
 International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-12, Issue-03, March 2025

 1 www.ijerm.com

Abstract— In modern surveillance systems, the quality of

real-time images is often affected by noise, especially under

low-light conditions, which can significantly impact the system's

accuracy and reliability. To overcome this challenge, infrared

images have been widely regarded as an effective alternative.

Infrared images are not affected by visible light interference

and can provide clearer and more stable surveillance data in

various complex environments.

However, infrared images also have noise problems,

particularly during long-term monitoring, where image quality

may gradually deteriorate. To effectively reduce noise in

infrared images, this paper proposes a noise reduction

algorithm based on non-uniformity correction with parameter

updates. Firstly, the algorithm dynamically adjusts correction

parameters to achieve efficient real-time non-uniformity

correction. Compared to traditional methods, the algorithm not

only improves correction accuracy and image stability but also

significantly reduces system response time, meeting the

requirements of complex surveillance environments. Finally, a

hardware design based on Field-Programmable Gate Array

(FPGA) is used to implement this algorithm, which significantly

enhances its performance.

Experimental results show that for a 640×512 resolution

image, the frame rate can reach 66 frames per second, for a

1280×1024 resolution image, it can achieve 30 frames per

second, and for a 640×640 resolution image, the frame rate can

reach 50 frames per second, with a latency time of under 40ms.

Index Terms—Parameter update, Non-uniformity correction,

FPGA,Denoising.

I. INTRODUCTION

 Image denoising plays a crucial role in computer vision

and image processing, enhancing image quality and

improving the performance of subsequent tasks such as

object detection and recognition. Real-time image processing

is particularly important in fields like video surveillance,

autonomous driving, and medical imaging. Therefore,

developing efficient real-time denoising algorithms is of

practical significance. Infrared images are widely used in

military, security, and night vision applications because they

provide reliable imaging in low light and complex

environments. Unlike visible light images, infrared images

capture thermal radiation information.

The infrared focal plane array (IRFPA) [1] is the core

component of infrared imaging systems but is often affected

by fixed-pattern noise (FPN) [2]and pixel response

nonuniformity, which degrade image quality. To improve

image quality, an effective non-uniformity correction (NUC)

[3] algorithm is needed and should be implemented on

Manuscript received March 26, 2025

YunFei Wang, School of computer science and technology, Tiangong
University, Tianjin, China.

embedded hardware platforms. The FPGA[4]platform offers

parallel computing and optimization, reducing memory

latency and enhancing processing speed and real-time

performance.

By deploying the parameter-update-based NUC algorithm

onto an FPGA platform, the goal is to achieve real-time

parameter updates, ensuring the timeliness and effectiveness

of the correction to meet real-time requirements, improve

processing performance, reduce system costs and power

consumption, and adapt to the needs of different sensors and

application scenarios.

The main contributions of this paper are as follows:

(1) We propose a parameter-update-based NUC algorithm

that fully utilizes fixed-point arithmetic during

nonuniformity correction. The algorithm consists of video

stream processing and adaptive parameter updates.

(2) The adaptive parameter update allows the algorithm to

dynamically adjust parameters based on the number of image

frames currently being processed. This real-time

responsiveness enables the algorithm to quickly adapt to

varying input conditions and environmental changes without

requiring pre-fixed parameters.

(3) The DeNoise module is accelerated based on the

runtime of each module, and Gaussian blur within the module

is also optimized. Finally, other parameter update modules

are accelerated using multi-core processing.

(4) The proposed parameter-update-based NUC algorithm

is implemented on FPGA. With a 200 MHz clock, it achieves

66 FPS[5] for 640×512 resolution images, 30 FPS for

1280×1024 resolution images, and 50 FPS for 640×640

resolution images, with denoising performance equivalent to

the original NUC algorithm.

II. RELATED WORK

With the continuous development of hardware

acceleration technology, FPGA has been widely used in

image processing tasks, demonstrating its unique advantages

in image denoising. In order to improve the effectiveness of

image denoising, researchers have begun to explore the

application of FPGA technology in image denoising tasks,

using hardware acceleration to enhance processing speed and

efficiency.

Rong Shenghui et al. [6] proposed an improved version of

the neural network-based NUC algorithm and implemented it

on FPGA hardware. This method combines guided image

filtering and projection-based motion detection technology.

The memory consumption is less than 45% of the chip’s
capacity, and the usable block memory utilization rate is 72%.

Additionally, by increasing the frame rate of the input

infrared video, the processing speed can be boosted to 180

FPS (256×256 pixels). Rodolfo Redlich et al. [7] proposed an

Design and Implementation of FPGA-Based

Real-Time Image Denoising Accelerator

Yunfei Wang

http://www.ijerm.com/

Design and Implementation of FPGA-Based Real-Time Image Denoising Accelerator

 2 www.ijerm.com

embedded hardware implementation of the Scribner

algorithm for non-uniformity correction. On infrared video

with a resolution of 320×240 pixels, the system achieved a

processing speed of over 130 frames per second using the

XC3S1200E, with a power consumption of 329mW.

Javier Contreras et al. [8] designed a digital hardware filter

for non-uniformity noise estimation and real-time correction

of infrared focal plane arrays. The NUC board, implemented

on the XC3S500E, operates at a frequency of 75 MHz with a

dynamic power consumption of 17.3mW, utilizing only 10%

of the FPGA's logic resources. After calibration with a

reference black body at two points, the system achieves a

peak signal-to-noise ratio (PSNR) [13] of 35dB within 50

frames, and the error in its double-precision Matlab

implementation is less than 0.35dB, allowing the system to

process 1,254 frames per second for 320×240 pixel video.

Liang Zou et al. [9] designed a pipelined circuit structure

based on Very Large Scale Integration (VLSI) [14]FPGA that

efficiently executes real-time non-uniformity correction

algorithms for infrared focal plane arrays. This architecture,

implemented on the EP2C35F672C8, uses 12,548 logic units,

11,320 combinational logic units, and 6,207 dedicated logic

registers, supporting a global clock frequency of 96 MHz. For

320×256-sized corrected images, data acquisition uses a 16

MHz local clock, and the time for correcting and transmitting

each image is approximately 5,122 microseconds, with a

system throughput of 100 frames per second, i.e., a

processing time of about 10 milliseconds per frame.

In 2023, Andrejs Cvetkovs et al. [10] designed an

FPGA-based digital circuit for infrared image acquisition and

preprocessing, which includes non-uniformity correction

functionality, implemented on the XCZU9EG SoC platform.

The system can process 320×240 infrared images and

1024×720 RGB images, with a maximum throughput of 30

frames per second, using 445 hardware multipliers, 57,474

logic units, 79,894 registers, and 171 BRAM blocks. In 2021,

Huawei Wang et al. [11] designed an FPGA-based short-wave

infrared camera logic architecture, implemented on the

XC4VS55. This design supports two operating modes and

can achieve 25 FPS at a resolution of 640×512 and 4000 FPS

at a resolution of 64×48. Sheng Yicheng et al. [12] proposed a

hardware system for IRFPA real-time two-point calibration

(TPC) [15]algorithm, using the EP3C120F780 as the controller.

The system completes operations such as module design,

ping-pong memory, high and low-temperature image

processing, correction coefficient calculation, and

non-uniformity correction within the FPGA.

III. NUC ALGORITHM BASED ON PARAMETER UPDATES

A. The design idea of the algorithm

Non-uniformity noise (NU) in infrared images is caused by

sensor non-uniformity, environmental changes, and other

factors, affecting image quality and accuracy. NUC

algorithms are typically divided into two types:

reference-based and scene-based. Scene-based algorithms are

flexible but complex, making them unsuitable for hardware

acceleration platforms. In contrast, the Two-Point Correction

method is simple and computationally light, making it

suitable for embedded hardware, but it has limitations such as

reliance on reference sources and poor adaptability.

To address these issues, this paper proposes a

hardware-friendly parameter update-based NUC algorithm.

This algorithm adjusts calibration parameters in real time,

avoiding the dependency on fixed reference sources and

improving calibration performance in dynamic environments.

It can automatically learn and adjust parameters, reducing

manual calibration and enhancing system intelligence. The

adaptive update strategy based on image frame counting,

combined with parallel processing techniques, optimizes

denoising performance and algorithm efficiency. The Figure

1 illustrates the architecture of the NUC algorithm based on

parameter updates.

Fig.1 The architecture of the parameter update-based NUC

algorithm

B. The overall process of the algorithm.

When the algorithm performs non-uniformity noise

removal, it uses fixed-point arithmetic exclusively. The basic

rules for fixed-point implementation of the algorithm are as

follows:

(1) The data is first scaled up and then scaled down to

improve the precision of intermediate calculations.

(2) 32-bit variables are preferred, and 64-bit variables are

used sparingly.

(3) Data scaling is achieved using shift operations to

enhance efficiency.

The parameter update-based NUC algorithm consists of

two parts: video stream processing and adaptive parameter

updates. The algorithm relies on adaptive parameters to

perform non-uniformity correction tasks, while the adaptive

parameter update and correction processes are executed in

parallel. The flow of the algorithm is shown in Figure 2.

Fig.2 The flow of the parameter update-based NUC

algorithm

First, based on the input image frame count, the algorithm

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-12, Issue-03, March 2025

 3 www.ijerm.com

makes a judgment to determine one of the four choices for

adaptive parameter updates: updating the DeShading

parameter, updating the DeFPN parameter, updating the

DeStrip parameter, or not updating any parameters. Then, the

Shading, FPN, and Strip noise removal processes are

completed. If the previous judgment indicates that an

adaptive parameter needs to be updated, a new sub-thread is

created to update the adaptive parameters in parallel during

the noise removal process.

The updates for DeShading, DeFPN, and DeStrip

parameters correspond to the orange, blue, and green

processes in the diagram, with dashed lines indicating

parallel processing. Next, the NU noise is removed, which

also depends on the image frame count to determine whether

the corresponding adaptive parameters need to be updated. If

needed, a sub-thread concurrently updates them without

affecting the main correction process. Finally, the DeNoise

module, which involves updating the parameter sigmaN, also

updates in a sub-thread concurrently. After all the modules

have processed the image, the non-uniformity noise

correction of the infrared image is complete.

C. Overall performance and analysis of the algorithm

All modules are activated to process the infrared image.

The results of the algorithm after fixed-point processing are

compared with those of double precision processing, and the

maximum error for each frame of the image is recorded. As

shown in Figure 3, tests were conducted in an outdoor scene.

From the figure, it can be seen that the maximum error is

around 16, and it is only brief. For most of the time, the error

stays within 10. Since this is a test in an outdoor scene, and

considering the high dynamic range of outdoor environments,

this error is within an acceptable range. The test results for

the indoor scene are shown in Figure 4. It can be seen that the

error is smaller indoors, with the maximum error value not

exceeding 4, so the impact on the results is minimal. The

reason why the error is much smaller than in the outdoor

scene is that the dynamic range of the indoor scene is smaller

than that of the outdoor scene.

Fig.3 Maximum error of the algorithm (outdoor scene)

Fig.4 Maximum error of the algorithm (indoor scene)

Next, the actual imaging results are shown in Figures 5 and

6. From an overall perspective, whether in indoor or outdoor

scenes, there is no noticeable difference between the

floating-point results and the fixed-point results to the naked

eye. The noise reduction effects have also achieved the

desired results. The center point marked by the red box in the

image is the point with the maximum error in that frame.

Even at the location with the maximum error, the difference

is virtually invisible to the naked eye.

Fig.5 Outdoor scene effect (left - floating-point, right -

fixed-point, maximum error 12)

Fig.6 Indoor scene effect (left - floating-point, right -

fixed-point, maximum error 4)

IV. FPGA-BASED HARDWARE DESIGN

A. Runtime analysis

First, the runtime of each module of the algorithm was

measured, as shown in Table 1. This time is without the O2

optimization enabled. The original algorithm's frame rate

parameter is 25, which means that the 0th and 12th frames

will be updated at half the frame rate, and at one-fifth of the

frame rate, the 0th, 5th, 10th, 15th, 20th, and 25th frames will

be updated. The main purpose is to observe the

computationally intensive parts of each module, analyze

acceleration methods, and determine how to accelerate them.

Based on these test data, the following explanations and

analyses can be made:

DeNoise module: From the data, it can be seen that the

runtime of the DeNoise module is 0.511408 seconds/frame,

making it the most time-consuming module in single-frame

processing. This is likely because the module requires

complex denoising algorithms, involving image processing,

filtering, and other operations, which results in a longer

runtime.

Internal time-consuming parts of the module: The data

shows that the Gaussian blur part of the DeNoise module

takes up a large portion of its total runtime (about 63.21%).

This indicates that the Gaussian blur operation in the

DeNoise module is a time-consuming step that requires

special attention and optimization.

Parameter update module: It can also be observed that the

runtime of the parameter update modules (DeShading,

DeFPN s32, DeStrip2, DeNU s32) is relatively short, but still

occupies a certain proportion of the total time. These modules

http://www.ijerm.com/

Design and Implementation of FPGA-Based Real-Time Image Denoising Accelerator

 4 www.ijerm.com

often require parameter updates based on different input

conditions and environments, which may necessitate more

frequent calculations and adjustments

Table 1 O2 optimized runtime is not enabled on ZYNQ

Module Name Runtime Image Update Method

Denoising Time
without Parameter

Update

0.691538 per frame

DeNoise 0.511408 per frame

Gaussian blur in

DeNoise
0.323404 per frame

DeShading (parameter

update)
0.073489 Half the frame rate

DeFPN s32 (parameter

update)
0.068231 Half the frame rate

DeStrip2 (parameter
update)

9.077074 Half the frame rate

DeNU s32 (parameter
update)

1.260932 Frame rate one-fifth

B. The DeNoise module accelerates analysis and

implementation

The DeNoise module has the longest runtime, occupying

the majority of the total runtime (about 74.02%), indicating

that the DeNoise module takes up a significant portion of the

system's performance consumption. Implementing the

DeNoise module can increase the system's frame rate by

three to four times.

It is necessary to analyze the data dependencies and

memory access patterns in the algorithm. The algorithm

involves multiple matrix operations and data copying. In

FPGA design, data copying can directly move the data. The

data flow is quite complex, involving multiple matrix

calculations. The data required later is temporarily stored in

FIFO, and the subsequent data is processed using

computation to ensure efficient data flow and storage. The

entire module can be pipelined for hardware acceleration.

The estimated data throughput design is expected to reach

200 MHz, with one pixel of data (1 ppc) processed per cycle.

The image size is 640×512, requiring a total of 327,040

cycles to complete the computation, with a calculation delay

of several thousand clock cycles. Considering the data

transmission delay, the total computation time will not

exceed 2ms, achieving a good acceleration ratio.

Using the PS, the XAxiDma_SimpleTransfer function

configures the source address, destination address, and

transfer length registers to transfer data from DDR to the PL

side for the DeNoise module to compute. DMA configuration

commands and DeNoise configuration commands are passed

through the AXI interconnect module to the AXI_DMA

module and the DeNoise module, respectively.

Once the DeNoise module receives the control data, it

begins waiting for data to be transferred from the PS-side

DDR via the DMA's M_AXIS_MM2S port. The results

obtained by DeNoise are transferred to the S_AXIS_S2MM

module, and the DMA transfers the data back to the PS-side

DDR, allowing the CPU to perform other computations.

C. Gaussian fuzzy acceleration analysis and

implementation

The time test shows that the Gaussian blur occupies

46.76% of the total runtime without parameter updates. After

FPGA acceleration, the frame rate can be roughly improved

by less than half. Therefore, the first step is to accelerate the

Gaussian blur module. The Gaussian blur consists of three

parts:

(1) Gaussian function computation: The input parameters

are fixed, so the results are always the same. Therefore,

preprocessing can be performed to obtain the data, avoiding

the need for real-time computation during the acceleration

process.

(2) Row-column separated convolution for acceleration:

To speed up the Gaussian blur computation, a row-column

separation convolution method is used to reduce the

computational load. In the row convolution, padding is

applied first, and in FPGA, this can be achieved by changing

the data path.

(3) Subsequent multiply-accumulate operations: These

operations can be parallelized and pipelined in FPGA for

acceleration. The row-column convolution can be reused in

the hardware-accelerated code.

The algorithm contains multiple Gaussian blur modules,

with differences in the image sizes they accept, the

configurable kernel size (ksize), and the corresponding

Gaussian weight matrix used for calculation. The rest of the

data flow remains mostly the same. Therefore, using

SpinalHDL to implement the Gaussian blur requires support

for different ksize configurations. Different ksize values lead

to different padding, mirrored padding data flows, different

weights, and a varying number of multiply-accumulate

operations. While describing this in Verilog may be difficult,

SpinalHDL allows for recursive functions, describing

addition trees, separating the code from the logic, and

configuring different data flows. The data flow architecture

for the hardware-accelerated Gaussian blur implementation is

shown in Figure 7.

Fig.7 Gaussian fuzzy hardware accelerates the

implementation of data flow architecture

D. Multi-core computing and algorithm optimization

To accelerate the parameter update time, the approach is to

offload all non-parameter updates to be computed in the

FPGA. Two CPU cores are reserved for parameter updates.

Non-parameter update denoising acceleration: Data is

passed through the interface and then shifted left on the PL

side to calculate the average value. The data is then stored in

DDR, and an interrupt is triggered to the main core. The main

core configures the DMA register to move the data and

compute the DeNoise module. A weight loading module

needs to be implemented, while the remaining tasks such as

averaging, left shifting, and subtraction involve very little

workload.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-12, Issue-03, March 2025

 5 www.ijerm.com

Fig.8 Multi-core computational flowchart

Figure 8 is the multi-core computing flowchart. The input

image is transmitted through the Ethernet interface and stored

in the FPGA's DDR memory. The main core and slave core

inside the FPGA exchange data via an internal bus. The main

core is mainly responsible for accelerating the DeNoise

(denoising) module, while the slave core is responsible for

accelerating the parameter update module. These two cores

work in parallel without interference. The processed image

data is then stored back in the DDR memory and sent through

the Ethernet interface to the display interface for

presentation.

CPU0 core: handles DeShading, DeFPN, updateSigmaN,

and DeNU s32. Among these, DeNU s32 has a higher update

frequency and is a computational bottleneck, requiring

acceleration on the FPGA. The Gaussian blur for the DeNU

module has a ksize of 17, and using Int64 bits is significantly

faster than previous accelerations. The Gaussian blur can be

modified, and operations such as sub and abs have already

been implemented and can be directly invoked and pipelined.

CPU1 core: handles DeStrip2 acceleration. The loop of 9

iterations occupies 98% of the computation, so the focus is

mainly on optimizing the loop. For loop unrolling

optimization, after the calculation, the matGetMedCol and

matGetMedRow are optimized to avoid expanding the matrix

size, resulting in 640 and 512 numbers, respectively. By

using these 1000 numbers to optimize the Avg computation

time, the computational load can be reduced. The add and sub

operations total 1000 numbers, which are sent to the FPGA to

restore the matrix size. The Add and Sub operations are then

integrated into the Strip process for pipelined computation in

the FPGA.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. FPGA resource usage analysis

In FPGA hardware design, effectively utilizing resources

is one of the most crucial factors. Table 2 summarizes the

resource usage in the FPGA.

Table 2 FPGA resource usage

Resource Utilization Available Utiliaztion%

LUT 61894 87840 70.46

LUTRAM 19988 57600 34.70
FF 67823 175680 38.61

BRAM 126 128 98.44

URAM 3 48 6.25
DSP 124 728 17.03

IO 10 252 3.97
BUFG 6 352 1.70

MMCM 2 4 50.00

The most used resource is BRAM, which is used to store

temporary data, parameters, and intermediate results during

the image processing process. It can be used to store

calibration coefficients, weight matrices, historical frame

data, etc., in the calibration algorithm. These data typically

need to be frequently read and written between image frames

or during algorithm iterations. The usage rate reaches 98.44%.

The next most used resource is LUT, which is primarily used

to store and process the mapping relationship between pixel

values and calibration coefficients. In the NUC algorithm,

each pixel may have different calibration requirements,

which are typically represented by calibration coefficients.

LUT maps the original pixel values (such as grayscale values)

to the corresponding calibration coefficients for pixel-level

non-uniformity correction. The usage rate reaches 70.46%.

B. Calculate time analysis

For real-time images, computation time is an important

performance metric. For a 640×512 size image, the original

NUC algorithm achieves 2-3 frames per second, and with

hardware running at 200 MHz, after FPGA acceleration, it

can reach 66 fps. For a 1280×1024 size image, it can reach 30

fps after acceleration; for a 640×640 size image, it can reach

50 fps. Moreover, after FPGA acceleration, the denoising

effect of the NUC algorithm remains the same.

The running time of the DeNoise module is about

0.000211s after acceleration. The running time of the DeNU

module is about 0.039269s after acceleration. The running

time of the DeStrip module, where the histogram and median

calculation are run on the CPU, is about 40ms + 3 FPGA

offload pipeline calculation times, approximately 43ms after

FPGA acceleration. The histogram calculation can be

completed in about 20ms + 3 FPGA offload pipeline

calculation times (the pipeline calculation takes

approximately 640×512 clock cycles).

Compared to typical hardware platforms like ARM, DSP,

and ASIC, using FPGA for hardware acceleration offers

excellent customizability, flexibility, and a short

development cycle. ARM processors have a fixed

architecture and instruction set, making it difficult to

reconfigure hardware functions as needed, limiting flexibility

in optimizing specific algorithms (such as the NUC

algorithm). DSP designs are mainly used for digital signal

processing, and their hardware structure is relatively fixed,

making it hard to adapt flexibly to changes and optimization

requirements of different algorithms. The design and

manufacturing cycle of ASIC is long, making it unsuitable

for applications in the rapid iteration and experimental

development stages. In the early optimization phase of the

NUC algorithm, such a long cycle would limit the rapid

iteration and verification of the algorithm.

VI. CONCLUSION

This paper presents a parameter-update-based NUC

algorithm that can dynamically adjust parameters based on

the sensor's performance under different operating conditions.

This capability allows the system to maintain high-quality

imaging despite changes in time and environment. When

performing non-uniformity noise removal, the algorithm uses

fixed-point arithmetic exclusively. To ensure calculation

precision, some variables undergo a process of amplification

http://www.ijerm.com/

Design and Implementation of FPGA-Based Real-Time Image Denoising Accelerator

 6 www.ijerm.com

followed by reduction, and shift operations are employed for

data scaling to guarantee efficiency. Additionally, a hardware

design method for this algorithm based on FPGA

implementation is proposed, realized on the Xilinx

XCZU4EV-1SFVC784I. Experimental results show that it

outperforms the original NUC algorithm, achieving 66 fps for

a 640×512 image at a 200 MHz clock frequency, with a

latency (including data input and output time) of under 40 ms.

REFERENCES

[1] Jiang H, Zhang X, Xu C, et al. A response function expansion method

for cooled IRFPA with multiple neutral density filters under a variable
integration time[J]. Infrared Physics & Technology, 2023, 133: 10486

0.
[2] Gong Y, Yu X, Ding Y, et al. Effective fusion factor in FPN for tiny

object detection[C]//Proceedings of the IEEE/CVF winter conference

on applications of computer vision. 2021: 1160-1168.
[3] Wang X, Song P, Zhang W, et al. A systematic non-uniformity correct

ion method for correlation-based ToF imaging[J]. Optics Express, 202

2, 30(2): 1907-1924.

[4] Cong J, Lau J, Liu G, et al. FPGA HLS today: successes, challenges, a

nd opportunities[J]. ACM Transactions on Reconfigurable Technology
 and Systems (TRETS), 2022, 15(4): 1-42.

[5] Chang Y, Zhou C, Hong Y, et al. 1000 fps hdr video with a spike-rgb
hybrid camera[C]//Proceedings of the IEEE/CVF Conference on Comp

uter Vision and Pattern Recognition. 2023: 22180-22190.

[6] Shenghui R , Huixin Z , Zhigang W ,et al.An improved non-uniformit
y correction algorithm and its hardware implementation on FPGA[J].I

nfrared Physics & Technology, 2017:S135044951630696X.DOI:10.10
16/j.infrared.2017.07.007.

[7] Celedon N, Redlich R, Figueroa M. FPGA-based neural network for

nonuniformity correction on infrared focal plane arrays[C]//2012 15th
Euromicro Conference on Digital System Design. IEEE, 2012:

193-200.
[8] Contreras J, Redlich R, Figueroa M, et al. A hardware Kalman-based

offset estimator for nonuniformity correction on IRFPA[C]//Electro-O

ptical and Infrared Systems: Technology and Applications IX. SPIE, 2
012, 8541: 247-256.

[9] Zou L, Fu Z, Zhao Y Z, et al. A pipelined architecture for real time

correction of non-uniformity in infrared focal plane arrays imaging

system using multiprocessors[J]. Infrared physics & technology, 2010,

53(4): 254-266.
[10] Lielāmurs E, Cvetkovs A, Novickis R, et al. Infrared Image Pre-Proce

ssing and IR/RGB Registration with FPGA Implementation[J]. Electro
nics, 2023, 12(4): 882.

[11] Liu Q, Wang H, Bian H, et al. Dual Mode High Speed Uncooled Short

 Wave Infrared Camera Based on FPGA[C]//Journal of Physics: Confe
rence Series. IOP Publishing, 2021, 1952(3): 032042.

[12] Sheng Y, Yun L, Shi J, et al. Design of the cooled IRFPA real-time no
n-uniformity correction system based on FPGA[C]//2011 International

 Conference on Optical Instruments and Technology: Optical Systems

and Modern Optoelectronic Instruments. SPIE, 2011, 8197: 109-116.
[13] Setiadi D R I M. PSNR vs SSIM: imperceptibility quality assessment

for image steganography[J]. Multimedia Tools and Applications, 2021,
80(6): 8423-8444.

[14] Amuru D, Zahra A, Vudumula H V, et al. AI/ML algorithms and

applications in VLSI design and technology[J]. Integration, 2023, 93:
102048.

[15] Abud A A, Abi B, Acciarri R, et al. Design, construction and operatio
n of the ProtoDUNE-SP Liquid Argon TPC[J]. Journal of Instrumentat

ion, 2022, 17(01): P01005.

http://www.ijerm.com/

	I. INTRODUCTION
	II. Related Work
	III. NUC algorithm based on parameter updates
	A. The design idea of the algorithm
	B. The overall process of the algorithm.
	C. Overall performance and analysis of the algorithm

	IV. FPGA-based hardware design
	A. Runtime analysis
	B. The DeNoise module accelerates analysis and implementation
	C. Gaussian fuzzy acceleration analysis and implementation
	D. Multi-core computing and algorithm optimization

	V. Experimental results and analysis
	A. FPGA resource usage analysis
	B. Calculate time analysis

	VI. Conclusion
	References

