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Abstract—Pansharpening is the fusion of panchromatic 

(PAN) image with multispectral (MS) image to obtain high 

spatial resolution multispectral (HRMS) image. Due to the 

limitations of convolution operations and the diversity of 

remote sensing image features, multi-scale remote sensing 

pan-sharpening methods cannot effectively establish the 

connection between features at different scales. In order to 

establish the connection between different features, we use 

the "memory" mechanism of GRU and introduce it into the 

task of Pansharpening of remote sensing image, Establish 

connections between features of different scales and features 

at different levels, eliminate unnecessary noise and 

information redundancy in the process of feature extraction, 

while retaining important information. Specifically, we 

proposed a progressive fusion block, in which we proposed a 

Multi-Scale Memory Interaction Fusion Block and an 

Adaptive Feature Fusion Block. The former fully extracts 

features of different scales and establishes the connection 

between features of different scales, and then The shallow 

features are fused in a progressive manner to extract features 

of different depths, while establishing connections between 

features of different depths. Finally, the Adaptive Feature 

Fusion Block is used to adaptively fuse the shallow features 

and deep features to generate a sharpened HRMS. Extensive 

experiments prove that our proposed method is superior to 

existing state-of-the-art Pansharpening methods. 

 

Index Terms—Pansharpening, remote sensing image 

fusion,ConvGRU. 

 

INTRODUCTION 

  With the rapid increase in the amount of satellite 

data, remote sensing technology has advanced by leaps 

and bounds, promoting progress in many fields such as 

agriculture and environmental protection [1,2]. Due to the 

satellite's powerful ground measurement capabilitiy, the 

remote sensing images captured by its sensors contain rich 

ground information. Low-resolution multispectral 

(LRMS) image and panchromatic (PAN) image are two 

common satellite data. The former has high spectral 

resolution but low spatial resolution [3], while the latter 

has low spectral resolution but high spatial resolution [4]. 

Unfortunately, the lack of high-resolution multispectral 

(HRMS) images affects the application of remote sensing 

image in the above fields. In this context, pan-sharpening 

technology emerged [5-7], which aims to fuse 

high-resolution panchromatic (HRPAN) and 

low-resolution multispectral (LRMS) image to produce 
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HRMS image. Based on real-life requirements. In recent 

years, leveraging Pansharpening techniques for the fusion 

of remote sensing image has become a prominent focus of 

research. 

A large number of remote sensing image 

Pansharpening methods have been proposed. They can be 

divided into four groups: (1) Methods based on component 

substitution (CS), This kind of method employs the 

tailored transformation to transfer MS and PAN image into 

a new domain, and then replaces the specific component of 

MS image with the spatial information of PAN image to 

achieve texture enhancement. Representative methods 

include the hue-intensity-saturation(HIS) [8] and principal 

component analysis(PCA）[9][10].(2) Methods based on 

multiresolution analysis (MRA), Including wavelet 

transforms (WT)s) [11], smoothing filter intensity 

modulation (SFIM) [12], modulation transfer function 

with generalized Laplacian pyramid, MTF-GLP) [13], and 

MTF-GLP with high-pass modulation (MTF-GLP-HPM) 

[14].(3) Methods based on variational optimization (VO), 

These methods use known prior information to construct 

regular terms to reasonably constrain the model, and 

obtains the final panchromatic sharpening result through 

efficient solving algorithms. Representative methods 

include pan-sharpening models based on sparse prior 

construction regular terms [15], non-local similarity based 

on image [16] and pan-sharpening methods (TV) based on 

total variation models [17]. (4) Methods based on deep 

learning (DL). In the past few years, deep learning has 

become the focus of attention due to the powerful 

nonlinear modeling and feature extraction capabilities of 

neural networks. Deep neural networks have been 

successfully used in target detection [18] and behavior 

recognition [19] , super-resolution [20] and other fields. 

When dealing with the issue of pan-sharpening in remote 

sensing image, deep learning techniques exhibit distinct 

advantages.  This approach does not require prior manual 

knowledge and allows for end-to-end training using 

existing low-resolution multispectral (LRMS) and 

panchromatic (PAN) image, learning their mapping 

relationships in high-resolution multispectral (HRMS) 

image.  

Inspired by image super-resolution network 

(SRCNN) [21]，Masi et al. [22] proposed a simple 

three-layer convolutional network structure (PCNN), 

which achieved greater performance improvement 

compared with traditional methods. Subsequently, Yang et 

al. [23] proposed a general pan-sharpening framework 

(PanNet), which leverages domain knowledge to propose 

two main goals of pan-sharpening: preserving spectral and 
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spatial information. It introduces high-pass filtering and 

spectrum mapping based on residual networks [24], which 

makes PanNet better transferable between different 

satellites by training on the high-pass domain. In addition, 

PSGAN [25] applies Generative Adversarial Network 

(GAN) [26] to Pansharpening of remote sensing image for 

the first time. This method enables the two networks to 

form a dynamic "game process", which can greatly 

improve the quality of the fused image, making PSGAN 

one of the most effective neural networks. Xu et al. [27] 

proposed a model-based deep learning pan-sharpening 

method (GPPNN), which applies prior knowledge to 

optimize the generation model of PAN and LRMS 

images,This is the first model-driven neural network 

pan-sharpening method in remote sensing. Fu et al. [28] 

proposed a new convolutional neural network-based 

method using dilated convolution (DMDNet) for 

panchromatic sharpening by combining deep learning 

techniques with domain-specific knowledge. Deng et al. 

[29] proposed a new deep convolutional fusion network 

(FusionNet) based on the traditional CS and MRA 

framework, absorbing the advantages of simple structure 

and fewer network parameters of traditional methods. 

Inspired by the back-projection (BP) mechanism, Zhang et 

al. [30] proposed a BP-driven model, spatial-spectral 

double back-projection network (S2DBPN), to fuse low 

spatial resolution multispectral (LRMS) image and high 

spatial resolution Resolution Panchromatic(PAN) Image, 

which utilizes reflection projection in the spatial and 

spectral domains to generate image. 

In remote sensing images, different objects usually 

present diverse colors, textures, and shapes, and their 

distribution in the image is also different.  Some of the 

above methods [23], [24], [27] and other methods use 

fixed convolution kernel designs, which limits the ability 

to extract different features and cannot effectively extract 

features of objects of different sizes. Some methods use 

dilated convolution [28] and multi-scale convolution [31] 

to effectively extract features of objects of different sizes, 

but they fail to effectively establish the connection 

between features of different scales and lack attention to 

global information. In recent years, vision transformers 

(ViTs) [32] have achieved excellent performance in 

machine vision tasks. It uses a self-attention mechanism to 

capture global and local features in image, and can better 

handle long-range dependencies in image, but Vit requires 

a large amount of computing resources and training data to 

train the model, so it requires longer training time and 

higher cost. In order to solve the above problems, we 

introduce the convolution gate recurrent unit (ConvGRU), 

which is a variant of GRU (the specific structure is 

introduced in Ⅱ.B). GRU is a special type of RNN.  It has 

a reset gate and an update gate, which can better capture 

and propagate important information in the sequence.  It is 

often used for time series data prediction and recognition 

tasks [33, 34].  Specifically, we designed a multi-scale 

memory interactive fusion block, which uses ConvGRU to 

establish connections between features at different scales, 

eliminate unnecessary noise and redundant information in 

the process of selecting local features, and at the same time 

establish long-range dependencies in image. 

Deep features focus on semantic information, while 

shallow features focus on detail information [35].  

Semantic information is beneficial to the recovery of edge 

information of objects in image [36], and shallow features 

are beneficial to the recovery of texture information of 

objects in image.  As the depth of deep neural network 

increases, the network will pay more attention to the 

semantic information in the image, but this will bring 

about the problem of Gradient Vanishing. The difference 

from [30] is that we do not use residual density to solve the 

Gradient Vanishing problem, and use the "memory" 

mechanism of GRU to selectively select available 

information from different depth features and update it in 

the hidden state features to pass it to the next One layer, 

while filtering useless information and forgetting it. 

Compared with [30], we use this method to effectively 

reduce the transmission of useless information, which is 

beneficial to the training and optimization of the network. 

In order to make full use of the detail information in 

shallow features and the semantic information in deep 

features, we designed an adaptive feature fusion block that 

can adaptively associate shallow features and deep 

features. By aggregating image features at different 

depths, we can model the correlation between shallow and 

deep features, thereby enhancing the network's ability to 

reconstruct the target image. 

In general, the main contributions of this article can 

be divided into the following three points: 

(1)A Pansharpening network (MFMIF-Net) based on 

multi-scale feature memory interactive fusion is proposed.  

It can establish the connection between different scale 

features and different depth features, fully interact 

between different features, and can achieve excellent 

results to complete the Pansharpening task.  Extensive 

experiments on three datasets demonstrate the superior 

performance of the proposed MFMIF-Net. 

(2)We introduced ConvGRU into the pansharpening 

task, and proposed Multi-Scale Memory Interaction 

Fusion Block (MMIFB) and Progressive Feature Fusion 

Block (PFFB) with the help of GRU's "memory" 

mechanism. The former establishes the connection 

between features at different scales. The latter establishes 

connections between features of different depths. 

(3)We proposed an Adaptive Feature Fusion Block 

that can adaptively associate shallow features and deep 

features, and fully utilize the detail information of shallow 

features and the semantic information of deep features to 

reconstruct the target image. 

RELATED WORK  

A.Deep-Learning-Based Pansharpening Methods 

With the development of deep learning technology, 

various multispectral panchromatic sharpening methods 

based on deep learning have been proposed. CNN-based 

pan-sharpening (PNN) [22] is the first work to apply CNN 

to remote sensing pan-sharpening, which uses three 

convolutional layers to fuse PAN and LR-MS image. In 

[23], [43], and [44], global residual connections were 
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utilized to simplify HRMS regression by solely learning 

the residual parts. The Multiscale and Multidepth 

Convolutional Neural Network (MSDCNN) [45] 

attempted to aggregate multiscale features by employing 

multiple convolutional layers with different kernel 

configurations. Due to the characteristics of remote 

sensing images, different objects typically exhibit diverse 

colors, textures, and shapes, and they also vary in 

distribution within the images [46]. The aforementioned 

methods failed to establish connections between different 

features, inadequately considering the similarity between 

different features and the differences among identical 

features. Therefore, we consider establishing connections 

between different features to facilitate interactions among 

them, adequately considering both the similarities between 

different features and the differences among identical 

features, thereby enhancing the performance of 

pansharpening tasks. 

B. CONVGRU 

GRU [39] is a variant similar to LSTM. It also 

handles long-term dependencies by introducing a gating 

mechanism. It is often used in time series data prediction 

and identification tasks [33, 34]. Compared with LSTM, 

GRU has a more structured structure. For simplicity, GRU 

has fewer parameters and can achieve the same 

performance as LSTM. The original LSTM and GRU are 

mainly used to process one-dimensional sequence data.  

Due to their superior performance in processing time 

series, data prediction and other tasks, many researchers 

consider introducing them into computer vision tasks.  In 

[40], shi et al. proposed a method for precipitation 

nowcasting  method that introduced LSTM into 

computational vision tasks for the first time.  In this 

method, shi et al. proposed convLSTM to process radar 

wave signals to achieve accurate precipitation nowcasting. 

Thanks to the excellent performance of convLSTM, many 

researchers have proposed various variants of GRU to 

handle specific computer vision tasks. In [41] Yuan et al. 

proposed an attention convolution GRU module 

(AttConvGRU) to learn the spatial correlation and 

long-range context dependence information of smoke, and 

achieved satisfactory results on the smoke segmentation 

task.  In order to enable GRU to handle 2D features, Yuan 

et al. in [41] replaced the fully connected layer of the 

original GRU [39] with two-dimensional convolution, 

while using an attention mechanism to guide the current 

state. In order to make full use of shallow features, Wang 

et al. proposed a multi-scale convGRU module in [42] to 

combine feature details between different levels, and can 

also implement feature selection to retain more useful 

information. Inspired by the above work, we use the 

"memory" mechanism of GRU and introduce it into the 

task of Pansharpening of remote sensing image, 

establishing connections between features of different 

scales and features at different levels, and eliminating 

unnecessary noise in the process of feature  

extraction and information redundancy while retaining 

important information. The convGRU structure we use is 

shown in Fig 1. Referring to the GRU formula in [39], 

similar to [41], we use 3*3 convolution to replace the 

original fully connected layer. Xt-1 is the input of the 

current ConvGRU, Ht−1 is the hidden layer state and the 
output of the previous ConvGRU, Ht is the hidden layer 

state and the output of the current ConvGRU. The yellow 

sigmoid function simulates the reset gate in the original 

GRU, and the blue sigmoid function simulates the update 

gate in the original GRU. 

 

Fig.1 The structure of ConvGRU 

PROPOSED METHOD 

A．Overall Framework 

The overall framework of our proposed MFMIF-Net is 

illustrated in Fig. 2(a). As we can see, MFMIF-Net 

completes the pan-sharpening process of remote sensing 

images in two stages. The processes of the two stages are 

similar, and we will illustrate using the first stage as an 

example. Initially, the original PAN image undergoes 

downsampling through the Down-Block, obtaining 

PAN↓2 with half the spatial resolution of the original PAN 
image. Similarly, the original LRMS image undergoes 

upsampling through the UP-Block, obtaining LRMS↑2 
with twice the spatial resolution of the original LRMS 

image. Subsequently, PAN↓2 and LRMS↑2 are fed into 
the Progressive Feature Fusion Block (PFFB) to generate 

HRMS↑2 with twice the spatial resolution of the original 
LRMS. In the PFFB, we utilize the Multi-Scale Memory 

Interaction Fusion Block (MMIFB) to extract and interact 

different scale features to achieve more refined feature 

selection. We employ the [38] Dual Attention Unit (DAU) 

to suppress the transmission of irrelevant information in 

various features and enhance the further transmission of 

important features. Simultaneously, to preserve and 

propagate features of different depths, we utilize 

ConvGRU to retain features of different depths and 

propagate them to deeper levels. To avoid the issues of 

gradient vanishing and feature loss with the increase in 

network depth, we divide the process into multiple stages 

(subsequent experiments prove to set it as 3, detailed 

structure will be introduced in Ⅲ.B) and progressively 
fuse features from the DUA branch, MMIFB branch, and 

ConvGRU branch. Finally, shallow features and 

progressively fused features are input into the Adaptive 

Feature Fusion Block (AFFB) to generate HRMS. The 
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aforementioned process can be represented by the 

following formula: 

2 (PFFBHRMS F PAN=↑ ↓2+LRMS↑2)  

(PFFBHRMS F PAN= +( HRMS↑2)↑2)  

PFFBF
representing the operation of the Progressive 

Feature Fusion Block. HRMS stands for the image after 

pan-sharpening. 

B. Progressive Feature Fusion Block 

In deep neural networks, shallow features pay more 

attention to the detailed information in the image, while 

deep features focus more on the semantic information  

 

Fig2  The architecture of MFMIF-NET 

[35]. Semantic information is advantageous for more 

accurate image restoration and edge recovery [36,37]. 

However, as the depth of neural networks increases, 

although performance can be improved, shallow 

information is also lost. Although networks using dense 

connection structures can solve this problem, they also 

come with a significant increase in computational 

complexity, which adversely affects training. To address 

these issues, we propose a novel Progressive Feature 

Fusion Block (PFFB). This module consists of a 

Multi-Scale Memory Interaction Fusion Block (MMIFB), 

an Adaptive Feature Fusion Block (AFFB), a Dual 

Attention Unit (DAU) [38], and a series of concatenated 

ConvGRUs. 

To fully utilize shallow and deep features in the 

Adaptive Feature Fusion Block, we employ a dual-branch 

structure to extract these shallow and deep features. To 

suppress the transmission of irrelevant information and 

enhance the further propagation of important features, we 

use the Dual Attention Unit (DAU) from [38], which 

simultaneously employs channel attention [47] and spatial 

attention [48] to enhance features. Inspired by [49], we 

believe that channel attention focuses more on spectral 

information, while spatial attention focuses more on 

spatial information within the features. To fully exploit 

features from different layers, we propose a novel 

progressive fusion structure, as shown in Fig. 2(a). We 

slightly modify the shallow feature extraction structure 

from [35] as our first branch to extract shallow features. In 

the second branch, we use three cascaded ConvGRUs to 

achieve interaction of different deep features, selectively 

choosing usable information from different depths and 

updating it in the hidden state feature to pass to the next 

layer. This way, we can retain shallow information while 

effectively extracting deep semantic information. To avoid 

the problems of gradient vanishing and feature loss as 

network depth increases, we progressively fuse features 

from the DUA branch, MMIFB branch, and ConvGRU 

branch in three stages (as will be explained in subsequent 

experiments). To keep the model complexity wit except 

for the initial input image, is set to 32.hin a reasonable 

level, the channel dimension of all features,  
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Pan↓represents either the down-sampled by a factor of 

two or the original PAN image. LMS represents the LRMS 

image up-sampled by a factor of two， 1H
 represents the 

output result of the first ConvGRU and the subsequent 

hidden state. 1Out
represents the fusion result of the first 

stage. Repeated the above steps three times, we obtained 

the second-stage fusion result 2Out
 and the third-stage 

fusion result 3Out progressively. Finally, the shallow-layer 

feature XS from the first branch and the deep-layer feature 

3Out
 from the second branch are fed into the Adaptive 

Feature Fusion Block to generate HRMS. 
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C. Multi-Scale Memory Interaction Fusion Block 

Deep learning methods have achieved good 

performance in image processing, but often use fixed 

convolution kernel designs, which limits the ability to 

capture different feature representations.  In remote 

sensing images, different objects usually present diverse 

colors, textures, and shapes, and their distribution in the 

image is also different [46]. By using small-size 

convolution kernels, we can obtain more detailed object 

features, while large-size convolution kernels help obtain 

more global information [35]. However, the current 

multi-scale remote sensing pan-sharpening method has a 

problem, that is, it fails to fully establish the connection 

between features at different scales and ignores the 

differences between features of the same type and the 

similarities between different features. In order to solve 

the above problems, we propose an innovative multi-scale 

memory interactive fusion module. This module 

simultaneously captures the features of two remote 

sensing images under different receptive fields and uses 

convolution gated recurrent unit (GRU) convolution to 

establish the connection between features at different 

scales.  In this way, we can effectively eliminate 

unnecessary noise and redundant information while 

extracting features of different scales. This design aims to 

better mine the details and global information of objects in 

remote sensing images, making the model more accurate 

when processing different scale features of the same 

object. 

Our proposed Multi-Scale Memory Interaction 

Fusion Block is shown in Fig. 2(b). Inspired by [40, 41, 

42], we utilize the "memory" mechanism of GRU and 

introduce ConvGRU to establish connections between 

features of different scales, eliminating unnecessary noise 

and information redundancy in the process of feature 

extraction, while retaining important Information. As 

shown in Figure 2(b), four convolution operations with 

different convolution kernel sizes are used to extract the 

features of the input features at different scales. This 

operation fully considers the response of different scale 

features to convolution kernels of different sizes. Some 

previous methods did not fully consider the connection 

between features at different scales and ignored the 

differences between the same objects and the similarities 

between different objects.For this reason, we use 

convGRU to establish connections between features at 

different scales and fully extract the same 

features.Difference information between objects and 

similar information between different objects to achieve 

more refined feature selection, while making up for the 

lack of global information modeling capabilities of 

convolution operations.The difference from [41, 42] is that 

we use feature sequences extracted at different scales to 

replace the temporal data sequence of the original GRU as 

the input before the convGRU module, and pass the 

information processed by ConvGRU as a hidden state to 

the next layer(The initial hidden state is assigned all 0 

values). 

D.Adaptive Feature Fusion Block 

In deep neural networks, [35] deep features contain 

rich semantic information, and shallow features contain 

rich detailed information.Deep features are extracted from 

shallow features, and there is a certain relationship 

between them. How to adaptively associate shallow 

features and deep features and make full use of both 

features to reconstruct the target image.The adaptive 

feature fusion module adaptively selects important 

features based on the characteristics of different features 

themselves, retaining both detailed information in shallow 

features and semantic information in deep features. As 

shown in Fig 2(c), in the adaptive feature fusion module, 

the use of global average  

pooling (GAP) allows features of different depths to be 

calculated in the same dimension.The correlation matrix is 

then calculated through matrix multiplication, which 

captures the relationship between deep and shallow 

features. We use Xd and Xs to represent deep features 

containing semantic information and shallow features 

containing rich detailed information respectively.The 

feature maps of Xd and Xs can be expressed as 
dv   and 

sv  RC respectively.The calculation process of feature 

mapping is as follows: 

Re ( ( ))d dlu G P XAv =
 

Re ( ( ))s slu G P XAv =
 

The correlation matrix M between Xd and Xs can be 

expressed as: 

T

d sM v v=
 

Then add the correlation matrices by rows and columns 

to get two one-dimensional correlation vectors 
'

dv  and 

'

sv . The element values in 
'

dv represent the correlation 

between deep features and all shallow features in each 

channel dimension. Similarly, the element values in 
'

sv  

represent the correlation between shallow features and all 

deep features in each channel dimension. In order to retain 

the original features while adaptively enhancing the 

features, we use two learnable weight coefficients  1g and 

2g add the correlation vectors 
'

dv and 
'

sv to dv and sv to 

obtain the enhanced feature map.  Then the enhanced deep 

features and shallow features are obtained through the 

following operations: 

'

1( * )d d ddR v g v X= +
 

'

2( * )s ss sR v g v X= +
 

dR  and sR  are enhanced deep features and shallow 

features respectively.  represents the Hadamard 

product. Finally, the calculation process of fusing features 

to obtain the target image is as follows: 
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(Re ( (Re ( ( ( )))))),d sHRMS conv lu conv lu conv cat R R=
 E.Loss Function 

Because our network completes the remote sensing 

image pan-sharpening task in two stages, the total loss 

function is defined as follows: 

2 2

1

|| || || 2 2 | |
K

k

L HRMS GT HRMS GT
=

= − + − λ ↑ ↓  

where GT represents the ground truth reference 

image, and represents the down-sampled reference image 

by a factor of two. and the total number of training images 

is K,λ is 4。we consider the L2 loss for training, which is 

implemented on the PyTorch framework and NVIDIA 

GeForce RTX A6000 GPU. The number of epochs is set to 

1500, and the batch size is 32. Moreover, we use the Adam 

optimizer with a learning rate of 0.0002. The parameters in 

the optimizer, beta1 and beta2, are set as values of 0.9 and 

0.999, respectively. 

Ⅳ EXPERIMENTAL RESULTS 

In this section, the performance of the proposed 

MFMIF-Net is assessed on datasets from the GaoFen-2 

,WorldView-3 and Quickbird satellites[57]. To compare, 

we employ state-of-the-art methods, including both 

traditional approaches and （Deep Neural Network）

DNN-based methods.The former methods are variational 

optimization-based VO-TV[50], the generalized Laplacian 

pyramid with MTF-matched filters with an FS 

regression-based injectionmodel (MTF-GLP-FS)[51], the 

generalized Laplacian pyramid with MTF-matched filters 

and a high-pass modulation injection model with a 

preliminary regression-based spectral matching phase 

(MTF-GLP-HPM-R) [52], the band-dependent spatial 

detail with physical constraints (BDSD-PC) [53].The five 

DNN-based methods are CNN-based PanNet[23], 

FusionNet[29], ADKNet[54], BiMPAN [55] and 

PSCF-NET[56]. To ensure the fairness of comparisons, 

we train all the DNN-based methods using the same 

PyTorch framework and NVIDIA GeForce RTX A6000 

GPU.According to their performance on the validation 

dataset, the best model is selected for testing. 

A.Experimental Settings 

Datasets:To demonstrate the effectiveness of our 

MFMIF-Net, we conduct experiments using datasets from 

the GaoFen-2[57], the spatial resolutions of PAN images 

in GaoFen-2 is 0.8m. its corresponding MS images is 3.2. 

Moreover, the MS image from the GaoFen-2 satellite 

consists of four spectral bands, including red, green, blue, 

and near infrared. 

Evaluation Metrics:To quantitatively assess the 

rationality and superiority of the proposed method, we 

introduce several reduced-resolution evaluation metrics 

and  full-resolution evaluation metrics in our experiment. 

For the reduced resolution, the evaluation metrics the 

spatial correlation coefficient (SCC)[58], the spectral 

angle mapper (SAM)[59], the relative dimension less 

global error in synthesis (ERGAS)[60], relative average 

spectral error (RASE)[61], the structural similarity 

index(SSIM)[62], the peak signal-to-noise ratio 

(PSNR).SSIM and SCC are more effective in measuring 

the spatial similarity of the results while SAM focuses on 

distinguishing the spectral differences, PSNR and ERGAS 

refer to spectral and spatial errors to evaluate the model 

performance. RMSE is a pixel level reflection of the 

difference between the fusion results and the reference 

image. 

For the full-resolution experiments, we use three of 

the more popular metrics to evaluate the performance of 

the model on real images, including the no-reference 

evaluation metric quality without reference(QNR), the 

spectral distortion(𝐷𝜆), the spatial distortion index(𝐷𝑠). 
QNR it combines spectral distortion and spatial distortion. 

QNR includes evaluation metrics Dλ and DS for spectral 
and spatial distortion, respectively. Past studies have 

shown that 𝐷𝜆, 𝐷𝑠 and QNR can roughly reflect the 

panchromatic sharpening performance at full resolution. A 

large QNR indicates better quality, while a small 𝐷𝜆 and 𝐷𝑠 indicate less distortion. 

B.Experiments on Reduced-Resolution Datasets 

In this section, we perform Reduced-Resolution 

experiments on the GaoFen-2 ,WorldView-3 and 

Quickbird datasets. HRMS and GT images are covered in 

this section with a size of 256 × 256 to facilitate visual 

presentation. All metrics are calculated from the average 

of the 20 samples in the test set. 

Fig 3. Visual comparisons on a reduced-resolution GaoFen-2 

dataset.(a)VO-TV.(b) MTF-GLP-FS.(c) MTF-GLP-HPM-R.(d) 

BDSD-PC.(e)PanNet.[f]FusionNet.(g) 

ADKNet.(h)BiMPAN.(i)PSCF-NET[56].(j)OURS.(k)GT 

 As shown in Fig. 3, all these methods show excellent 

fusion performance on the GaoFen-2 dataset, in order to 

better compare the different methods, we use the error map 

to measure the difference between each image and GT, the 

brighter the brightness of the error map indicates that the 

fused image is more different from GT, and the artifacts in 

VO-TV, and the subjective visual maps of MTF-GLP-FS 

and MTF-GLP-HPM-R are blurred.darker the brightness 

of the error map indicates that the fused image is less 

different from GT. In terms of subjective visual maps, 
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traditional methods do not perform very well compared to 

DNN methods, e.g., there are obvious. It is clear from the 

error map that the DNN method has less error compared to 

the traditional method, indicating that the DNN method 

has better fusion accuracy. In DNN methods, it can be seen 

from the partial zoomed-in map of error map (red and 

green boxes in the error map) that the brightness of the 

error map of our proposed method is low, and it can also be 

seen from the partial zoomed-in map of the fused image 

that our proposed method has the closest spatial and 

spectral information to GT, which indicates that our 

proposed method achieves the best performance in terms 

of the subjective effect.  

In Table I all the evaluation metrics of our proposed 

method outperform the other comparative methods, which 

is consistent with the performance of the subjective results, 

especially the PSNR is far more than the other methods. 

Our proposed method has the largest SSIM and SCC 

values and the smallest SAM value, which is indicated that 

our method performs well in spatial and spectral 

information reconstruction. In addition ADKNet, 

BiMPAN and SCF-NET also have better evaluation 

indexes. 

 

TABLE Ⅰ 
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE 

REDUCED-RESOLUTION GAOFEN-2 DATASET 

Methods SCC

↑  

SAM

↓ 

ERGAS

↓ 

RASE

↓ 

SSIM

↑ 

PSNR

↑ 
VO-TV[50] 0.8486 1.9106 1.7371 0.0334 0.7596 29.9405 

MTF_GLP_FS[51] 0.8520 1.6578 1.5994 0.0263 0.8144 31.8641 

MTF_GLP_HPM_R[52] 0.8522 1.6526 1.5986 0.0264 0.8139 31.8395 

BDSD_PC[53] 0.8526 1.6763 1.6505 0.0259 0.8241 31.9999 

PanNet[23] 0.9699 1.1217 1.2001 0.0129 0.9534 38.0035 

FusionNET[29] 0.9797 0.9687 0.9558 0.0104 0.9656 39.9475 

ADKNet[54] 0.9860 0.8506 0.7643 0.0084 0.9751 41.7222 

BiMPAN[55] 0.9853 0.9504 0.8530 0.0092 0.9724 40.8555 

PSCF-NET[56] 0.9900 0.7421 0.6705 0.0072 0.9813 43.0210 

OURS 0.9913 0.7039 0.6214 0.0067 0.9833 43.6364 
 

C.Experiments on Full-Resolution Datasets 

The reduced resolution experiments mainly proved 

the effectiveness of our method on simulated data, and in 

order to verify the effectiveness of our method on real data, 

in this section, we will compare the various methods on the 

real dataset of GaoFen-2, where the size of the PAN image 

is 512×512 and the size of the LRMS is 128×128. Table Ⅱ 

and Fig 4 give the objective evaluation results and visual 

results. In Table IV, the evaluation metrics Dλ and Ds 
clearly show that the DNN-based methods are superior to 

the traditional methods, which indicates that the 

DNN-based methods are able to recover the spatial and 

spectral information of the images better. Our proposed 

method is better than others in both spatial and spectral 

evaluation metrics. In Fig 4, we can clearly see that the 

visual results of the traditional method are worse in the 

recovery of spatial details and spectral information. the 

DNN-based methods outperform the traditional method in 

the recovery of both spatial detail and spectral information. 

Due to the lack of GT in real images, we compare our 

method with recent methods, and we can see that the visual 

results of our proposed method are very close to those of 

BiMPAN and PSCF-NET [56], and even in the recovery of 

spatial detail information our method is better than that of 

PSCF-NET [56].From the partial enlargement section of 

the visual results (green box), we can see that in the Figure 

square part, our method contains more texture information 

than PSCF-NET [56]. Overall, our method still performs 

well on the real dataset. 

TABLE Ⅱ 

QUANTITATIVE METRICS FOR ALL THE 

COMPARISON METHODS ON THE 

FULL-RESOLUTION GaoFen-2 DATASET 

Methods QNR↑ D_λ↓  D_s↓ 

VO-TV[50] 0.8052 0.0144 0.1831 

MTF_GLP_FS[51] 0.8173 0.0139 0.1711 

MTF_GLP_HPM_R[52] 0.8145 0.0142 0.1738 

BDSD_PC[53] 0.8378 0.0154 0.1491 

PanNet[23] 0.9681 0.0187 0.0134 

FusionNET[29] 0.9574 0.0289 0.0141 

ADKNet[54] 0.9688 0.0180 0.0135 

BiMPAN[55] 0.9721 0.0138 0.0142 

PSCF-NET[56] 0.9722 0.0147 0.0132 

OURS 0.9751 0.0123 0.0127 
 

 
Fig 4. Visual comparisons on a full-resolution GaoFen-2 case. 

(a)VO-TV.(b) MTF-GLP-FS.(c) MTF-GLP-HPM-R.(d) 

BDSD-PC.(e)PanNet.[f]FusionNet.(g) ADKNet. 

(h)BiMPAN.(i)PSCF-NET[56].(j)OURS 
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Ⅴ.CONCLUSION 

In this study, we proposed a MFMIF-Net for 

Pansharpening, hich achieves state-of-the-art 

performance, both quantitatively and qualitatively. Our 

proposed method is divided into two stages, first to 

achieve Pansharpening with 2 times the original 

resolution, and then to achieve Pansharpening with 4 times 

the original resolution. Each stage consists  a Progressive 

Feature Fusion Block In this network we propose a 

Multi-Scale Memory Interaction Fusion Block, with the 

help of ConvGRU to interact between different scales 

features, to make full use of different scales features, and 

then fuse the shallow features to extract the different depth 

features in an progressive way, and at the same time to 

establish the connection between the different depth 

features. finally to use the Adaptive Feature Fusion Block 

to adaptively fuse the shallow features with the deep 

features to generate the sharpened HRMS. After a large 

number of experiments, it is proved that our method has 

advanced performance.Although the proposed method 

brings promising results, some notable issues remain and 

call for further research. We only consider the relationship 

between different scales and different depth features, but 

not the correlation between the two image-specific 

features, LRMS and PAN. In later work, we will 

investigate the correlation between the two image-specific 

features to better reconstruct HRMS. and improve the 

possibility of practical application of MFMIF-Net. 

REFERENCES 

[1] B. Zhang, D. Wu, L. Zhang, Q. Jiao, Q. Li, Application of 

hyperspectral remote sensing for environment monitoring in 

mining areas, Environ. Earth Sci. 65 (3) (2012) 649–658. 
[2] H. Zhang, H. Xu, X. Tian, J. Jiang, J. Ma, Image fusion meets 

deep learning: A survey and perspective, Inf. Fusion 76 

(2021) 323–336. 
[3] H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion 

meets deep learning: A survey and perspective,” Inf. Fusion, 
vol. 76, pp. 323–336, Dec. 2021. 

[4] H. Ghassemian, “A review of remote sensing image fusion 

methods,” Inf. Fusion, vol. 32, pp. 75–89, Nov. 2016. 
[5] C. Thomas, T. Ranchin, L. Wald, J. Chanussot, Synthesis of 

multispectral images to high spatial resolution: A critical 

review of fusion methods based on remote sensing physics, 
IEEE Trans. Geosci. Remote Sens. 46 (5) (2008) 1301–1312. 

[6] H. Ghassemian, A review of remote sensing image fusion 
methods, Inf. Fusion32 (2016) 75–89. 

[7] C.S. Yilmaz, V. Yilmaz, O. Gungor, A theoretical and practical 

survey of image fusion methods for multispectral 
pansharpening, Inf. Fusion 79 (2022) 1–43. 

[8] W. Carper, T. Lillesand, R. Kiefer, The use of 

intensity-hue-saturation transformations for merging SPOT 

panchromatic and multispectral image data,Photogramm. 

Eng. Remote Sens. 56 (4) (1990) 459–467. 
[9] L. Wenzhi et al., “Processing of multiresolution thermal 

hyperspectral and digital color data: Outcome of the 2014 
IEEE GRSS data fusion contest,” IEEE J. Sel. Topics Appl. 

Earth Observ. Remote Sens., vol. 8,no. 6, pp. 2984–2996, Jun. 

2015. 
[10] V. K. Shettigara, “A generalized component substitution 

technique for spatial enhancement of multispectral images 
using a higher resolutiondata set,” Photogram. Eng. Remote 

Sens., vol. 58, no. 5, pp. 561–567,May 1992. 

[11] S. G. Mallat, “A theory for multiresolution signal 
decomposition: The wavelet representation,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, Jul. 
1989. 

[12] J. G. Liu, “Smoothing filter-based intensity modulation: A 

spectral preserve image fusion technique for improving 

spatial details,” Int.J. Remote Sens., vol. 21, no. 18, pp. 
3461–3472, Dec. 2000, doi:10.1080/014311600750037499. 

[13] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, 

“Context-driven fusion of high spatial and spectral resolution 

images based on over-sampled multiresolution analysis,” 

IEEE Trans. Geosci. Remote Sens.,vol. 40, no. 10, pp. 
2300–2312, Oct. 2002. 

[14] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, 
“MTF-tailored multiscale fusion of high-resolution MS and 

PAN imagery,”Photogramm. Eng. Remote Sens., vol. 72, no. 

5, pp. 591–596, May 2015. 
[15] ang F M, Li F, Shen C M and Zhang G X. 2013. A variational 

approach for pan-sharpening. IEEE Transactions on Image 
Processing, 22(7): 2822-2834,doi: 

10.1109/TIP.2013.2258355 

[16] Buades A, Coll B, Duran J and Sbert C. 2014. Implementation 
of nonlocal pansharpening image fusion. Image Processing 

On Line, 4: 1-15,doi: 10.5201/ipol.2014.98 
[17] Palsson F, Sveinsson J R and Ulfarsson M O. 2014. A new 

pansharpening algorithm based on total variation. IEEE 

Geoscience and Remote Sensing Letters, 11(1): 318-322,doi: 
10.1109/LGRS.2013.2257669 

[18] M. Zhang, K. Pang, C. Gao, and M. Xin, “Multi-scale aerial 

target detection based on densely connected inception 

ResNet,” IEEE Access,vol. 8, pp. 84867-84878, 2020. 

[19] M. Z. Uddin, M. M. Hassan, A. Alsanad, and C. Savaglio, “A 
body sensor data fusion and deep recurrent neural 

network-based behavior recognition approach for robust 
healthcare,” Inf. Fusion, vol. 55,pp. 105–115, Mar. 2020. 

[20] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture 

transformer network for image super-resolution,” in Proc. 
IEEE/CVF Conf.Comput. Vis. Pattern Recognit. (CVPR), 

Jun. 2020, pp. 5791–5800. 
[21] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep 

convolutional network for image super-resolution,” in Proc. 

Eur. Conf. Comput. Vis.Berlin, Germany: Springer, 2014, pp. 
184–199. 

[22] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, 
“Pansharpening by convolutional neural networks,” Remote 

Sens., vol. 8, no. 7, p. 594,Jul. 2016. 

[23] J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, and J. Paisley, 
“PanNet: A deep network architecture for pan-sharpening,” in 

Proc. IEEE Int.Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 
5449–5457. 

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning 

for image recognition,” in Proc. IEEE Conf. Comput. Vis. 
Pattern Recognit.(CVPR), Jun. 2016, pp. 770–778. 

[25] X. Liu, Y. Wang, and Q. Liu, “PSGAN: A generative 
adversarial network for remote sensing image 

pan-sharpening,” in Proc. 25th IEEE Int. Conf. Image 

Process. (ICIP), Oct. 2018, pp. 873–877. 
[26] Goodfellow et al., “Generative adversarial nets,” in Proc. 

Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 2672–2680. 
[27] S. Xu, J. Zhang, Z. Zhao, K. Sun, J. Liu, and C. Zhang, “Deep 

gradient projection networks for pan-sharpening,” in Proc. 

IEEE/CVF Conf.Comput. Vis. Pattern Recognit. (CVPR), 
Jun. 2021, pp. 1366–1375. 

[28] X. Fu, W. Wang, Y. Huang, X. Ding, and J. Paisley, “Deep 
multiscale detail networks for multiband spectral image 

sharpening,” IEEE Trans.Neural Netw. Learn. Syst., vol. 32, 

no. 5, pp. 2090–2104, May 2021. 

[29] L. J. Deng, F. Vivone, C. Jin, and J. Chanussot, “Detail 

injection-based deep convolutional neural networks for 
pansharpening,” IEEE Trans. Geosci. Remote Sens., 2020, 

doi: 10.1109/TGRS.2020.3031366.  

[30] Zhang K, Wang A, Zhang F, et al. Spatial-Spectral Dual 
Back-Projection Network for Pansharpening[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 2023. 
[31] Lei, Dajiang, et al. “MHANet: A Multiscale Hierarchical 

Pansharpening Method With Adaptive Optimization.” IEEE 

Transactions on Geoscience and Remote Sensing 60 (2022): 
1-15. 

[32] Alexey Dosovitskiy, Lucas Beyer, Alexander 
Kolesnikov,Dirk Weissenborn, Xiaohua Zhai, Thomas 

Unterthiner,Mostafa Dehghani, Matthias Minderer, Georg 

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: 
Transformers for image recognition at scale. arXiv 

preprintarXiv:2010.11929, 2020. 1, 3 
[33] S.T. Rajamani, K.T. Rajamani, A. Mallol-Ragolta,S. Liu, and 

B. Schuller, “A novel attention-based gated recurrent unit and 

http://www.ijerm.com/


                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025 

                                                                                              91                                                                                    www.ijerm.com  

 

its efficacy in speech emotion recognition,” in Proceedings 
ofICASSP, 2021, pp. 6294–6298. 

[34] Y. Li, Y. Yang, K. Zhu, and J. Zhang, “Clothing sale 

forecasting by a composite gru–prophet model with 

anattention mechanism,” IEEE Transactions on Industrial 

Informatics, vol. 17, no. 12, pp. 8335–8344, 2021. 
[35] Zhang, H., Wang, H., Tian, X., & Ma, J. (2023). P2Sharpen: 

A progressive pansharpening network with deep spectral 
transformation. Information Fusion, 91, 103-122. 

[36] Chen, Liang-Chieh, et al. “Deeplab: Semantic image 

segmentation with deep convolutional nets, atrous 
convolution, and fully connected crfs.” IEEE transactions on 

pattern analysis and machine intelligence 40.4 (2017): 
834-848. 

[37] Nazeri, Kamyar, et al. “Edgeconnect: Generative image 

inpainting with adversarial edge learning.” arxiv preprint 
arxiv:1901.00212 (2019). 

[38] Zamir, Syed Waqas, et al. “Learning enriched features for real 
image restoration and enhancement.” Computer 

Vision–ECCV 2020: 16th European Conference. 

[39] Chung, Junyoung, et al. “Empirical evaluation of gated 
recurrent neural networks on sequence modeling.” arXiv 

preprint arXiv:1412.3555 (2014).  

[40] [Shi X, Chen Z, Wang H, et al. Convolutional LSTM 

network: A machine learning approach for precipitation 

nowcasting[J]. Advances in neural information processing 
systems, 2015, 28. 

[41] F. Yuan, L. Zhang, X. Xia, Q. Huang and X. Li, “A Gated 
Recurrent Network With Dual Classification Assistance for 

Smoke Semantic Segmentation,” in IEEE Transactions on 

Image Processing, vol. 30, pp. 4409-4422, 2021, doi: 
10.1109/TIP.2021.3069318. 

[42] Wang, Qidong, et al. “SFEMGN: Image Denoising with 
Shallow Feature Enhancement Network and Multi-Scale 

ConvGRU.” ICASSP 2023-2023 IEEE International 

Conference on Acoustics, Speech and Signal Processing 
(ICASSP). IEEE, 2023. 

[43] G. Scarpa, S. Vitale, and D. Cozzolino, “Target-adaptive 
CNN-based pansharpening,” IEEE Trans. Geosci. Remote 

Sens., vol. 56, no. 9,pp. 5443–5457, Sep. 2018. 

[44] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail 
injection-based deep convolutional neural networks for 

pansharpening,” IEEE Trans.Geosci. Remote Sens., vol. 59, 
no. 8, pp. 6995–7010, Aug. 2021. 

[45] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A 

multiscale and multidepth convolutional neural network for 
remote sensing imagery pan-sharpening,” IEEE J. Sel. Topics 

Appl. Earth Observ. Remote Sens.,vol. 11, no. 3, pp. 
978–989, Mar. 2018. 

[46] Fan, Junyu, et al. “Frequency-aware robust multidimensional 

information fusion framework for remote sensing image 
segmentation.” Engineering Applications of Artificial 

Intelligence 129 (2024): 107638. 
[47] Hu, Jie, Li Shen, and Gang Sun. “Squeeze-and-excitation 

networks.” Proceedings of the IEEE conference on computer 

vision and pattern recognition. 2018. 
[48] Woo, Sanghyun, et al. “Cbam: Convolutional block attention 

module.” Proceedings of the European conference on 
computer vision (ECCV). 2018. 

[49] Gong, Meiqi, et al. “D2TNet: A ConvLSTM network with 

dual-direction transfer for pan-sharpening.” IEEE 

Transactions on Geoscience and Remote Sensing 60 (2022): 

1-14. 
[50] F. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “A new 

pansharpening algorithm based on total variation, “ IEEE 

Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 318±322, Jan. 
2014. 

[51] G. Vivone, R. Restaino, and J. Chanussot, “Full scale 
regression-based injection coefficients for panchromatic 

sharpening,” IEEE Trans. Image Process., vol. 27, no. 7, pp. 

3418–3431, Jul. 2018. 
[52] G. Vivone, R. Restaino, and J. Chanussot, “A 

regression-based high-pass modulation pansharpening 
approach,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, 

pp. 984–996, Feb. 2018. 

[53] G. Vivone, “Robust band-dependent spatial-detail approaches 
for panchromatic sharpening,” IEEE Trans. Geosci. Remote 

Sens., vol. 57, no. 9, pp. 6421–6433, Sep. 2019. 

[54] Peng, Siran, et al. "Source-adaptive discriminative kernels 
based network for remote sensing pansharpening." Proc. 31st 

Int. Joint Conf. Artif. Intell.. 2022. 

[55] J. Hou, Q. Cao, R. Ran, C. Liu, J. Li, and L.-J. Deng, 

“Bidomain modeling paradigm for pansharpening,” in Proc. 

31st ACM Int. Conf. Multimedia, Oct. 2023, pp. 347–357. 
[56] Peng, Siyuan, et al. “PSCF-Net: Deeply coupled feedback 

network for pansharpening.”IEEE Transactions on 
Geoscience and Remote Sensing 61 (2023): 1-12. 

[57] L. Deng et al., “Machine learning in pansharpening: A 

benchmark, from shallow to deep networks,” IEEE Geosci. 
Remote Sens. Mag., vol. 10,no. 3, pp. 279–315, Sep. 2022. 

[58] J. Zhou, D. L. Civco, and J. A. Silander, “A wavelet transform 
method to merge Landsat TM and SPOT panchromatic data,” 

Int. J. Remote Sens.,vol. 19, no. 4, pp. 743–757, Jan. 1998. 

[59] R. H. Yuhas, A. F. Goetz, and J. W. Boardman, 
“Discrimination among semi-arid landscape endmembers 

using the spectral angle mapper (SAM) algorithm,” in Proc. 
Summaries 3rd Annu. JPL Airborne Geosci. Workshop, vol. 

1, 1992, pp. 147–149. 

[60] L. Wald, “Quality of high resolution synthesised images: Is 
there a simple criterion?” in Proc. 3rd Conf. Fusion Earth 

Data, Merging Point Meas., Raster Maps Remotely Sensed 

Images, 2000, pp. 99–103.  

[61] M. Choi, A new intensity-hue-saturation fusion approach to 

image fusion with a tradeoff parameter, IEEE Trans. Geosci. 
Remote Sens. 44 (6) (2006) 1672–1682. 

[62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 
“Image quality assessment: From error visibility to structural 

similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 

600–612, Apr. 2004. 
[63] L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, M. 

Selva, Multispectral and panchromatic data fusion assessment 
without reference, Photogramm. Eng. Remote Sens. 74 (2) 

(2008) 193–200. 

Yu Xin Postgraduate student. His research interests include computer 
vision and Pansharpening. 

 Wu Zheng Postgraduate student. His research interests include 
computer vision. 

http://www.ijerm.com/

	INTRODUCTION
	RELATED WORK
	PROPOSED METHOD
	Ⅳ EXPERIMENTAL RESULTS
	Ⅴ.CONCLUSION
	References

