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Abstract—Temporal action proposal generation is a crucial 

component in video understanding, aiming to identify potential 

action segments from untrimmed videos. However, existing 

methods often struggle with precise boundary localization and 

effective modeling of long-range temporal dependencies. To 

address these challenges, we propose MC-CPN (Multi-level 

Content-Aware and Contextual Perception Network), a novel 

framework that integrates multi-layer content representations 

with both local and global contextual modeling. MC-CPN 

introduces a Temporal Context-Aware Module (TCAM) to 

enhance frame-level feature perception and capture long-term 

dependencies, while a hierarchical fusion strategy bridges 

frame-level and proposal-level cues for more accurate 

boundary prediction and confidence estimation. Extensive 

experiments conducted on Thumos-14 and ActivityNet-1.3 

demonstrate that our method achieves superior performance 

across multiple evaluation metrics, showcasing strong 

robustness and generalization in diverse temporal action 

scenarios. 

 
Index Terms—Temporal Action Proposal Generation; 

Contextual Modeling; Self-Attention Mechanism  

 

I.INTRODUCTION 

Temporal action proposal generation (TAPG) aims to 

localize potential action segments within untrimmed videos 

and provide high-quality candidate regions for subsequent 

temporal action detection. This task is particularly 

challenging due to the inherently ambiguous nature of action 

boundaries in continuous video streams. In recent years, 

boundary-based methods [1-3] have achieved remarkable 

progress in TAPG by evaluating whether each temporal 

position can serve as a plausible starting or ending point of an 

action instance. 

Boundary Sensitive Network (BSN) [1] and 

Boundary-Matching Network (BMN) [2] typically adopt a 

dual-branch architecture, with one branch responsible for 

locating action boundaries and the other for evaluating 

confidence scores. Although these methods improve proposal 

precision to some extent, a key limitation lies in the 

decoupled modeling of boundary and content information, 

which fails to capture the intrinsic interdependencies between 

them. In practice, the temporal semantic features of action 

content are closely tied to their corresponding boundary 

positions, and boundary determination often relies on an 

accurate understanding of contextual action cues. As a result, 
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methods that lack joint modeling mechanisms tend to 

produce unstable predictions under scenarios with ambiguous 

boundaries or drastic semantic changes, severely affecting 

overall performance. Moreover, existing approaches mainly 

focus on modeling within local temporal windows, without 

fully exploring long-range dependencies. This limitation 

becomes particularly problematic when handling 

long-duration or semantically extensive actions, often 

leading to mis-segmentation or inaccurate boundary 

positioning. Although recent models such as DBG[4] and 

MSA-Net[5] attempt to enhance temporal representation 

through multi-scale feature fusion, they still suffer from 

limited single-level representations and lack effective 

collaboration across temporal granularities, resulting in 

suboptimal boundary prediction performance in scenarios 

with complex variations in action durations. 

To address the aforementioned limitations, MCBD[6] 

introduces a multi-level content-aware boundary detection 

framework, which formulates multi-scale information 

modeling as a series of probabilistic prediction tasks. 

Specifically, it generates boundary and content-related 

probabilities at both the frame and proposal levels, and 

further integrates these multi-level representations to 

effectively capture temporal dependencies. This approach 

provides a novel perspective and solution for TAPG and has 

demonstrated strong performance on several public 

benchmarks. However, MCBD still suffers from limited 

capacity in modeling long-range dependencies. Its 

frame-level features rely primarily on local convolutional 

operations, whose restricted receptive field hampers the 

ability to represent long-duration and complex actions. 

Moreover, the simplistic transformation from frame-level to 

proposal-level features may lead to inadequate temporal 

modeling when dealing with diverse action patterns. 

To tackle the aforementioned issues, this paper draws 

inspiration from MCBD and focuses on modeling long-range 

temporal dependencies and complex contextual information 

from a multi-level content-aware perspective, aiming to 

improve boundary localization and confidence estimation in 

temporal action proposals. Based on this, we propose a novel 

Multi-level Content-aware and Contextual Perception 

Network (MC-CPN), which comprises three main 

contributions: 

(1) The proposed method effectively integrates 

complementary information from both action 

boundaries and semantic content, alleviating the 

impact of boundary ambiguity and enhancing the 

stability and robustness of generated proposals; 
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Fig. 1 The overall architecture of the MC-CPN method
(2) A Temporal Context-Aware Module (TCAM) is 

designed to strengthen the temporal modeling 

capability of frame-level features via self-attention 

mechanisms, enabling the model to capture 

long-duration and structurally complex actions more 

accurately; 

(3) The joint modeling of frame-level and proposal-level 

features facilitates the multi-level exploitation of 

temporal cues, leading to improved boundary 

precision and more reliable confidence estimation, 

thereby enhancing the overall performance of the 

system. 

II.METHOD 

We proposes a Multi-level Content-aware and Contextual 

Perception Network (MC-CPN) for temporal action proposal 

generation. The objective of this model is to predict a set of 

action proposals involving human activities, denoted as Φ′ ={(𝑡′𝑛𝑠 , 𝑡′𝑛𝑒 , 𝑞𝑛′ )}𝑛=1𝑁 , where  𝑡′𝑛𝑠  𝑎𝑛𝑑  𝑡′𝑛𝑒  represent the 

predicted start and end times of the n-th action instance, and 𝑞𝑛′  denotes the confidence score of the proposal. 

The overall structure of the MC-CPN is shown in Fig. 1. 

The model primarily consists of four main components: (1) 

Frame-Level Perception Module: responsible for extracting 

frame-level features from the input video and generating 

prediction probability sequences to establish the perception 

of local temporal information. (2) Temporal Context-Aware 

Module: models long-term dependencies and optimizes 

temporal features using self-attention mechanisms to enhance 

feature representation. (3) Feature Sampling Module: 

samples one-dimensional features and transforms them into 

two-dimensional features to model proposal-level features. 

(4) Proposal-Level Perception Module: generates predicted 

probability confidence maps based on proposal-level 

features. The details of each module are elaborated below. 

In this study, we use pre-extracted video features as model 

input and select state-of-the-art feature extractors tailored to 

each dataset to ensure compatibility with data characteristics 

and task requirements. Specifically, I3D[7] is adopted for 

Thumos14, while TSP[8] is used for ActivityNet-1.3. 

A.  Frame-Level Perception Module 

This module takes as input the pre-extracted temporal 

feature sequence 𝐹 = {𝑓𝑡}𝑡=1𝑇 𝜖𝑅𝑇×𝐶 , where 𝑇  denotes the 

length of the feature sequence and 𝐶 represents the feature 

dimension. It outputs the frame-level feature representation 𝐹𝑓𝜖𝑅𝐷𝑓×𝑇 , and estimates the start, end, and content 

probabilities for each temporal location. Specifically, this 

module first employs two one-dimensional convolutional 

layers with ReLU activation to extract local temporal 

information. The operation is defined as follows: 

 𝐹𝑓 = 𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣1𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣1𝑑(𝐹)))) (1) 

Then, a one-dimensional convolutional layer with a 

sigmoid activation function is used as a classifier to obtain 

the start, end, and content probability sequences for each 

temporal position, as shown in Equation (2). The content 

probability indicates the likelihood that a given video 

segment is part of an action instance. 

 {𝑋𝑠, 𝑋𝑒, 𝑋𝑐} = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣1𝑑(𝐹𝑓)) (2) 

B.  Temporal Context-Aware Module 

After extracting the initial temporal features in the Frame- 

Level Perception Module, the model still faces limitations in 

capturing long-range dependencies and suffers from 

insufficient local information. This issue becomes 

particularly prominent in videos with long-duration actions 

or complex contextual semantics. To address this challenge, 

we introduce the Temporal Context-Aware Module (TCAM) 

to further enhance the modeling of frame-level features. This 

module effectively integrates global temporal information 

and rich contextual semantics, thereby strengthening the 

model’s ability to perceive long-range dependencies. As a 

result, it generates more accurate and semantically expressive 

feature representations 𝐹𝑓′𝜖𝑅𝐷𝑓′ ×𝑇 . The structure of the 

TCAM module is illustrated in Fig. 2. 

To better model the spatial structure of temporal positions, 

this study draws inspiration from the local neighborhood 

modeling in Point Transformer[10]. A block extension 

strategy is used to structurally replicate the initial features 𝐹𝑓 

obtained from the frame-level perception module along the 
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feature dimension, extending it to 𝐹𝑒𝑥𝑡𝜖𝑅𝑇×(𝐸×𝐸)×𝐷𝑓, where  

 

Fig. 2 Architecture of the Temporal Context-Aware Module  𝐸 is the extension factor. Simultaneously, for each time step, 

three-dimensional spatial simulation index coordinates 𝑃𝑖,𝑗,𝑘 = (𝑖, 𝑗, 𝑘), 𝑖𝜖[1, 𝑇], 𝑗, 𝑘 𝜖[1, 𝐸], are constructed. These 

indexes provide positional references for subsequent feature 

modeling and neighbor selection. The three-dimensional 

coordinate information is then flattened so that each 

position's three-dimensional coordinate information exists as 

an independent row vector. Finally, the dimensionality is 

expanded, and the index tensor 𝑃𝜖𝑅(𝑇×𝐸2)×3  is formed, 

matching the feature tensor in dimensions, with each element 

associated with a position vector. 

Next, to capture the dependencies between time steps, we 

construct neighborhoods for each time step feature and 

calculate relative time position encodings. The Euclidean 

distance squared between the three-dimensional simulation 

coordinates is used to obtain the distance matrix, as shown in 

the following equation: 

 𝑑𝑖𝑠𝑡(𝑖, 𝑗) = ‖𝑃𝑖 − 𝑃𝑗‖22 (3) 

The calculated distance matrix is then sorted, and the k 

nearest time steps to each time step 𝑖  are selected as its 

neighborhood ℳ, where ℳ represents the index set of the 𝑘 

nearest time steps (the optimal value of k is discussed in 

detail in the ablation study). 

Additionally, to perceive the neighborhood structure, 

relative time position encoding is introduced. For each pair of 

time steps 𝑖 and 𝑗, the relative time position difference Δ𝑃𝑖𝑗  is 

computed as: 

 Δ𝑃𝑖𝑗 = 𝑃𝑖 − 𝑃𝑗  (4) 

The calculated relative time position difference is then 

input into a multilayer perceptron (MLP) for position 

encoding mapping, yielding the structural awareness vector 𝑒𝑖𝑗 for each pair of time steps: 

 𝑒𝑖𝑗 = 𝜙 (Δ𝑃𝑖𝑗) = 𝑀𝐿𝑃𝛿(Δ𝑃𝑖𝑗) (5) 

Here, 𝑒𝑖𝑗 is the structural awareness vector obtained after 

the relative time position difference Δ𝑃𝑖𝑗 is mapped through 

the MLP, which helps the model capture the relative temporal 

dependencies between time steps. 

Subsequently, the input frame-level extended features are 

linearly transformed. Through a fully connected mapping 

layer (i.e., 𝐹𝐶1 ), the original feature dimension 𝐷𝑓  is 

projected to the uniformly used feature dimension 𝐷𝑚𝑜𝑑𝑒𝑙: 
 𝐹′ = 𝐹𝐶1(𝐹𝑒𝑥𝑡) (6) 

Subsequently, 𝑄 , 𝐾 , and 𝑉  vectors are constructed. The 

query vector 𝑞𝑖 is generated from the feature of the current 

time step, representing the direction of the temporal 

information the current time step “wants to focus on” 

determining from which part of the temporal data the model 

should gather information. The key vector 𝑘𝑖  and value 

vector 𝑣𝑖 come from the features of adjacent time steps. 𝑘𝑖 
represents the “reference” information of the features at 

adjacent time steps, indicating the similarity between the 

features of the current and adjacent time steps; 𝑣𝑖 carries the 

actual contextual content of the adjacent time step, i.e., it 

provides specific information to the current time step. The 

formulas are as follows: 
 𝑄 = 𝑊𝑞𝐹′, 𝐾 = 𝐼𝑛𝑑𝑒𝑥(𝑊𝑘𝐹′, ℳ), 𝑉 = 𝐼𝑛𝑑𝑒𝑥(𝑊𝑣𝐹′, ℳ) (7) 

where 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣  𝜖𝑅𝐷𝑚𝑜𝑑𝑒𝑙×𝐷𝑚𝑜𝑑𝑒𝑙 , ℳ  stores the indices 

of the k nearest time steps for each time step 𝑖. The 𝐼𝑛𝑑𝑒𝑥 

operation extracts the neighbor features for each time step 

according to the selected neighbor indices, ensuring that the 

model can adaptively focus on the most relevant temporal 

features. 

Next, we compute the attention scores for each time step 

and calculate the weights between neighbors based on these 

scores. The attention score computation formula is: 

 𝛼𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥( 1√𝑑 ∙ 𝑀𝐿𝑃𝛾(𝑞𝑖 − 𝑘𝑖 + 𝑒𝑖𝑗)) (8) 

where 𝛼𝑖𝑗 is the attention weight of time step 𝑖 to time step 𝑗, and 𝑀𝐿𝑃𝛾 is the attention score mapping network. Then, 

using the attention weight, we perform a weighted 

aggregation of the neighborhood value vectors and position 

encodings to obtain the enhanced feature representation: 

 𝑧𝑖 = ∑ 𝛼𝑖𝑗 ∙ (𝑣𝑖 + 𝑒𝑖𝑗)𝑗∈ℳ𝑖  (9) 

Finally, a fully connected mapping layer 𝐹𝐶2 is used to 

map the aggregated feature 𝑧𝑖  back to the original feature 

space and perform residual connection with the input feature 

to obtain the final feature representation: 

 𝑓𝑖′ = 𝐹𝐶2(𝑧𝑖) + 𝑓𝑖 (10) 

The final output is the enhanced frame-level contextual 

feature 𝐹𝑓′ = {𝑓𝑖′}𝑖=1𝑇 𝜖𝑅𝐷𝑓′ ×𝑇
, which possesses stronger 

contextual awareness. 

C.  Feature Sampling Module 

This module converts the previously obtained feature 𝐹𝑓′ 
into a 2D relational matrix to capture the correlation between 

different time intervals and obtain proposal-level features. 

First, a sampling matrix Α  is constructed, where each 

proposal's start boundary 𝑖 and end boundary 𝑗 correspond to 

a sampling matrix 𝑎𝑖,𝑗 . For the time interval from 𝑖 to 𝑗, 𝑁𝑠 

uniformly sampled time points {𝑡1, 𝑡2, … , 𝑡𝑁𝑠} are generated. 

For a proposal 𝜙𝑖,𝑗 = (𝑡𝑠, 𝑡𝑒)，, a set of evenly spaced time 

points is defined, as shown in the following formula: 
 𝑡𝑛 = 𝑡𝑠 + 𝑛𝑁𝑠 (𝑡𝑒 − 𝑡𝑠), 𝑛 = 0,1,2, … , 𝑁𝑠 − 1 (11) 

For each time point 𝑡𝑛 , its floor ⌊𝑡𝑛⌋  and ceiling ⌈𝑡𝑛⌉ 
values are used as the frame index values to update the 

corresponding weight in 𝑎𝑖,𝑗, as described by the following 

formula: 

 𝑎𝑖,𝑗[𝑛, 𝑡] = { 0.5, 𝑡 = ⌊𝑡𝑛⌋ 𝑜𝑟 ⌈𝑡𝑛⌉0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (12) 

The final output is a vector of length 𝑇 representing the 

sampling weights of the time segment from 𝑖 to 𝑗. All 𝑎𝑖,𝑗  are 
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combined to form the entire sampling matrix Α𝜖𝑅𝑇×𝑁𝑠×𝑇 . 

Then, the feature 𝐹𝑓′ is multiplied by the sampling matrix Α 

through a dot product to generate the preliminary 

proposal-level features 𝐹𝑝′𝜖𝑅𝐷𝑓×𝑁𝑠×𝑇×𝑇 , as shown in the 

following formula: 

 𝐹𝑝′ = 𝐹𝑓′ ∙ Α (13) 

Since 𝐹𝑝′ is a high-dimensional feature representation with 

a large computational cost, it is downsampled using a 3D 

convolution to obtain the final proposal-level feature 𝐹𝑝, as 

shown in the formula: 

 𝐹𝑝 = 𝐶𝑜𝑛𝑣3𝑑(𝐹𝑝′) (14) 

D.  Proposal-Level Perception Module 

This module utilizes the proposal-level features obtained 

above to generate probability maps. It uses three 2D 

convolution layers with ReLU activation, followed by a 2D 

convolution layer with a sigmoid activation to generate the 

starting, ending, and content probability maps, as follows: 

 {𝑀𝑠, 𝑀𝑒, 𝑀𝑐} = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣2𝑑((𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣2𝑑(𝐹𝑝)))3)) (15) 

Finally, the starting, ending, and content probability 

sequences corresponding to each time position obtained from 

the frame-level perception module are integrated with the 

starting, ending, and content probability maps generated by 

the proposal-level perception module through the multi-level 

information fusion mechanism. This process results in the 

final temporal action proposals, which are then scored. 

Afterward, the proposals undergo a Soft-NMS[9] 

post-processing operation to eliminate redundant action 

proposals, ensuring that the outputted action proposals are 

more precise and reliable. 

E.  Training Methodology 

To supervise the learning of probability sequences and 

probability maps, we construct the ground truth label 

sequence {𝑆𝑠, 𝑆𝑒, 𝑆𝑐} = {𝑆𝑡𝑠, 𝑆𝑡𝑒, 𝑆𝑡𝑐}𝑡=1𝑇  and the ground truth 

label map {𝐻𝑠 , 𝐻𝑒 , 𝐻𝑐} = {ℎ𝑖,𝑗𝑠 , ℎ𝑖,𝑗𝑒 , ℎ𝑖,𝑗𝑐 }𝑖=1,𝑗=2𝑖<𝑗≤𝑇
, as described 

in[1]. The value of 1 in 𝑆𝑠 or 𝑆𝑒 at time step 𝑡 indicates the 

presence of a start or end boundary for an action at time 𝑡, 

while a value of 0 indicates the absence of a start or end 

boundary. A value of 1 in 𝑆𝑐 between time steps 𝑡𝑠 and 𝑡𝑒 

indicates the existence of a real action instance within this 

time interval. Regarding the ground truth label map, ℎ𝑖,𝑗𝑠  is set 

to 𝑆𝑖𝑠, and ℎ𝑖,𝑗𝑒  is set to 𝑆𝑗𝑒. The intersection-over-union (IoU) 

of time regions 𝑟1  and 𝑟2  can be defined as 𝐼𝑜𝑈(𝑟1, 𝑟2) =|𝑟1 ∩ 𝑟2|/|𝑟1 ∪ 𝑟2| . 𝑟𝑖𝑗  represents the region between time 

positions 𝑖 and 𝑗, and 𝑟𝑡𝑠𝑡𝑒 represents the region of the action 

instance. Then, ℎ𝑖,𝑗𝑐 = 𝐼𝑜𝑈(𝑟𝑖𝑗 , 𝑟𝑡𝑠𝑡𝑒). 

By integrating the generated probability sequences and 

probability maps, the final loss function consists of both 

frame-level and proposal-level components: 

 ℒ𝑀𝐶−𝐶𝑃𝑁 = ℒ𝑓 + ℒ𝑝 (16) 

The frame-level loss is defined as: 

 ℒ𝑓 = ℒ𝑏𝑙(𝑋𝑠, 𝑆𝑠) + ℒ𝑏𝑙(𝑋𝑒, 𝑆𝑒) + ℒ𝑏𝑙(𝑋𝑐 , 𝑆𝑐) (17) 

where ℒ𝑏𝑙 denotes the weighted binary logistic regression 

loss[11]. 

The proposal-level loss is defined as: 
 ℒ𝑝 = ℒ́𝑏𝑙(𝑀𝑠, 𝐻𝑠) + ℒ́𝑏𝑙(𝑀𝑒, 𝐻𝑒) + ℒ́𝑏𝑙(𝑀𝑐𝑐, 𝐻𝑐) + 𝜇ℒ𝑠𝑙(𝑀𝑐𝑟, 𝐻𝑐) (18) 

Here, ℒ𝑠𝑙 refers to the smooth L1 loss, and 𝜇 is set to 10. ℒ́𝑏𝑙 represents the two-dimensional version of the weighted 

binary logistic regression loss. 

III. EXPERIMENT SETUP AND RESULTS ANALYSIS 

A.  Datasets and Evaluation Metrics 

Datasets: We evaluates the proposed method on two 

challenging public datasets: Thumos14 [12] and 

ActivityNet-1.3 [13]. 

Thumos14 is widely used for action recognition and 

temporal action detection tasks. Its training set consists of the 

UCF101 dataset[14], which includes 13,320 trimmed video 

clips from 101 action categories. The validation and test sets 

contain 1,010 and 1,574 untrimmed videos, respectively. 

Following the standard setup in[1-3], we use 200 temporally 

annotated videos from the validation set for training, and 213 

annotated videos from the test set for evaluation. 

ActivityNet-1.3 is a large-scale video dataset designed for 

action recognition and temporal action localization. It 

consists of 19,994 videos annotated with 200 action 

categories. The dataset is split into training, validation, and 

test sets in a 1:1:2 ratio. 

Evaluation Metrics: We use two main evaluation metrics 

for the temporal action proposal generation task. The first is 

Average Recall (AR), which is typically calculated as the 

recall at different numbers of proposals, denoted as AR@AN 

(Average Recall at a given number of proposals). It measures 

the proportion of ground-truth actions that are correctly 

recalled by the model under a specific number of proposals. 

The second metric is the Area Under the AR vs. AN Curve 

(AUC), which evaluates the overall recall performance of the 

model across the entire proposal range. Specifically, for the 

Thumos14 dataset, AR is measured at various numbers of 

proposals (AN), including [50, 100, 200, 500, 1000]. For the 

ActivityNet-1.3 dataset, the evaluation focuses on AR@100 

and AUC as key indicators. 

B.  Temporal Action Proposal Generation Results 

Table I presents the performance comparison of our 

method against several mainstream proposal generation 

approaches on the Thumos-14 dataset (with the best 

performance highlighted in bold and the second-best in 

italics). With I3D features, MC-CPN demonstrates superior 

performance across multiple evaluation metrics, consistently 

outperforming existing methods. The integration of the 

Temporal Context-Aware Module (TCAM) enhances the 

model’s ability to capture long-range temporal dependencies, 

leading to improved boundary prediction, especially in 

complex or ambiguous scenarios. Notably, MC-CPN 

achieves robust results under both low and high proposal 

settings, indicating strong generalization and reliability in 

various proposal budgets. 

To further evaluate the generalizability of the proposed 

model and its effectiveness on long-duration videos, we 

conducted temporal action proposal generation experiments 

on the ActivityNet-1.3 dataset, using AR@100 and AUC as 

evaluation metrics. As shown in Table II, MC-CPN achieves 

the highest AUC of 69.98% under TSP features, 

outperforming all baseline methods. These results 

demonstrate that the proposed multi-level content-aware and 

context modeling strategy is not only effective in short and 
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diverse scenarios (e.g., Thumos-14), but also exhibits strong 

robustness and generalization capabilities in long and 

structurally complex video tasks. 

Table I Comparison of Results on Thumos14 

Method Feature @50 @100 @200 @500 @1000 

BSN[1] TSN 37.46 46.06 53.21 60.64 64.52 

BMN[2] TSN 39.36 47.72 54.70 62.07 65.49 

DBG[15] TSN 37.32 46.67 54.50 62.21 66.40 

BSN++[3] TSN 42.44 49.84 57.61 65.17 66.83 

TCANet[16] TSN 42.05 50.48 57.13 63.61 66.88 

AEI-B[17] C3D 44.97 50.13 57.34 64.43 67.78 

AEI-G[17] C3D 45.31 51.12 58.19 64.58 67.96 

ABN[18] C3D 34.25 44.01 52.05 60.57 65.39 

ABN[18] TSN 40.87 49.09 56.24 63.53 67.29 

DCAN[19] TSN 42.65 51.05 57.95 64.58 68.37 

BCNet[20] TSN 45.50 53.60 60.00 67.00 69.80 

MCBD[6] I3D 44.45 53.99 61.17 67.96 70.91 

MC-CPN I3D 44.91 54.41 61.63 67.98 71.10 

Table II Comparison of Results on ActivityNet-1.3 

Method Feature AR@100 AUC 

BSN[1] TSN 74.16 66.17 

BMN[2] TSN 75.01 67.10 

DBG[15] TSN 76.65 68.23 

BSN++[3] TSN 76.52 68.26 

TCANet[16] TSN 76.08 68.08 

AEI-B[17] C3D 77.25 69.43 

AEI-G[17] C3D 77.24 69.47 

ABN[18] C3D 76.72 69.16 

ABN[18] TSN 76.39 68.84 

DCAN[19] TSN 75.71 67.93 

MCBD[6] TSP 78.29 69.90 

MC-CPN TSP 78.26 69.98 

C.  Ablation Study Analysis 

To comprehensively evaluate the impact of the Temporal 

Context-Aware Module (TCAM) on proposal generation, we 

conducted two ablation studies. The first examines the effect 

of TCAM placement within the MC-CPN framework, while 

the second investigates the influence of different 

neighborhood sizes (k) on temporal context modeling. 

(1) TCAM Placement Analysis: To identify the optimal 

insertion point for TCAM, we tested its placement at various 

stages of the MC-CPN pipeline: 

a. No TCAM (baseline); 

b. Before the first convolution in the frame-level 

perception module (early stage); 

c. Before the second convolution (middle stage); 

d. Before the third convolution (late stage); 

e. Before proposal-level feature extraction. 

These configurations were compared to assess their effects 

on temporal action proposal performance.\ 

Fig. 3 presents the experimental results for different TCAM 

placement strategies, evaluated using the AR@AN metric on 

the Thumos-14 dataset. The results indicate that placing 

TCAM at position e (before proposal-level feature 

extraction) yields the best performance. 

 

Fig. 3 Experimental Study on TCAM Placement 
Specifically, the baseline configuration (position a) 

without TCAM shows the poorest results, highlighting the 

model’s limited ability to capture temporal context when 

relying solely on raw features. Inserting TCAM at the early 

stage of the frame-level perception module (position b) leads 

to marginal improvements, mainly in AR@50 to AR@100. 

Position c (middle stage) offers further gains in AR@100 to 

AR@500, suggesting enhanced context modeling at this 

depth. Position d (late stage) continues to improve AR@200 

and AR@500 performance. Ultimately, position e achieves 

the best overall results, with significant improvements in 

AR@500 and AR@1000, confirming that this placement 

maximizes the benefits of temporal context modeling and 

substantially enhances proposal accuracy. 

(2) Effect of Different k Values 

Based on the optimal TCAM placement identified earlier, 

we further explored the impact of varying neighborhood sizes 

(k = 2, 4, 6, 8, 16) on model performance. The results, shown 

in Table III, indicate that k = 4 consistently achieves the best 

performance. 

As k increases, the model captures more temporal 

dependencies; however, when k reaches 16, excessive 

contextual information introduces noise and degrades 

performance. At k = 4, the model strikes an optimal balance 

between short- and long-range dependencies, leading to the 

highest detection accuracy. These results demonstrate that 

moderate k values enhance temporal modeling, while overly 

large values introduce redundancy that harms boundary 

localization. 

Table II Comparison of Model Performance with Different k Values 

D.  Visualization Results Analysis 

To provide a more intuitive demonstration of the 

experimental results, we visualized the action proposals 

generated by our method on selected videos from the 

Thumos-14 and ActivityNet-1.3 datasets, as shown in 

Figures 3-5 and 3-6. In these figures, "GT" denotes the 

 2 4 6 8 16 @50 @100 @200 @500 @1000 

 

 

k 

     44.17 54.04 61.36 67.82 71.14 

     44.91 54.41 61.63 67.91 71.10 

     44.53 54.19 61.11 67.92 71.13 

     44.52 54.06 61.20 67.89 71.02 

     44.61 54.17 61.30 68.01 71.19 
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ground truth action segments. 

In Fig. 1, Example A presents a gymnastics action clip with 

a ground truth interval from 8.5s to 51.2s. Our method, 

MC-CPN, generated a proposal spanning from 9.0s to 50.4s, 

which exhibits a higher temporal overlap with the ground 

truth compared to MCBD. This indicates that MC-CPN is 

more accurate in capturing complete actions. Example B 

illustrates a rock climbing action, while Example C shows an 

athletic throwing action. The results from both examples 

demonstrate that MC-CPN is capable of generating 

high-quality proposals regardless of whether the video 

contains a single action segment or multiple consecutive 

actions. 

 presents the visualization results on the ActivityNet-1.3 

dataset. As shown in the figure, our method demonstrates 

superior performance in both samples A and B. 

 

Fig. 4 Proposal Visualization for Thumos-14 

 

Fig. 5 Proposal Visualization for ActivityNet-1.3 

V.CONCLUSION 

In this paper, we proposed MC-CPN, a temporal action 

proposal generation method that integrates multi-level 

content perception and contextual modeling. Extensive 

experiments on Thumos-14 and ActivityNet-1.3 demonstrate 

that our method achieves superior performance in both short 

and long video scenarios. The proposed TCAM effectively 

enhances long-range dependency modeling, and ablation 

studies further confirm the benefit of its placement and 

parameter settings. Overall, MC-CPN shows strong 

generalization and robustness in complex temporal action 

tasks. 
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