
International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-12, Issue-05, May 2025 

                                                                                              10                                                                                  www.ijerm.com  

 

Abstract—Magnetic Resonance Imaging(MRI) has a wide range 

of applications in the medical field, such as diagnosis, treatment, 

pathological research,etc.However,due to hardware limitations, 

obtaining high-quality MR images is often challeng ing in 

clinical practice. Therefore, reconstructing high-quality 

MRimages through partial images has important significance in 

medical research. Existing super-resolution methods usually 

use multi-contrast MRI to reconstruct MR images. However, 

existing methods usually use single-scale MR images for 

reconstruction and do not combine with the specificity of MR 

images. To address this issue, we propose a multi-scale feature 

transfer network(SFSR) based on spatial and frequency 

domains, which comprises four components, including the 

shallow feature extrac tor, and the Multi-Scale Frequency 

Attention Block(MFAB), and the Multi-Scale Spatial Attention 

Block(MSAB), and the Multi Scale Fusion 

Block(MSFB).Firstly, we utilize the shallow feature extractor to 

extract features at three scales from both the target and 

reference images. These features are then separately fed into the 

Multi-Scale Frequency Attention Block and the Multi-Scale 

Spatial Attention Block to align the features. Finally, the Multi 

Scale Fusion Block are employed to fuse the aligned features 

across different scales.Extensive experiments on IXI and 

FastMRI datasets show that SFSR achieves the most 

competitive results over state-of-the-art approaches. 

Index Terms—About four key words or phrases in 

alphabetical order, separated by commas.  

I. INTRODUCTION 

Magnetic resonance imaging (MRI) is one of the most 

widely used medical imaging modalities. High-resolution 

med ical images(HR) can provide detailed texture and 

structural information for doctors to accurately diagnose and 

quanti tatively analyze patient conditions. However, due to 

various factors such as hardware conditions, reconstruction 

algorithms, acquisition time, physiological motion, and 

patient-acceptable radiation dose, it is difficult to obtain 

high-quality MR images while taking into account the 

patient’s physical health.Super resolution reconstruction 

technology can improve image qual ity without changing 

external hardware and is often used for post-processing of 

medical images [1] [2]. In clinical practice, Multi-contrast 

images with the same anatomical structure can be obtained 

through different settings, including T1 weighted images 

(T1), T2 weighted images, proton density weighted im ages 

(PD) and fat-suppressed proton density weighted images 

(FS-PD), which can provide complementary information to 

each other [3].Specifically,  
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T1 is used to obtain morphological and structural features 

with shorter repetition and echo times than T2, T2 is used to 

illustrate edema and inflammation, PD is used to provide 

articular cartilage structure with high signal to-noise ratio, 

FS-PD suppresses fat signals and enhances the visibility of 

tissue structure [4].Therefore, T1 and PD images with low 

cost but rich texture can be used to provide supplementary 

texture information for T2 or FS-PD images for 

super-resolution.At present, there are many methods for 

multi contrast reconstruction, Zeng et al [5]. Convolutional 

neural networks are used to simultaneously perform 

single-contrast and multi-contrast super-resolution. Lyu et al. 

introduced a progressive network based on GAN to 

reconstruct multi contrast MR images [6]. Feng et al. used a 

multi-level feature fusion mechanism for multi-contrast SR 

[7].Li et al. employed multi-scale context matching and 

aggregation schemes, as well as gradually interactive 

aggregation of multi-scale matching features [8]. Liu et al. 

used a dual-branch transformer network to reconstruct 

multi-contrast MR images [9]. Although these methods have 

high effectiveness, we still face the following challenges: (1) 

How to effectively align the features of the reference image 

and the target image (2) How to better fuse the aligned 

features.Many existing methods [6] [7]directly upsample low 

resolution images with reference images(Ref) for feature 

extraction and fusion, ignoring the presence of different 

features between images of different scales, and do not 

process MR images in the frequency domain. To address 

these issues, we propose a multi-scale and multi-contrast 

MRI super-resolution framework that combines spatial and 

frequency domains, called SFSR. Our contributions can be 

summarized as follows: 

• We propose a Multi-scale Spatial Attention Block based 

on Tranformer(MSAB) and Multi-scale Frequency Attention 

Block based on Tranformer(MFAB). Specifically, we align 

the features of multi-contrast MR images of different scales 

in the spatial and frequency domains. Due to the 

characteristics of MR images, dividing MR images into real 

and imaginary parts in the frequency domain can more 

accurately align the features.  

• In order to effectively fuse aligned multi-scale features, 

we propose a multi-scale feature fusion block that com bines 

channel selection block. 

• Wedesign a dual-branch multi-scale transformer network 

that combines spatial and frequency domains, which can 

effectively align and fuse features of multi- contrast MR 

images for super-resolution reconstruction of MRI im ages. 

After extensive experiments, our method has been proven to 

be significantly superior to other MRI super resolution 

methods on the IXI and FastMRI datasets. 
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II. RELATED WORK 

A. Single Image Super-Resolution 

Bicubic interpolation and B-spline algorithm are the most 

commonly used upsampling interpolation methods.Recently, 

the single image super-resolution (SISR) method based on 

deep learning has shown excellent results in MRI image 

super resolution. Qui et al [10]used convolutional neural 

networks (CNN) for knee joint MRI SR. Christian et al. [11] 

adopt Generative Adversarial Network (GAN) in 

super-resolution tasks. Li et al. [12]used the attention 

mechanism and cyclic loss in Generative Adversarial 

Network for pelvic image SR reconstruction.Wang et al. [16] 

further proposed an enhanced generator and discriminator, 

achieving more perceptually com petitive results. Liang et al. 

[14] used a closed form Laplace pyramid to accelerate MRI 

super-resolution tasks.Recently, methods of knowledge 

distillation [15] [16] and diffusion [17] [18] have been 

frequently applied in MRI super-resolution tasks. Although 

these effects have shown excellent results in super-resolution 

reconstruction, like interpolation methods, SISR methods 

often introduce artifacts into the reconstructed 

high-resolution images, which can interfere with doctor di 

agnosis and lead to misdiagnosis. Therefore, single image 

super-resolution methods are not suitable for MR images 

reconstruction. 

B. Single Image Super-Resolution 

Compared with the single image super-resolution method 

(SISR), the reference image based super-resolution 

method(Ref-SR) uses additional high-resolution reference 

images as references to perform super-resolution on low 

resolution images(LR). This method is easier to obtain 

accurate texture information and reduces the probability of 

artifacts. For MR images, high-resolution contrast images are 

often used as reference images.CrossNet [19]estimates the 

flow between Ref and LR images at multi-scales and distorts 

Ref features based on the flow. However, traffic is obtained 

through pre trained networks, resulting in high computational 

complexity and inaccurate estimation.SSEN [20]utilizes 

deformable convolution to align and extract features of Ref, 

expanding the receptive field.SRNTT [21] extracted features 

between Ref and LR for matching in pretrained VGG, and 

transferred texture information from the reference image to 

assign low-resolution details based on similarity scores. 

C2matching [22] introduces contrastive correspondence 

networks and teacher-student correlation distillation to align 

images at the pixel level.TTSR [23] retains the idea of 

cross-attention and adds a soft-attention module. MASA [24] 

considered potential differences and reduced computational 

costs. FASR [9] uses a single pyramid alignment module and 

a multi-pyramid alignment module to align features, solving 

the problem of scale matching between LR and Ref.However, 

these methods only align features in the spatial domain. In 

this paper, we use a combination of spatial and frequency 

domains to align features. 

III. METHOD 

A. Overview 

During the acquisition process of MR images, a series of  

multi-contrast images are generated simultaneously. 

Therefore, high-resolution PD images can be directly used as 

reference images(Ref) to provide details for the 

super-resolution of low-resolution and high cost T2 

images.And the raw data of MR images is divided into two 

parts: the real part and the imaginary part. Usually, in the 

frequency domain, the real part contains the edge information 

between the tissues in the MR image, while the imaginary 

part contains the structural information inside the tissues, as 

shown in the figure. Therefore, combining the characteristics 

of MR images in the frequency domain mentioned above, we 

propose a new fea ture alignment super-resolution network 

based on spatial and frequency domain rates. PD images and 

T2 images are used as reference images and low resolution 

images, and feature alignment is performed in spatial and 

frequency domain rates, respectively. 

The architecture of SFSR is shown in the fig. 2. 

Specifically, REF and REF ↓↑ represent PD images and PD 
images that have been downsampled and upsampled with the 

same factor, respectively. LR ↑ represents T2 images that 
have been upsam pled to the same scale as REF through 

bicubic interpolation. After upsampling, the consistency of 

LR and REF sizes can be ensured.  

Overall, SFSR can be divided into three parts: the shallow 

feature extractor, dual-domain feature alignment block, and 

multi-scale fusion block. The shallow feature extractor aims 

to extract features of different scales from LR and Ref, 

facilitating subsequent modules to align features at different 

scales. The dual-domain feature alignment block consists of 

the multi-scale frequency attention block, and the multi-scale 

spatial attention block, which align feature images of 

different scales in the spatial and frequency domains, 

respectively. Finally, a multi-scale fusion module is used to 

fuse the aligned features with the LR. 

B. shallow feature extractor 

We choose the CNN [25] network based on the VGG 

architecture as the shallow feature extractor, responsible for 

extracting three-level features from MR images, as shown in 

Fig. 2.  

 
Fig. 2 Architecture diagram of shallow feature extractor (SFE) 

The shallow feature extractor consists of three con 

volutional modules, where the first two convolutional blocks 

contain two convolutional layers composed of convolution 

operations, BN layers, and ReLU functions, and the last 

convolutional block only contains one convolutional 

layer.Due to the higher resolution of the input Ref compared 

to the LR, in order to establish the feature correspondence 

between the Ref and the LR, we need to upsample the LR, 

and the reference image needs to be degraded through 

downsampling and upsampling to obtain a feature 

distribution relationship similar to the LR. Therefore, the 

images input to the multi feature extractor are the upsampled 
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LR↑, the downsampled and upsampled Ref↑↓, and the 

original Ref.And use the extracted shallow features of the 

same level for q, k, and v in subsequent Transformer block. 

C. Multi-Scale Spatial Attention Block(MSAB) 

Drawing inspiration from TTSR [23], we developed a 

Multi Scale Spatial Attention Block(MSAB).As shown in Fig. 

3 To fully utilize the interrelationships between different 

levels of features, we use the deepest level feature of ILR↑as 
the query (q) in the MSAB, which contains a large number of 

 
Fig. 1 Overview of SFSR. SFSR consists of three parts, the shallow feature extractor, the dual-domain feature alignment module, and the multi-scale fusion 

block. The input REF, REF ↑↓, and LR are first processed through the shallow feature extractor block to obtain multi-scale feature maps. Then, the 
dual-domain feature alignment module aligns features of different scales in the spatial and frequency domains respectively, and outputs the aligned features 

Fspa and Ffraq 

semantic features. Then, we unfold the Ref↑↓ and Ref of the 
three levels separately as keys (k), k={k4×, k2×, k1×} and 

values (v), v={v4×, v2×, v1×}, which respectively contain the 

structural features, edge features, and semantic features of 

Ref. Calculate the correlation between q and k and activate it 

with Softmax. 

( )  1,2,4nq,kSoftmaxRM nn

spa == 
 (1) 

( ) ( )  1,2,4ni,jargmaxRMiH n

spa

n

spa == 
 (2) 

( )( )  1,2,4niHvT n

spa

nn

spa == 
 (3) 

Since v is obtained by recombining the Ref image, we also 

add the aligned features of q={q4×, q2×, q1×} at three scales 

and pass through multiple residual blocks to supplement the 

structural, edge, and semantic features of LR ↑ that are 
missing in the Ref into the feature map. The final feature map 

obtained can be obtained by the following formula: 

 1,2,4nqTF nn

spa

n

spa =+= 
 (4) 

 
Fig. 3 The Multi-Scale Spatial Attention Block(MSAB) is shown in the 
above figure. After calculating the correlation matrix between q and k, the 

attention matrix is used to guide feature alignment, and the aligned features 
are added to q for feature supplementation. After passing through the 

residual block, the final feature is obtained. 

D. Multi-Scale Spatial Attention Block(MSAB) 

Feature alignment on a single scale only may lead to 

misalignment of LR images and Ref images, and feature 

alignment in the frequency domain can better preserve the 

edge information in the image, which makes the edge 

boundaries of different tissues in MRI images clearer and 

more conducive to the diagnosis of lesions. Inspired by [26], 

we built a Multi-Scale Frequency Attention Block(MFAB) 

based on frequency domain rate, as shown in Fig. 4. In order 

to convert the image into real and imaginary parts, we need 

the magnitude and phase information of the image, and in 

general, the magnitude can be obtained by the following 

equation, 

0,,,
,, = tj

i

tj

i

tj ZeZeZ tjtj 
 (5) 

( ) += tjtj i

tj

i

tj eZeZ ,,

,,  (6) 

where Zj,t,Θj,t denotes the magnitude Zj,t and phase Θj,t of 

the t-th element, Zj represents the input vector. In order to 

capture the specific attributes of each input separately, we use 

the estimation module Θ to generate the phase information 
based on the input feature Xj , i.e., θj = Θ(xj , Wθ ), where Wθ 

denotes the learnable parameters. In summary, the 

component can be specifically obtained by the following 

equation: 

jjal ZZ cosRe =  (7) 

jjImag sinθZZ =  (8) 

We compute the real and imaginary parts of the inputs LR↑, 
Ref↑↓, and Ref, respectively, and expand them as qreal, qimag, 

kreal, kimag, vreal, vimag. 

The computation of the similarity matrix is similar to Eq. 

(1) and can be expressed as: 

( )  1,2,4nkqSoftRM n

real

n

real

n

real ==  ,max  (9) 

( )  1,2,4nkqSoftRM n

imag

n

imag

n

imag ==  ,max  (10) 

The correlation matrices obtained for the x1 and x2 sizes in 

the real and imaginary parts, respectively, are subjected to the 

up-sampling operation and summed with the correlation 

matrix for the x4 size to obtain the final attention matrices in 

the real and imaginary parts, which can be expressed as 

follow: 

( ) ( )  ++= 421

realrealrealreal RMRMRMRM   (11) 

( ) ( )  ++= 421

imagimagimagimag RMRMRMRM   (12) 

( )  1,2,4ni,jargmaxRMH real

n

real ==
 (13) 
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( )  1,2,4ni,jargmaxRMH imag

n

imag ==
 (14) 

Similarly, we perform feature alignment in the real and 

imaginary parts of the image, respectively. The alignment 

features in the real and imaginary parts of images T1 and T2 

can be formulated as follows: 

( )( )  1,2,4niHvT n

real

nn

real == 
 (15) 

( )( )  1,2,4niHvT n

imag

nn

imag == 
 (16) 

Finally we perform a magnitude operation on the real and 

imaginary parts of the aligned features and the attention 

matrix to obtain the final attention matrix and aligned 

features, which can be formulated as: 

( ) ( )  1,2,4nFHHH n

Ref

2n

imag

2n

real

n

freq =++= 
 (17) 

( ) ( )  1,2,4nFTTF n

Ref

2n

imag

2n

real

n

freq =++= 
 (18) 

 
Fig. 4. Multi-Scale Frequency Attention Block is shown in the above figure. 

Mapping q and k to the frequency domain, the correlation between q and k is 

computed on the real and imaginary parts respectively to get the correlation 

matrix Hreal and Himag to guide v for feature alignment to obtain the aligned 
features Treal and Timag . The to the final aligned feature after calculating through 

the magnitude  . 

E. Multi-scale Feature Fusion Block(MSFB) 

Commonly used fusion methods such as concatenation 

(splicing) and averaging often lead to insufficient interaction 

of multi-scale image information. To address this problem, 

we propose a multi-scale fusion block fusing features aligned 

in the spatial and frequency domain rates respectively. As 

shown in Fig. 5, it’s input is a low-resolution image(LR). 

( ) ( )
 1,2,4n

SSS

S

n

imag

n

real

n

spa
n

fus =






 ++

=





2

22

 (19) 

In addition, for better feature interaction between different 

scales, we also designed the channel selection block as in Fig. 

6. Specifically, in CSB, Our channel selection block can be 

specifically obtained from the following equation: 

( ) ( )  ++= 221222

fusfusfusfusfusCA FFFFCAFCAF  (20) 

( ) ( )  ++= 111211

fusfusfusfusfusCA FFFFCAFCAF  (21) 

 += 212

CACAout FFF  (22) 

In channel selection block that performs 4x zoom, the 

second selection module we select 1x scale and 4x scale 

feature maps, 2x scale and 4x scale feature maps for feature 

selection. 

 

 
Fig. 5. The multi-scale feature fusion block is shown in the above figure. In 

order to fully fuse the features on multiple scales of the image, we fused in 

the multi-scale fusion module  , the  and  Features. In order to fully 
integrate the features between different scales, we introduce a channel 

selection module. as shown in Fig. 6. 

 
Fig. 6. the channel selection block is shown in the figure above. the CA is the 
channel attention block. 

IV. LOSS 

L1 Loss: In order to compute the difference between the Isr 

and GT images, a method of computing the pixel-level 

difference between the two images can be used. This method 

directs our network to focus more on the detailed part of the 

image. Previous experiments have demonstrated his 

effectiveness. We choose the L1 loss as the most pixel-level 

loss for the network, which is given as 

GTSR1 IIL −=  (23) 

V. EXPERIMENTS 

A. Datebase 

（1）IXI dataset: The IXI dataset[29] contains MRIs of 

578 patients, which include T1, T2 and PD-weighted images, 

among others. Among them, T1, T2 and PD images are 

images of different modalities under the same anatomical 

structure. Our experiments use downsampled T2 images as 

input, original T2 images as GT, and PD images as reference 

images. Specifically, the specific sizes of both T2 and PD 

images in the IXI dataset are 256 × 256 × 3. In order to 

achieve 2x scale and 4x scale of super-resolution results, we 

downsampled T2 at the corresponding multiplicity. Before 

training, all images were normalized to the range [-1, 1]. We 

selected 8000 pairs and 800 pairs of T2 and PD images in the 

dataset as the training and validation sets. 

（2）FastMRI Dataset: The FastMRI dataset [30] [31] 

con tains four types of data from knee MRI and brain MRI. 

We selected the knee part of the dataset, cropped it to 

256×256 size in k-space and used the inverse Fourier 

transform to transform the cropped data to the image domain 

to produce the original image, and downsampled the PDFS 

image according to the corresponding magnification to 

produce the LR image, and other operations were the same as 

those of the IXI dataset.We selected 216 pairs and 20 pairs of 

PD and PDFS images in the dataset as the training and 

validation sets 
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Fig. 7. The above figure presents a visual comparison of the outputs and residual maps from different models at 2× magnification on the IXI and FastMRI 

datasets. The residual map quantifies the absolute pixel differences between the model's output and the corresponding ground truth (GT). LR stands for low 
resolution, created through downsampling. HR denotes the ground truth. 

（3）IMPLEMENTATION DETAILS: We implement 

our model us ing one NVIDIA RTX A6000 GPU with 

single-card 48GB memory. Our model is trained using the 

Adam optimizer for 50 epochs, and a learning rate is set to 

1e-5. 

B. Objective and Subjective Comparison 

To demonstrate that our proposed model achieves better 

super-resolution results, we performed experiments on the 

IXI dataset and FastMRI dataset, respectively.  

(1) IXI Dataset: We compared our results with previous 

work on 2× scale and 4× scale on the IXI dataset, 

including EDSR, MCSR, MINet, TTSR, MASA, and 

FASR, and can conclude that our method achieves the 

best results compared to existing methods.Specifically, 

MCSR also utilizes multi modal images as a reference 

map, but lacks accurate fusion of features from the 

reference image, and falls short of our approach.MINet 

utilizes the reference map to learn hierarchi cal feature 

representations from multiple convolutional stages for 

each image of different contrasts, and achieves better 

results.TTSR and MASA align low resolution images of 

ref erence images at the semantic level, achieving more 

effective results.FASR used a multi-contrast flexible 

alignment network and achieved significant results. Due 

to our feature alignment in the frequency domain, our 

method outperforms FASR and MASA.In the fig. 7, we 

show the ISR of the 4× scale output and the 

corresponding residual plots to demonstrate the best 

visualization of our model. The residual plots exhibit 

the absolute pixel value difference between the 

resolution results and the GT, as shown in Table. I, 

where our method achieves the best results.  
TABLE 1 

QUANTITATIVE COMPARISON OF IXI DATASETS 

DATASET IXI 

SCALE ×2 ×4 

METHODS METRIC 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ 

BICUBIC 24.21 0.769 20.32 0.672 

EDSR 30.11 0.891 29.52 0.85 

MCSR 38.55 0.928 33.81 0.891 

MINET 39.23 0.972 37.51 0.933 

TTSR 39.95 0.977 37.89 0.961 

MASA 40.69 0.981 38.26 0.971 

FASR 40.91 0.981 38.52 0.974 

OUR 41.984 0.986 39.03 0.9746 

 

(2) FastMRI Dataset: We also compared our method on 

FastMRI dataset with other methods. The evaluation 

metrics, Table. II, show that our method outperforms 

the other methods. The corresponding residual plots are 

shown in Fig. 8. 
TABLE 2 

QUANTITATIVE COMPARISON OF FASTMRI DATASETS 

DATASET FASTMRI 

SCALE ×2 ×4 

METHODS 

METRIC 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ 

BICUBIC 26.9 0.613 18.52 0.605 

EDSR 30.12 0.767 24.28 0.684 

MCSR 33.920 0.837 29.74 0.731 

MINET 34.427 0.839 31.60 0.7371 

TTSR 34.380 0.837 31.86 0.743 

MASA 34.582 0.840 31.93 0.745 

FASR 34.615 0.841 32.24 0.752 

OUR 34.768 0.844 32.50 0.759 

 

C. Ablation Study 

 In order to verify the effectiveness of the proposed compo 

nents, we conducted several experiments on IXI 4× scale to 

verify the effectiveness of the components as shown in 

Table.It includes (1) Multi-Scale Spatial Attention 

Block(MSAB)(2) Multi-Scale Frequency Attention 

Block(MFAB) (3) Multi Scale Feature Block(MSFB).The 

quantitative results are shown in Table 3. And the visual 

results are shown in Fig. 9 In the MSAB-free experiment, we  
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Fig. 8. The above figure presents a visual comparison of the outputs and residual maps from different models at 4× magnification on the IXI and FastMRI 

datasets. The residual map quantifies the absolute pixel differences between the model's output and the corresponding ground truth (GT). LR stands for low 
resolution, created through downsampling. HR denotes the ground truth. 

 
Fig. 9. The above figure presents a visual comparison of the output and 

residual images from the ablation experiment conducted at 4x magnification 

on the IXI dataset 
TABLE 3 

MODULE ABLATION EXPERIMENTS BASED ON THE IXI DATASET 

SETTING SPAATTEN FREQATTEN MSFB PSNR SSIM 

MSAB  √ √ 38.01 0.971 

MFAB √  √ 37.08 0.966 

MSFB √ √  38.38 0.973 

ALL √ √ √ 39.03 0.974 

removed the null-domain-based alignment module and kept 

only the frequency-domain-based feature alignment module, 

which resulted in a decrease in both PSNR and SSIM metrics 

compared to the full structure. We also removed the 

Multi-Scale Frequency Attention Block, and it can be seen 

that the metrics by a significant decrease, indicating that the 

frequency-domain based feature alignment module has a 

more significant effect on the alignment of fea tures.In the 

experiments without MSFB module, we use con volutional 

layer and up-sampling operation instead of MSFB fusion 

module, and we can conclude that compared with direct 

fusion, our MSFB module can fuse features between different 

scales more effectively. 

VI. CONCLUSION 

In this paper, we propose a multi-scale MRI 

super-resolution network based on frequency and spatial 

domains, where the inputs of the network are multi-contrast 

MR images that provide high-resolution HR images.First, we 

propose a dual domain feature alignment module, including a 

Multi-Scale Spatial Attention Block(MSAB) and a 

Multi-Scale Frequency Attention Block(MFAB).The MSAB 

performs feature align ment in the spatial domain and the 

MFAB performs feature alignment in the frequency 

domain.In addition, the multi-scale feature fusion module 

(MSFB) can adequately align multi scale features, and a 

channel selection block is proposed to better fuse features at 

different scales.Extensive experiments on IXI and FastMRI 

datasets show that our method achieves good results in both 

quantitative and qualitative evaluations. 
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