these 1000 numbers to optimize the Avg computation 

time, the computational load can be reduced. The add and sub 

operations total 1000 numbers, which are sent to the FPGA to 

restore the matrix size. The Add and Sub operations are then 

integrated into the Strip process for pipelined computation in 

the FPGA. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. FPGA resource usage analysis 

In FPGA hardware design, effectively utilizing resources 

is one of the most crucial factors. Table 2 summarizes the 

resource usage in the FPGA. 

 

Table 2 FPGA resource usage 

Resource Utilization Available Utiliaztion%     

LUT 61894 87840 70.46     

LUTRAM 19988 57600 34.70     
FF 67823 175680 38.61     

BRAM 126 128 98.44     

URAM 3 48 6.25     
DSP 124 728 17.03     

IO 10 252 3.97     
BUFG 6 352 1.70     

MMCM 2 4 50.00     

 

The most used resource is BRAM, which is used to store 

temporary data, parameters, and intermediate results during 

the image processing process. It can be used to store 

calibration coefficients, weight matrices, historical frame 

data, etc., in the calibration algorithm. These data typically 

need to be frequently read and written between image frames 

or during algorithm iterations. The usage rate reaches 98.44%. 

The next most used resource is LUT, which is primarily used 

to store and process the mapping relationship between pixel 

values and calibration coefficients. In the NUC algorithm, 

each pixel may have different calibration requirements, 

which are typically represented by calibration coefficients. 

LUT maps the original pixel values (such as grayscale values) 

to the corresponding calibration coefficients for pixel-level 

non-uniformity correction. The usage rate reaches 70.46%. 

B. Calculate time analysis 

For real-time images, computation time is an important 

performance metric. For a 640×512 size image, the original 

NUC algorithm achieves 2-3 frames per second, and with 

hardware running at 200 MHz, after FPGA acceleration, it 

can reach 66 fps. For a 1280×1024 size image, it can reach 30 

fps after acceleration; for a 640×640 size image, it can reach 

50 fps. Moreover, after FPGA acceleration, the denoising 

effect of the NUC algorithm remains the same. 

The running time of the DeNoise module is about 

0.000211s after acceleration. The running time of the DeNU 

module is about 0.039269s after acceleration. The running 

time of the DeStrip module, where the histogram and median 

calculation are run on the CPU, is about 40ms + 3 FPGA 

offload pipeline calculation times, approximately 43ms after 

FPGA acceleration. The histogram calculation can be 

completed in about 20ms + 3 FPGA offload pipeline 

calculation times (the pipeline calculation takes 

approximately 640×512 clock cycles). 

Compared to typical hardware platforms like ARM, DSP, 

and ASIC, using FPGA for hardware acceleration offers 

excellent customizability, flexibility, and a short 

development cycle. ARM processors have a fixed 

architecture and instruction set, making it difficult to 

reconfigure hardware functions as needed, limiting flexibility 

in optimizing specific algorithms (such as the NUC 

algorithm). DSP designs are mainly used for digital signal 

processing, and their hardware structure is relatively fixed, 

making it hard to adapt flexibly to changes and optimization 

requirements of different algorithms. The design and 

manufacturing cycle of ASIC is long, making it unsuitable 

for applications in the rapid iteration and experimental 

development stages. In the early optimization phase of the 

NUC algorithm, such a long cycle would limit the rapid 

iteration and verification of the algorithm. 

VI. CONCLUSION 

This paper presents a parameter-update-based NUC 

algorithm that can dynamically adjust parameters based on 

the sensor's performance under different operating conditions. 

This capability allows the system to maintain high-quality 

imaging despite changes in time and environment. When 

performing non-uniformity noise removal, the algorithm uses 

fixed-point arithmetic exclusively. To ensure calculation 

precision, some variables undergo a process of amplification 
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followed by reduction, and shift operations are employed for 

data scaling to guarantee efficiency. Additionally, a hardware 

design method for this algorithm based on FPGA 

implementation is proposed, realized on the Xilinx 

XCZU4EV-1SFVC784I. Experimental results show that it 

outperforms the original NUC algorithm, achieving 66 fps for 

a 640×512 image at a 200 MHz clock frequency, with a 

latency (including data input and output time) of under 40 ms. 
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