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Abstract—  In recent years, the detection of small targets in 

fields such as drone aerial photography and industrial quality 

inspection has faced challenges such as sparse target pixels, 

large background noise, and drastic scale changes. Traditional 

algorithms have problems such as weak feature extraction 

ability, low multi-scale fusion efficiency, and high 

computational resource consumption, resulting in insufficient 

detection accuracy. Specifically, shallow features are prone to 

losing details, the feature pyramid is insensitive to small targets, 

and complex networks have difficulty balancing accuracy and 

real-time performance. To address these issues, this paper 

proposes an improved algorithm and lightweight solution based 

on YOLOv7, enhancing detection performance from three 

aspects: feature enhancement, network optimization, and loss 

function. This paper designs the CBFR module to dynamically 

adjust the fusion weights of deep and shallow features, 

optimizes the detection head structure and adds a small target 

detection layer to enhance the ability to capture local details; 

combines the bidirectional routing attention mechanism to 

focus on key feature regions, and proposes a NWD and IOU 

composite loss function to balance sample weights. Extensive 

experiments were conducted on the VisDrone dataset. The 

experiments show that the improved model maintains the 

advantages of lightweight while significantly improving 

detection accuracy and recall rate. 
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I. INTRODUCTION 

  With the deep integration of unmanned aerial vehicle 

(UAV) technology and computer vision, the importance of 

aerial image target detection in fields such as disaster rescue 

and environmental monitoring is increasingly prominent. As 

the core link of the unmanned aerial vehicle (UAV) 

intelligent perception system, target detection needs to 

accurately identify small targets (such as vehicles and 

pedestrians) in the image and overcome challenges such as 

complex backgrounds and variable scales to support 

real-time decision-making and task planning. Unmanned 

aerial vehicle (UAV) aerial photography can obtain 

large-area and high-resolution images, providing rich data 

support for various tasks. When processing and analyzing 

these images, object detection is one of the key links. It can 

help identify the objects of interest from complex aerial 

photography scenes, thereby providing a basis for subsequent 

decision-making. 
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At present, object detection algorithms based on deep 

learning dominate in the analysis of unmanned aerial vehicle 

(UAV) aerial photography images, among which the 

YOLOv7 algorithm shows significant performance 

advantages. YOLOv7 adopts a more efficient network 

architecture and advanced training strategies, significantly 

enhancing the detection speed while ensuring detection 

accuracy, and meeting the real-time processing requirements 

of unmanned aerial vehicle (UAV) aerial images. For 

example, its optimization in multi-scale feature fusion 

enables the model to better capture the features of targets of 

different sizes and detect various types of targets more 

accurately in complex aerial photography scenes. 

However, when dealing with aerial images taken by 

drones, YOLOv7 also faces some challenges. Due to the 

complexity of aerial image scenes, which contain a large 

amount of background information, and the diverse changes 

in the size, shape and posture of target objects, especially for 

some small targets and occluded targets, the detection 

accuracy of YOLOv7 will decline. In addition, possible 

factors such as illumination changes and weather influences 

in aerial images can also cause certain interferences to the 

detection performance. 

In recent years, significant progress has been made in 

the research of small target detection algorithms for 

unmanned aerial vehicle (UAV) aerial images. By 

introducing the attention mechanism, feature pyramid 

network, new loss function and lightweight network 

structure, the detection accuracy and real-time performance 

of the model for small targets have been significantly 

improved. The development of these technologies provides 

strong technical support for the application of unmanned 

aerial vehicles in fields such as military, transportation, and 

disaster prevention and control. However, small object 

detection still faces many problems, including limited feature 

information due to the small size of the object, which is 

difficult to extract effectively; The shape and edge 

information is not clear and is easily confused with the 

background. The limited internal features lead to the loss of a 

large amount of context semantic information in the feature 

extraction stage of the network. Moreover, the imbalance of 

positive and negative samples during the training process 

increases the difficulty of model training. Coupled with the 

problems such as high computational overhead and complex 

data annotation faced by existing methods, future research 

needs to further optimize the algorithm performance, reduce 

the computational cost, and explore more efficient small 

object detection strategies. 

This paper aims to improve the YOLOv7 algorithm 

based on the characteristics of unmanned aerial vehicle 

(UAV) aerial photography images, in order to enhance its 
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detection accuracy for various targets, especially small 

targets and occlared targets, in complex aerial photography 

scenes, while maintaining the reasoning speed of the model 

as much as possible. This paper proposes an improved 

YOLOv7 small target detection method aiming at the 

problems existing in small target detection, such as 

insufficient feature extraction ability, poor multi-scale 

feature fusion effect, and limited improvement of the 

positioning accuracy of small targets by the loss function. Its 

main contributions are as follows: 

1. This paper designs an improved CBFR module and 

introduces the Funnel activation function to enhance the 

feature extraction ability of small targets. The Funnel 

activation function, with its unique structure, can 

capture the characteristic information of small targets 

more accurately and effectively improve the detection 

accuracy. 

2. This paper improves the original FPN+PAN structure and 

proposes a new multi-scale feature fusion method to 

construct a multi-scale object detection head. Through 

this method, the model can efficiently utilize feature 

information of different scales and significantly 

enhance the detection ability for small targets. Introduce 

the BiFormer bidirectional routing attention mechanism 

to improve the detection accuracy of the model for small 

targets. BiFormer significantly optimizes the model 

detection performance by adaptively focusing on the 

key feature regions of small targets. 

3. Based on the fusion loss function of NWD and IOU, this 

paper proposes a loss function that fuses NWD and IOU 

to improve the positioning accuracy of small targets. 

This loss function combines the advantages of both to 

achieve a balance between positioning accuracy and 

classification accuracy and improve the overall 

performance of the model. 

 

II. RELATED WORK 

In the research of computer vision, small object 

detection is an extremely difficult technical challenge. Such 

targets usually refer to objects in images with a pixel size of 

less than 32×32, vehicles in drone aerial photography, 

early-stage lesions in medical images, or minor defects in 

industrial quality inspection. Their core challenge lies in the 

fact that the limited pixels are difficult to carry sufficient 

discriminative information such as texture and shape, while 

traditional detection models are prone to losing key details 

during the feature extraction process. When Faster R-CNN 

processes 4K resolution remote sensing images, the missed 

detection rate of small buildings with a resolution of less than 

10 pixels is as high as 40%, which directly affects the 

application effect in key scenarios such as disaster 

monitoring. In the public test in 2024, the EfficientDet-Lite 

model equipped with Bi-FPN achieved 52.2% in the small 

object detection task (AP_S) on the COCO dataset [1]. In 

response to the demands of mobile and edge computing, 

VoVNet[2] proposed the One-time Aggregation (OSA) 

module, which combines dense connections and efficient 

feature reuse to reduce the computational load while 

maintaining accuracy. It is suitable for real-time small target 

detection. YOLObile[3] achieves a detection speed 7 times 

faster than YOLOv3 on mobile devices through the 

collaborative design of model compression and compilation, 

while maintaining high precision. It is suitable for drone and 

security scenarios. 

Aiming at the problem of large target scale variation in 

aerial images, Feng et al. introduced the RepConv module, 

Transformer Encoder and BiFPN structure in the YOLOv5 

framework. By enhancing the multi-scale feature fusion 

ability, the detection accuracy of small targets was 

significantly improved. And achieved average accuracies of 

90.29% and 90.06% respectively on the HRSC2016 and 

UCAS-AOD datasets [4]. Furthermore, the RRNet model 

proposed by Chen et al., through the design of a hybrid 

detector, effectively dealt with the problems of dense targets 

and complex backgrounds in aerial images, and was listed as 

a representative method in the VisDrone Challenge [5]; To 

solve the problems of uncertainty in the target direction and 

discontinuity of the boundaries of the rotating box, the RSDet 

algorithm adopts the eight-parameter regression of the four 

corner points of the rotating box, avoiding the discontinuity 

of losses caused by the periodicity of angles [6]. S2A-Net 

(2021) combines the feature alignment module and the active 

rotation filter to generate high-quality rotation anchor boxes, 

enhancing the representation ability of direction-sensitive 

features [7]. When Wu et al. improved YOLOv5, they 

introduced the Circular Smooth Label, which effectively 

alleviated the boundary discontinuity problem of angular 

regression. Sommer et al. optimized the Region generation 

network (RPN) for small targets by adjusting the anchor box 

size and output resolution of Faster R-CNN, and verified its 

effectiveness on the unmanned aerial vehicle dataset [8]; The 

PPYOLOE model proposed by the domestic team is based on 

the free design of anchor boxes and combined with task 

alignment learning. It simplifies the deployment process 

while maintaining high accuracy and is applicable to the 

embedded platform of unmanned aerial vehicles [9]. 

 

III. MATH 

YOLOv7 [10] is an upgraded version of the YOLO 

(You Only Look Once) series of object detection models, 

with high accuracy and real-time performance as its core 

advantages. Its network architecture is based on the 

CSPDarknet feature extraction backbone, integrating the 

ELAN (High Efficiency Layer Aggregation Network) 

module and the SPP (Spatial Pyramid Pooling) module, 

significantly enhancing the multi-scale feature fusion 

capability; The training efficiency and generalization 

performance are optimized through dynamic label allocation 

and model scaling techniques, supporting flexible adaptation 

from lightweight to high-precision models. The network 

structure of YOLOv7 mainly consists of four parts: Input 

(input layer), Backbone (feature extraction network), Neck 

(feature fusion network), and Head (output layer). The 

overall structure diagram of YOLOv7 is shown in Figure 2-6. 

This article is based on YOLOv7 and involves a series of 

improvements. 
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A. CBFR module 

FReLU[11] is an improved activation function aimed at 

enhancing the flexibility and expressiveness of the ReLU 

activation function Q. Unlike the single form of the ReLU 

function, FReLU achieves richer nonlinear characteristics by 

introducing adjustable parameters or conditions. Specifically, 

FReLU can be defined and implemented in multiple ways: 

1.Piecewise linear functions :FReLU may represent 

different input ranges through different linear segments, 

thereby increasing the complexity of the function. For 

example, the form of FReLU can be defined as formula (3-1): 

 

(3-1) f(x)  =  
{   
   α1x + β1             if  x ≥ 0  and  x＜t1α2x + β2             if  x ≥ t1  and  x＜t2...αnx + βn             if  x ≥ tn−1 

 

 
 

Among them, is an adjustable parameter. This form allows 

FReLU to use different linear functions within different input 

ranges, thereby enhancing the flexibility of the model. 

2.Adjustable parameters: Adjustable parameters can be 

introduced into the FReLU function, and these parameters 

can be adjusted through optimization algorithms during the 

training process. For example, FReLU can adjust the slope of 

the non-negative part through the parameter γ : f(x) = max(γx,βx)                       (3-2) 

Among them, γ and β are hyperparameters. Usually, β ≤ 0 

to avoid an output that is completely zero. 

3.Nonlinear extension: FReLU may adopt more complex 

nonlinear transformations, such as exponential functions or 

logarithmic functions, to enhance its expressive power. 

Formula 3-3: { αeβx − 1        if  x ≥ 0αlog(1 + eβx)          if  x＜0              (3-3) 

α and β are adjustable parameters. The introduction of 

exponential or logarithmic functions enables FReLU to 

handle more complex input patterns. 

 

In this paper, by replacing the SiLU activation function 

[45] used by the CBS module in the backbone network of the 

YOLOv7 algorithm with the FReLU activation function, the 

algorithm has the ability to obtain spatial context information 

and pixel-level modeling ability with almost no increase in 

computational overhead. The structure diagram of the 

improved CBFR module of the CBS module is shown in 

Figure 3-2. And apply this module to the ELAN module and 

EP module in the backbone part of YOLOv7 as shown in 

Figures 3-3 and 3-4. SiLU, as a smooth nonlinear activation 

function, although to a certain extent, it alleviates the 

vanishing gradient problem, its modeling ability for 

pixel-level spatial information is relatively weak. In contrast, 

FReLU, by introducing spatial conditions, extends the 

activation function from one dimension to two dimensions 

and is able to better capture pixel-level spatial information. 

This spatial modeling ability is particularly important for the 

target detection task because it can enhance the model's 

perception ability of the target's edges and details, thereby 

improving the detection accuracy. The form of FReLU is, 

where T(x) is a simple and efficient spatial context feature 

extractor. This design not only retains the efficiency of 

ReLU, but also enhances the flexibility and robustness of 

feature extraction through spatial conditions. In practical 

applications, FReLU can significantly enhance the model's 

modeling ability for complex visual layouts without 

significantly increasing the computational overhead. 

 

Fig 3-2  CBFR Module structure diagram 

 

Fig 3-3  ELAN-FR Module structure diagram 

 

Fig 3-4  MP-FR Module structure diagram 

B. Multi-scale target detection head 

In the network architecture of the original YOLOv7 

algorithm,the input image first undergoes a preprocessing 

stage to adjust the original image to a uniform pixel size of 

640×640 to meet the input requirements of the network. 

Subsequently, the adjusted image enters the backbone 

network, and the feature information of the image is 

gradually extracted through a series of convolutional layers 

and downsampling operations. The design of the backbone 

network aims to efficiently capture multi-level features in the 

image and provide rich semantic information for the 

subsequent object detection tasks. 

In the scenario of small object detection, the 80×80 feature 

map of the YOLOv7 algorithm corresponds to the receptive 

field range of 8×8 pixels in the input image. When the size of 

the target instance is less than 8 pixels, its contour features 

are prone to fuse with the background texture, resulting in the 

loss of key information during the feature extraction process, 

thereby significantly reducing the detection accuracy. In 

Fig 3-1  Overall structure diagram of YOLOv7 
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order to better detect small targets, the 160×160 feature map 

generated by 4 times downsampling (corresponding to 4×4 

pixel receptive fields) can retain more detailed spatial 

position information and detailed features, thereby 

performing better in the detection of small targets. To address 

this issue, the FPN[46]+ PAN[47] feature fusion architecture 

in the original YOLOv7 network was improved, and the 

feature pyramid structure as shown in Figure 3-5 was 

proposed. This structure further enhances the detection 

ability for small targets by expanding the number of layers of 

the feature pyramid and fusing the feature map with four 

times downsampling. The improved feature pyramid 

structure effectively enhances the feature expression ability 

of small targets through the fusion of multi-scale features, 

reduces the interference of background information at the 

same time, and significantly improves the detection accuracy. 

 

Fig 3-5  The FPN+PAN structure after adding the 

detection layer 

 

C. BiFormer:Bidirectional routing attention 

The structure of BiFormer[12] is shown in Figure 3-6 as 

follows: 

 

Fig 3-6  Model structure 

In the i-th stage, when i=1, the overlapping patch 

embedding is adopted, while when i=2, 3, 4, the patch 

merging module is used to reduce the spatial resolution of the 

input and increase the number of channels at the same time. 

Subsequently, Transformer operations are performed on the 

input features using a connected BiFormer block. The 

insertion position of the BiFormer's attention is shown in 

Figure 3-7. 

 

Fig 3-7  SPPCSPC improvement module 

 

D. Based on the fusion loss function of NWD and IOU 

NWD[13], as a brand-new measurement method, is used to 

measure the similarity between boxes. It constructs the box as 

a Gaussian distribution and uses the Wasserstein distance to 

measure the similarity of the two distributions, thereby 

replacing the IoU. The advantage of this distance lies in that 

even if the two boxes do not overlap at all or only overlap 

very little, the similarity between them can still be accurately 

measured. 

Suppose a horizontal bounding box R=(cx,cy,w,h) is 

defined, where (cx,cy) represents the central coordinate; w 

and h are the widths and heights of the bounding box 

respectively. Thus, the inscribed ellipse of this bounding box 

can be expressed by formula (3-4) as: (𝑥−𝑐𝑥)2(𝑤2)2 + (𝑦−𝑐𝑦)2(ℎ2)2 = 1       (3-4) 

 

The probability density function formula of the 

two-dimensional Gaussian distribution (3-5) is as follows: f(𝑥|𝜇, 𝛴) = 𝑒𝑥𝑝(−12(𝑥−𝜇)𝑇𝛴−1(𝑥−𝜇))2𝜋|𝛴|12         (3-5) 

 

In the formula: x represents the coordinates of the 

Gaussian distribution (x, y); It is the mean vector of the 

Gaussian distribution; Σ  is the covariance matrix of the 

Gaussian distribution. When the conditions conform to the 

following formula (3-6), (𝑋 − 𝜇)𝑇𝛴−1(𝑋 − 𝜇) = 1       (3-6) 

 

The inscribed elliptic equation described by the above 

formula can be regarded as the probability density function of 

the two-dimensional Gaussian distribution. Therefore, the 

horizontal bounding box can be modeled as a 

two-dimensional Gaussian distribution N(). The degree of 

similarity between two bounding boxes can be quantified by 

comparing the distances between their corresponding 

Gaussian distributions. The values of sum Σ are given by the 

following formulas (3-7) and (3-8) : μ = (cxcy),                          (3-7) 

 𝛴 = [w24 00 h24 ]        (3-8) 

Suppose there are two Gaussian distributions 1 and 2. The 

distance between these two distributions can be calculated by 

means of the second-order Wasserstein distance. The 

second-order Wasserstein distance is shown by the following 

formula (3-9) : 𝑊22(μ1, μ2) = ‖m1−m2‖22+Tr(𝛴1+𝛴2−2(𝛴212𝛴1𝛴212)12) = ‖m1 −m2‖22 + ‖𝛴112 − 𝛴212‖F2(3-9) 

 

In the formula: is the Frobenius norm; According to the 

Gaussian distribution, it is simplified to the following 

equation (3-10): 
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𝑊22(μ1, μ2) =‖([cx1, cy1,w12 , h12 ]T , [cx2, cy2,w22 , h22 ]T)‖22         (3-10) 
 

The second-order Wasserstein distance provides a method 

to measure the difference between two distributions. 

However, it is essentially a distance measure and cannot be 

directly used as an indicator to measure the similarity 

between Gaussian distributions. Moreover, when the two 

borders change from overlapping to separating, the rapid 

growth of the Wasserstein distance also brings training 

difficulties. Therefore, The Wasserstein Distance (NWD) is 

Normalized through the exponential transformation function, 

and the final Normalized Wasserstein Distance is shown as 

the following formula (3-11). 

 NWD(μ1, μ2) = exp(−√𝑊22(μ1, μ2)C ) 
(3-11) 

 

In the formula, C is a constant related to the data set (C = 

12.8). After fully considering objects of different scales in the 

aerial images, a mixed border loss based on IoU and 

Wasserstein distance was constructed, as shown in Equations 

(3-12) and (3-13) specifically.  L = βLNWD + (1 − β)LCIoU                       (3-12) LNWD = 1 − NWD(μ1, μ2)                    (3-13) 
 

In the above formula, represents the original IOU-based 

border loss and is the adjustment coefficient. 

IV. EXPERIMENTS 

 

A. Datasets 

The VisDrone dataset [14] is an authoritative visual 

benchmark dataset from the perspective of unmanned aerial 

vehicles (UAVs) jointly launched by Tianjin University and 

other research teams in 2018. It consists of 288 video clips 

consisting of 261,908 frames and 10,209 static images. It 

contains 6,471 training sets, 548 validation sets and 3,190 test 

set images (the results need to be submitted to the official 

evaluation platform), covering complex low-altitude 

scenarios such as urban roads, transportation hubs and dense 

crowds. As shown in Figure 3-12, it is the data distribution of 

the VisDrone dataset. This dataset provides pedestrians, 

people, bicycles, cars, vans, trucks, tricycles, awning 

tricycles, buses, and motorcycles There are a total of 11 types 

of refined annotations for the vehicle (motor) and the invalid 

area (others). Among them, the others category is usually 

excluded in algorithm research because it marks non-solid 

targets such as blurred areas and reflection shadows to 

enhance the effectiveness of the model. The challenge of the 

data is reflected in the unique characteristics of unmanned 

aerial vehicles, such as dense small targets, blurred dynamic 

motion, drastic changes at multiple scales, and complex 

background interference. Its annotation also additionally 

includes attribute labels such as illumination conditions, 

occlusion rates, and target attitudes, providing the academic 

community with a core benchmark for measuring the 

robustness of algorithms. It is widely applied in unmanned 

aerial vehicle (UAV) visual tasks such as smart city 

management, traffic flow monitoring, and emergency rescue, 

and continuously promotes innovative breakthroughs in 

technologies such as multi-scale feature fusion and occlusion 

perception networks. 

 

B. Implementation Details  

All the experiments in this paper were run on the AutoDL 

cloud platform server. This platform has outstanding 

hardware performance. Its multi-core processor is highly 

efficient in operation, large-capacity memory ensures smooth 

operation, and high-performance graphics cards accelerate 

deep learning tasks. In terms of software, the Ubuntu20.04 

operating system and the PyTorch framework were used to 

support the conduct of the experiment. The specific 

configuration of hardware and software resources is shown in 

Table 4.1 as follows: 

Table 4-1  Experimental environment configuration 

Environmental 

name 
Name 

Specific 

configuration 

 CPU 
Intel(R) Xeon(R) 

Platinum 8255C  

Hardware 

environment 
GPU RTX 3090(24GB) 

 Memory 43GB 

 
Operating 

system 
ubuntu20.04 

Software 

configuration 
Python Python  3.8 

 Pytorch PyTorch  1.10.0 

 CUDA Cuda  11.3 

Set epochs to 300; Set the batch size to 16; The initial 

learning rate is set to 0.01, and the input image resolution is 

set to 640×640. 

C. Ablation study 

In order to verify the effectiveness of several improvement 

points proposed in this chapter for the YOLOv7 algorithm, 

through ablation experiments, the contributions made by 

each improvement point and the combined improvement 

points to the performance improvement of the YOLOv7 

algorithm were analyzed based on the specific mAP, Params 

and FLOPs evaluation index values in the experimental 

results. As shown in Table 4-2 below, the specific 

experimental results of each improved algorithm on the 

Visdrone dataset are presented. In the table, FR represents the 

improvement of the CBFR module for the YOLOv7 

algorithm, P2 represents adding a small object detection layer 

to the YOLOv7 algorithm, and B represents the Biformer 
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attention added at the connection between the backbone 

network and the head network of the YOLOv7 algorithm. 

P2B represents adding a small object detection layer to the 

YOLOv7 algorithm and adding Biformer attention at the 

connection between the backbone network and the head 

network, and so on. Yolov7-frpbn represents the final 

algorithm after all four improvements are added. 

 

Table 4-2  Experimental results of YOLOv7-FRPBN 

algorithm in Visdrone ablation 

算法 Params(M) FLOPs(G) 
mAP 

(%) 

YOLOv7 37.6 106.7 48.5 

YOLOv7-FR 37.8 108.4 49.1 

YOLOv7-P2 38.2 122.3 49.7 

YOLOv7-B 38.7 107.6 48.9 

YOLOv7-FRP2 38.3 124.0 50.8 

YOLOv7-FRB 38.9 109.4 50.5 

YOLOv7-P2B 39.5 123.2 50.3 

YOLOv7-FRPB 41.3 124.1 51.0 

YOLOv7-FRPBN 41.3 125.0 51.6 

 

D. Performance Comparison 

Table 4-3 shows the comparison of the experimental 

results between YOLOv7-FRPBN and other algorithms. 

Experimental data show that YOLOv7-FRPBN achieves the 

optimal balance between model efficiency and detection 

accuracy. Compared with other models, it achieved the 

highest 0.516 mAP@0.5 with 125G of computing power 

(GFlops) ** and 41.3M of parameters, which is 4.2% higher 

than the suboptimal model ACAM-YOLO (0.495 mAP@0.5) 

and only 2.6 times the number of parameters. Compared with 

the models of the same order of magnitude, 

YOLOv7-FRPBN maintains a relatively low computational 

complexity (lower than 165.1G of YOLOv8 and 237.8G of 

YOLOv9-C) while having a significant advantage in 

accuracy, verifying the effectiveness of its improved strategy 

in feature extraction and multi-scale fusion. 

Table 4-3  Compare with the experimental results of 

other algorithms 

Model GFlops Params 
mAP@ 

0.5 

TPH-YOLOv5[15] 129.8G 46.4M 0.429 

YOLOXL[16] 155.6 54.1M 0.435 

YOLOv7-CPS[17] 122.2G 38.8M 0.482 

ACAM-YOLO[18] 130.8G 15.9M 0.495 

YOLOv8 165.1G 43.5M 0.479 

YOLOv9-C[19] 237.8G 50.9M 0.481 

YOLOv7- 

FRPBN 
125G 41.3M 0.516 

 

E. Overall network structure 

 
Fig 4-1  The structure diagram of the improved YOLOv7 

model 

 

V. CONCLUSION 

In this paper, an in-depth study of the YOLOv7 algorithm 

is conducted, and a series of improvement measures are 

proposed, aiming to enhance the detection accuracy and 

robustness of the model for small targets. Aiming at the 

deficiencies of YOLOv7 in small object detection, this paper 

proposes a series of improvement measures. The improved 

CBFR module was introduced. Through the method of 

cross-block feature fusion, the feature expression ability of 

small targets was enhanced, effectively solving the problem 

of feature information loss of small targets. A multi-scale 

target detection head was designed. By fusing feature maps 

of different scales, the detection efficiency of the model for 

multi-scale small targets was further enhanced. The 

BiFormer bidirectional routing attention mechanism was 

introduced. This mechanism significantly improves the 

detection accuracy of the model for small targets by 

adaptively focusing on the key feature regions of small 

targets. Meanwhile, a loss function based on the fusion of 

NWD and IoU was proposed. By combining the advantages 

of both, the positioning accuracy and classification accuracy 

of small target detection were better balanced, thereby 

improving the overall performance of the model. The 

experimental results show that the improved YOLOv7 small 

object detection algorithm is superior to the original 

YOLOv7 algorithm and other similar algorithms in terms of 

detection accuracy, recall rate and average accuracy. Future 

research can further explore more efficient small object 

detection methods to meet the diverse needs in practical 

application scenarios. 
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