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Abstract—With the rapid advancement of Medical Internet of 

Things (IoMT) technology, the interconnectivity of medical 

devices and data sharing have greatly enhanced smart 

healthcare. However, these developments also introduce critical 

security challenges, including data privacy breaches, inefficient 

identity authentication, and coarse-grained access control. To 

address the privacy preservation and secure authentication 

requirements for multi-stakeholder collaboration in medical 

ecosystems, this paper proposes a secure IoMT architecture 

that integrates multi-layered privacy protection mechanisms 

with lightweight authentication. The architecture aims to 

enable trusted data sharing, fine-grained access control, and 

efficient identity verification. This study focuses on two key 

contributions:(1) Lightweight Batch Verification Algorithm 

Using Schnorr Digital Signatures: A bidirectional identity 

authentication mechanism between sensor nodes and mobile 

terminals is developed. This mechanism ensures data integrity 

while substantially reducing computational overhead. (2) Local 

Differential Privacy Protection for Medical Data Sharing: To 

mitigate privacy leakage risks during data sharing, a 

privacy-preserving framework is designed. By strategically 

injecting calibrated noise into medical datasets, individual 

privacy is preserved without compromising data utility. This 

approach balances personalized privacy requirements with 

analytical validity, effectively preventing inference-based 

privacy attacks. 

 
Index Terms—Medical Internet of Things; Identity 

authentication; Local differential privacy protection; Schnorr 

digital signature; Batch verification 

 

I. INTRODUCTION 

With the continuous development of technology and the 

improvement of living standards, people are paying more and 

more attention to their personal physical health. However, 

existing medical services and resources cannot meet people's 

existing healthcare needs. In recent years, with the rapid 

development of the Internet of Things and intelligent medical 

information technology, the medical Internet of Things has 

become an important means of achieving medical 

information sharing and collaborative work. Medical Internet 

of Things (IoT) is an extension of IoT technology in the 

medical field. Its purpose is to connect various sensors, 

medical devices, intelligent terminals, and information 

systems together through IoT sensing and communication 

technology, in order to achieve the collection, transmission, 

real-time monitoring, remote management, and intelligent 

analysis of medical data, and to meet the network of people to 

things and things to things communication for hospital 

operation and medical services. The medical Internet of 
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Things can enable the interconnection and interoperability of 

medical production factors such as medical equipment, 

intelligent terminals, and medical facilities, realizing the 

"perception of all things, interconnection of all things, and 

intelligence of all things" in medical business, completely 

eliminating "information silos" and "data fragmentation", and 

greatly improving medical efficiency. 

However, the issue of privacy leakage has become 

increasingly prominent. In order to improve the privacy and 

practicality of the medical Internet of Things, many scholars 

have focused on researching identity authentication and 

privacy protection methods. This paper aims to study the 

identity authentication and privacy protection mechanisms 

for the medical Internet of Things, in order to solve the 

security and privacy protection problems currently existing in 

intelligent healthcare, and to meet the security and privacy 

protection needs of the medical Internet of Things. 

Through this study, we hope to provide an effective 

solution to improve the security and privacy protection of the 

medical Internet of Things, promote the secure sharing and 

collaborative work of medical information. We believe that 

by adopting advanced identity authentication and privacy 

protection mechanisms, the medical Internet of Things will 

be able to improve the efficiency and quality of medical work 

while protecting patient privacy. 

II. RELEATED WORK  

A. Identity Authentication 

The identity authentication scheme in the medical Internet 

of Things is mainly about improving and developing key 

algorithms and optimizing the cost of identity authentication. 

With the continuous development of the Internet of Things 

and medical technology, there have been many discoveries 

about identity authentication protocols in the medical Internet 

of Things. 

In 2020, Mwittende and Ali et al.[1] proposed a bilinear 

based certificateless authentication scheme. However, for 

sensors, this solution will increase computing power and 

storage space, which will impose a huge burden on sensors 

with limited resources. Therefore, Zhang, He, and others[2]  

proposed an identity based encryption signature obfuscation 

method that utilizes mobile device resources to sign and 

encrypt data collected by sensors, reducing the burden on 

sensors. Xu et al.[3] and Thumbur et al.[4] also proposed a 

lightweight identity authentication scheme, respectively. In 

order to securely and efficiently transmit data between sensor 

nodes and intelligent terminals, it is not only necessary to 

achieve fast identity authentication, but also to establish 

session keys to encrypt data transmission[5]. At the same 

time, in order to accelerate communication, session keys 
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need to be established. However, one-on-one authentication 

methods can limit identity authentication efficiency[6][7]. 

Shen and Chang et al.[8] proposed a lightweight identity 

authentication scheme based on sensor and smart terminal 

identity authentication and session key sharing. Although the 

authentication efficiency is improved, it is susceptible to 

impersonation attacks. Xu and Chen et al.[9] proposed a 

lightweight scheme for anonymous authentication, taking 

into account the data privacy issues present in the medical 

Internet of Things. 

B. Privacy Protection 

The privacy protection in the medical Internet of Things 

mainly focuses on preventing the leakage of private data 

while ensuring the statistical characteristics of data. Privacy 

Preserving Data Publishing (PPDP) technology[10]-[12] is a 

centralized privacy protection based on a fully trusted 

third-party platform. The current PPDP technology mainly 

includes data encryption[13][14], data anonymity[15]-[17] 

and data perturbation[18]-[21]. 

PPDP technology based on data encryption uses 

encryption methods, such as homomorphic 

encryption[22][23], to hide information and protect privacy. 

Although this method has high data security and accuracy, 

and it is also very difficult for attackers to crack ciphertext, 

the computational cost is high and it is often used in 

distributed environments. In the big data environment, data 

not only needs to realize its usefulness, but also needs to 

ensure that the privacy of the participants and data providers 

is not leaked. Therefore, traditional encryption and 

decryption methods are completely insufficient. 

Based on anonymous PPDP technology , in order to ensure 

data privacy is not leaked, in addition to removing some 

attributes of the data, some attributes should also be retained. 

This technology aims to weaken the correlation between 

sensitive attributes and individuals by performing 

generalization and suppression operations on data, in order to 

reduce the risk of privacy data leakage and ensure the 

authenticity and practicality of the data. 

The perturbation based PPDP technique  distorts the 

original data by adding noise or false data, as well as 

numerical exchange. Therefore, attackers cannot infer the 

correct original data based on the distorted data. However, 

this technology can cause significant information loss for a 

single data point, and its application scope is limited. 

Collecting privacy protection data refers to participants 

being able to perform privacy protection locally, and then 

aggregate and analyze it on smart terminals. Unlike PPDP 

technology, which relies on fully trusted third-party 

platforms, this technology moves privacy protection to the 

local end without relying on third-party trusted platforms, 

reducing the risk of privacy leakage. 

Differential privacy[22] is a widely recognized and robust 

privacy protection model, which is based on data distortion 

and achieves privacy protection by adding noise to the data. It 

is not related to the background knowledge possessed by the 

attacker, and even if the attacker possesses all data except for 

a certain participant data, it is still impossible for them to  

obtain the privacy information of the participant. 

Therefore, differential privacy has received much attention 

since its proposal in 2006. However, differential privacy is 

also assumed to have a fully trusted third party during data 

processing, that is, centralized differential privacy[22][23]. 

In fact, there is no fully trusted third party, so some 

researchers have proposed a Local Differential Privacy (LDP) 

data collection framework[24]-[29], which not only has the 

characteristics of centralized differential privacy technology 

to quantify privacy attacks, but also refines the protection of 

personal sensitive information, and protects data privacy 

locally, alleviating the risk of third-party privacy litigation. 

There are currently three types of perturbation mechanisms 

for localized differential privacy, namely random 

response[30], information distortion[31], and information 

compression[32]. Among them, random response technology 

is the mainstream disturbance technology, and the degree of 

disturbance can be directly quantified, with excellent 

performance. Random Response Technology (RTT) was 

proposed in the 1960s to collect statistical characteristics of 

sensitive data, add random noise to sensitive data, and hide 

individual information. At present, researchers have 

considered the personalized privacy needs of participants and 

applied the same perturbation treatment to individuals with 

the same needs. 

III. EXPERIMENTAL METHODS 

In medical Internet of Things (IoMT) scenarios, secure 

transmission of sensor data, patient privacy protection, and 

fine-grained data sharing face multiple challenges. Firstly, 

traditional identity authentication methods struggle to 

balance lightweight operations with high security in 

resource-constrained environments between sensors and 

patient terminals. Particularly in batch verification scenarios, 

excessive computational overhead and communication costs 

may lead to efficiency bottlenecks and security 

vulnerabilities, failing to ensure data integrity and source 

reliability. To address these challenges, this paper proposes a 

lightweight batch verification scheme based on Schnorr 

digital signatures for IoMT data security transmission and 

privacy protection. A bidirectional identity authentication 

mechanism between sensor nodes and mobile terminals is 

developed, which guarantees data integrity while 

significantly reducing computational resource consumption. 

Additionally, to overcome the limitations of traditional 

Randomized Response (RR) mechanisms—including 

homogeneous privacy protection levels and insufficient 

differentiated protection for sensitive data—we innovatively 

propose a multi-dimensional sensitivity-adaptive 

Randomized Response perturbation mechanism. 

 

A. System Model 

The system model of the Medical Internet of Things 

proposed in this article is shown in Figure 1. The system 

model mainly includes six types of objects: sensor nodes, 

intelligent terminals, fog nodes, blockchain, medical servers, 

and medical staff. 
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Figue1 The Architecture Diagram of IoMT 

1）Sensor nodes  
Sensor nodes are responsible for collecting various 

medical data on or around patients, such as physiological 

parameters, motion data, etc.  

2）Intelligent terminal 
Intelligent terminals, as personal devices for patients or 

healthcare workers, receive sensor data and can perform local 

processing, display, and user interaction. For example, 

patients can monitor their own health status through smart 

terminals, while medical staff can use smart terminals to view 

patient data or perform remote monitoring.  

3）Fog node  
The fog node is located at the edge of the network and is 

responsible for receiving and processing data from sensor 

nodes. Fog nodes can provide real-time data processing, 

storage, and computing capabilities, reducing data 

transmission latency.  

4）Blockchain 
Blockchain will store abnormal data processed by fog 

nodes, and other medical staff can access the blockchain to 

query and verify the recorded abnormal data, achieving 

real-time monitoring and collaborative processing of 

patients.  

5）Medical servers  
Medical servers are located on higher-level networks or 

clouds, responsible for summarizing and storing large 

amounts of medical data, supporting medical information 

management systems, data analysis, and decision-making.  

6）Medical staff  
Medical staff can access data from medical servers through 

intelligent terminals or other devices, enabling remote 

monitoring, diagnosis, and treatment. 

B. Achieving Goals 

This article mainly studies the identity authentication 

technology and privacy protection of the medical Internet of 

Things. The specific research work is as follows:  

1）Identity authentication is a major service of the medical 

Internet of Things, which enables intelligent terminals (i.e. 

access points) to verify the legitimacy of sensor nodes 

participating in communication. Only messages sent by 

authorized nodes can be detected and collected. However, 

traditional TCP/IP network authentication schemes have high 

computational and communication costs, and due to 

limitations in computing power, energy, and memory, these 

schemes are not suitable for the medical Internet of Things. 

Therefore, it is necessary to design a lightweight identity 

authentication between sensor nodes and intelligent terminals, 

which not only ensures security but also emphasizes 

efficiency and adaptability, achieves resource management 

and control, and protects the privacy of nodes. 

2) Personal data contains a large amount of sensitive 

information, such as personal identity, health status, and 

financial information. If this information is leaked, it will 

cause very serious consequences to oneself. Therefore, data 

privacy protection should be adopted to strengthen the 

protection intensity and prevent data leakage. 

C. Schnorr Batch-Verified Lightweight Identity 

Authentication 

With the exponential growth of the scale of Internet of 

Things (IoT) devices, traditional identity authentication 

schemes face severe challenges in scenarios with limited 

resources. On the one hand, the computational overhead of 

signature verification for each item is difficult to meet the 

real-time requirements of low-power devices. On the other 

hand, when a large number of devices access concurrently, 

the centralized authentication architecture is prone to 

communication congestion and single-point failure risks. 

Especially in high-security scenarios such as the Internet of 

Medical Things (IoMT), it is necessary to ensure strong 

privacy protection capabilities for identity authentication 

while also taking into account the lightweight deployment 

requirements of device terminals. Aiming at the above 

problems, this section proposes a lightweight identity 

authentication protocol based on batch verification of 

Schnorr digital signatures (SBV-LIA) to reduce resource 

consumption, lower costs, conduct rapid verification, 

enhance security, and provide an efficient and secure 

lightweight authentication method for IoMT devices. Its 

workflow is shown in Figure 2. 

 
Figure2 Flow chart of SBV-LIA 
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1) Scheme Description 

The process of identity authentication based on Schnorr 

between the sensor and the patient mainly consists of three 

parts, namely key generation, signature generation, and 

signature verification. The specific signature scheme is as 

follows: 

a) Key Generation 

i. Firstly, select large prime numbers p and q, where q is a 

prime factor of p-1, and p≥2512, q≥2160. 

ii. Select a generator g of Zp, and g satisfies: 𝑔𝑞 =1 𝑚𝑜𝑑 𝑝 where𝑞 ≠ 1. 𝐻 is a one-way hash function. 

iii. Randomly select 𝑢𝑖(1 <  𝑢𝑖 <  𝑞) . Calculate: 𝑦𝑖 =𝑔𝑢𝑖  𝑚𝑜𝑑 𝑝.Then 𝑢𝑖 serves as the private key of one sensor, 

and 𝑦𝑖  serves as the public key of this sensor. 

b) Signature Generation 

i. The sensor randomly selects an integer 𝑘𝑖（1 < 𝑘𝑖 <𝑞). Calculate 𝑟𝑖 = 𝑔𝑘𝑖𝑚𝑜𝑑 𝑝. 

ii. Calculate the formula:ℎ𝑖 = 𝐻(𝑟𝑖 , 𝑀𝑖) .where 𝑀𝑖  is the 

signed message of this sensor. 

iii. Calculate the formula: 𝑠𝑖 = 𝑘𝑖 − 𝑢𝑖ℎ𝑖  𝑚𝑜𝑑 𝑞 .Take （ℎ𝑖 , 𝑠𝑖） as the signature of the sensor for the data 𝑀𝑖 . 
c) Signatue Verification 

After the patient successively receives multiple signed 

messages 𝑀𝑖  and signatures (ℎ𝑖 , 𝑠𝑖)  from the sensor, the 

patient will verify the correctness of the signatures in batches. 

The specific steps are as follows: 

i. Firstly, calculate:𝑟𝑖′ = 𝑔𝑠𝑖𝑦𝑖 ℎ𝑖 𝑚𝑜𝑑 𝑝. 

ii. Secondly, calculate:ℎ𝑖′ = 𝐻(𝑟𝑖′, 𝑀𝑖). 

iii. Calculate the collected batch signatures: ∑ 𝑠𝑖𝑛𝑖=1 =∑ 𝑘𝑖 − 𝑢𝑖ℎ𝑖𝑛𝑖=1 . 
iv. The patient checks:∑ ℎ′𝑛𝑖=1 = ∑ ℎ𝑛𝑖=1  whether it holds? 

If it holds, then (ℎ𝑖 , 𝑠𝑖) is a legal signature of 𝑀𝑖 , and the 

patient will receive the data transmitted by the sensor; if it 

does not hold, the signature is invalid, and the patient will not 

receive the data transmitted by the sensor. 

2) Analysis of the Correctness and Security of the Schnorr 

Signature Scheme 

a) The correctness proof of the above signature is as 

follows: ∏ 𝑟′𝑖𝑛
𝑖=1  =  𝑔∑ 𝑠𝑖𝑛𝑖=1 𝑦𝑖 ∑ ℎ𝑖𝑛𝑖=1  

= ∏ 𝑦𝑖 ℎ𝑖  𝑛
𝑖=1 𝑔∑ 𝑠𝑖𝑛𝑖=1  

 = ∏ 𝑔𝑢𝑖ℎ𝑖𝑛
𝑖=1  𝑔∑ 𝑘𝑖−𝑢𝑖ℎ𝑖𝑛𝑖=1     = 𝑔∑ 𝑢𝑖ℎ𝑖𝑛𝑖=1  𝑔∑ 𝑘𝑖−𝑢𝑖ℎ𝑖𝑛𝑖=1    = 𝑔∑ 𝑘𝑖𝑛𝑖=1 = ∏ 𝑟𝑖𝑛

𝑖=1  

From ∏ 𝑟′𝑖𝑛𝑖=1 = ∏ 𝑟𝑖𝑛𝑖=1 , we can get 𝐻(𝑟′𝑖 , 𝑀𝑖) =𝐻(𝑟𝑖 , 𝑀𝑖). That is ℎ′𝑖 = ℎ𝑖. It can be seen that the signature (ℎ𝑖 , 𝑠𝑖) is valid. 

b) Security Analysis 

Strong Randomness: The random numbers used in 

Schnorr signatures are crucial. The signer, that is, the sensor, 

needs to select a random number and associate it with the 

discrete logarithm. If the generation of the random number is 

not random enough, it may lead to the leakage of the private 

key. And the strong randomness of random number 

generation is a major feature of Schnorr signatures. 

Selective Message Attack: In a selective message attack, 

the attacker will try to forge signatures to fit specific 

messages. Protocols based on Schnorr signatures can usually 

resist selective message attacks because the signature 

verification process is carried out for the entire message 

space, not just for a single message. 

Existential Forgery Attack: An existential forgery attack 

means that the attacker can generate a new signature that is 

valid under the signature algorithm without accessing the 

information of the legitimate signature. Protocols based on 

Schnorr signatures have strong resistance to existential 

forgery attacks because the security of Schnorr signatures is 

based on the discrete logarithm problem, and the attacker 

cannot find an equivalent signature of the legitimate 

signature within a reasonable time. 

D. Research on the Data Privacy Protection Mechanism 

Based on Local Differential Privacy Protection 

In the research on identity authentication and privacy 

protection for the Internet of Medical Things, this chapter 

focuses on the issue of balancing privacy protection and data 

availability. Aiming at the defects of the traditional 

Randomized Response (RR) mechanism, such as the 

simplification of privacy protection levels and the 

insufficient differential protection of sensitive data, this 

chapter innovatively proposes a multi-dimensional 

sensitivity adaptive randomized response perturbation 

mechanism. 

1) Local Differential Privacy Data Collection Mechanism 

Based on Randomized Response 

This section focuses on the exploration of personalized 

privacy security for multi-dimensional discrete symmetric 

privacy sources within the RR model. The relevant theories 

presented here are equally applicable to the RR model of 

binary discrete sources. 

The localized data collection framework based on 

Randomized Response consists of two key components: 

client-side data perturbation and aggregated statistical 

analysis. The specific workflow is as follows: 

Client-Side Data Perturbation: For an 𝑚 discrete finite 

privacy source 𝑌 with a predefined prior distribution 𝑃𝑌 =[𝑃1, 𝑃2, . . . , 𝑃𝑚] , a sample set 𝑌 ={𝑌1, 𝑌2, . . . , 𝑌𝑛}  from N participants is independently and 

identically distributed. Assume each participant (or sensor) 

holds one privacy-sensitive value. The sample 𝑌𝑁 undergoes 

randomized processing to generate perturbed data, which is 

then transmitted to data collectors such as smart terminals. 

Every privacy sample is perturbed via this randomized 

response mechanism. 

Aggregated Statistical Analysis: Data collectors (e.g., 

smart terminals) aggregate the perturbed data 𝑌 ={𝑌1, 𝑌2, . . . , 𝑌𝑛}  from N participants (sensor nodes) and 

perform statistical analysis to infer the distribution of the 

privacy source. The goal of collecting privacy-protected data 

in this section is to determine the prior distribution of the 

privacy source. 

In this chapter, we adopt the Gradient Randomized 

Response (GRR) technique, which inherently falls within the 

framework of traditional Randomized Response (RR) models. 
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This model can be structured as a transmission process of a 

multi-dimensional discrete channel. The specific details of 

the model are as follows: 

 
Figure2 Binary Symmetric Channel Modeling of the 

Randomized Response Process 

Set the privacy source 𝑌 = {𝑌1, 𝑌2, . . . , 𝑌𝑛}  (where |𝑌|  = 𝑚 ≥ 2). After being perturbed by the privacy protection 

mechanism based on randomized response, the output is 𝐻 ={𝐻1, 𝐻2, . . . , 𝐻𝑛} . Since this privacy protection mechanism 

can be represented as the conditional probability 𝑃𝐻\𝑌(𝐻 =ℎ\𝑌 = 𝑦) = 𝑃𝐻\𝑌(ℎ\𝑦) of mapping 𝑌 = 𝑦 to 𝐻 = ℎ. If the 

multi-dimensional discrete channel is symmetric, then 𝐷𝑜𝑚(𝑌) = 𝐷𝑜𝑚(𝐻) . This chapter mainly focuses on the 

symmetric privacy channel. Therefore, for the convenience 

of processing and analysis, when 𝑖 = 𝑗, 𝑌𝑖 = 𝐻𝑖(𝑖, 𝑗 ∈ {1, 2, 

..., m}). 

By default, privacy information is of great significance to 

the localized privacy protection data collection mechanism of 

the CRR model, and the degree of privacy protection should 

not vary due to differences in sensitive values, that is, the 

privacy protection requirements for different sensitive values 

are the same. Assume that PCRR is the privacy protection 

mechanism of the CRR model, which can be represented by 

an 𝑚 × 𝑚 row-stochastic matrix, and its expression form is: 𝑃𝐶𝑅𝑅(ℎ𝑗|𝑦𝑖) = {        𝑃,              𝑗 = 𝑖1 − 𝑃𝑚 − 1 ,              𝑗 ≠ 𝑖 
That is, regardless of the sensitive values, the same privacy 

protection measures are implemented: the m-CRR model 

maintains the original value with a constant probability P and 

randomly outputs one of the remaining m-1 sensitive values 

with a probability of (1 − 𝑃)/(𝑚 − 1). Additionally, 𝑃𝐶𝑅𝑅  is 

an 𝑚 × 𝑚 symmetric matrix and has full rank, meaning it is 

an invertible matrix. 

As indicated by the relevant formulas, the CRR model 

provides uniform privacy protection for all sensitive values, 

which raises an issue: some less sensitive values are 

overprotected, while highly sensitive values receive 

insufficient protection. In real-world scenarios, the sensitivity 

of different values varies significantly, and the required 

protection intensity should correspondingly differ, as privacy 

attackers may gain different benefits and cause varying 

impacts from different sensitive values. In view of this, this 

paper meticulously designs a personalized randomized 

response mechanism based on the CRR model. This 

mechanism aims to achieve personalized privacy-protected 

data collection, thereby enhancing participants' willingness to 

contribute data and alleviating their concerns about privacy 

issues. 

2) Research on the Local Differential Privacy Mechanism 

of Personalized Randomized Response Based on the Weight 

of Sensitive Values 

After adopting the Local Differential Privacy (LDP) data 

collection mechanism based on Randomized Response, the 

privacy protection capability of medical data during the 

transmission process has been significantly enhanced. 

However, traditional methods apply a uniform privacy 

protection intensity to all sensitive values, that is, they assign 

the same noise perturbation parameter to attribute values of 

different sensitivity levels (such as patients' ages, diagnostic 

results, gene sequences, etc.). This "one-size-fits-all" strategy 

not only leads to a waste of resources (for example, excessive 

noise addition to low-sensitivity attributes), but also may 

reduce the actual privacy protection effect of highly sensitive 

data. To address this issue, this subsection proposes a 

personalized randomized response mechanism based on the 

weight of sensitive values (Weighted Randomized Response, 

WRR), which achieves differential privacy protection by 

dynamically assigning weights to sensitive values. 

The dataset used in this section focuses on a single 

dimension. This dataset contains a sensitive attribute X, and 

this attribute has m sensitive values, that is 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑚}. In the CRR mechanism, for each sensitive 

value 𝑥𝑖 ∈ 𝑋, the original value is maintained with the same 

probability P. Due to the consistent perturbation parameter, 

the degree of privacy protection is also the same. 

However, in the PRR mechanism, we set the perturbation 

parameter according to the weight of the sensitive value to 

achieve personalized privacy protection. Let the probability 

that the sensitive value 𝑥𝑖  is maintained in the PRR 

mechanism be (𝑤𝑖), and it needs to satisfy the following 

conditions: (1) Non-negativity: For each sensitive value 𝑥𝑖 ∈𝑋, 𝑃(𝑤𝑖) ∈ (0, 1]. (2) Monotonicity: For any two sensitive 

values 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋, if the sensitive value weight 𝑤𝑖 ≥ 𝑤𝑗 , then 

the corresponding perturbation probability (𝑤𝑖) ≥ 𝑃(𝑤𝑗) . 

This indicates that the subjective sensitivity of the sensitive 

value increases with the increase of the sensitive value weight, 

and its demand for privacy protection also increases 

accordingly. 

The PRR model incorporates the key element of the weight 

of sensitive values to meet personalized privacy requirements. 

Its privacy protection mechanism PPRR is expressed as: 𝑃𝑃𝑅𝑅(ℎ𝑗|𝑦𝑖) = { 𝑃(𝑤𝑖)          𝑗 = 𝑖1 − 𝑃(𝑤𝑖) 𝑚 − 1    𝑗 ≠ 𝑖 
In the m-PRR model, for the sensitive value 𝑥𝑖 ∈ 𝑋 , it 

responds with the probability of 𝑃(𝑤𝑖)  and outputs the 

original value, and with the probability of (1 −𝑃(𝑤𝑖))/(𝑚 − 1), it responds and outputs one of the other 

m-1 sensitive values. The modeling of its m-ary symmetric 

channel is shown in the following figure 4: 

 
Figure 4  Modeling of m-ary Symmetric Channel for 
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Personalized Randomized Response Mechanism 

As shown in the figure, the PRR model achieves the goal 

of personalized privacy protection. It applies low-intensity 

privacy protection to sensitive values with lower sensitivity 

and high-intensity privacy protection to sensitive values with 

higher sensitivity. 

This chapter constructs a personalized privacy protection 

mechanism based on randomized response. This mechanism 

not only gives individuals control over their own private data 

but also, according to the strength of privacy needs, 

implements perturbation processing of corresponding 

intensities, effectively alleviating individuals' privacy 

concerns. In addition, when specific privacy leakage 

conditions are met, the data collection party can analyze and 

process the data, and then obtain relevant results. 

IV. EXPERIMENTAL RESULTS 

A. Schnorr Batch-Verified Lightweight Identity 

Authentication 

The batch identity authentication scheme based on Schnorr 

digital signature (SBV-LIA), significantly improves the 

identity authentication efficiency between sensor nodes and 

patient terminals in the Internet of Things medical scenarios 

by introducing the batch signature verification mechanism 

and the parallel processing architecture. It also saves 

resources and reduces consumption. 

 
Figure 5  Comparison Graph of Number of Signatures vs. 

Verification Time 

From Figure 5, we can see that when the number of 

signatures is 10, 20, 50, 100, 200, 500, 1000, 1500, and 2000, 

the verification time of our proposed SBV-LIA scheme is 

significantly lower than that of single-signature verification. 

Moreover, as the number of signatures increases, the 

time-saving advantage of our scheme becomes more 

pronounced. For example, when the number of signatures is 

2000, the verification time of the SBV-LIA scheme is less 

than one seventh of the single-signature verification time. 

Additionally, as the number of signatures rises, the 

performance improvement ratio of SBV-LIA becomes 

increasingly large, reaching up to 86% when the number of 

signatures is 2000. Figure 3-3 clearly demonstrates the 

significant advantages of our proposed SBV-LIA scheme in 

large-scale scenarios, making it suitable for 

high-concurrency medical IoT systems or blockchain 

networks and notably enhancing computational efficiency. 

B. Research on the Data Privacy Protection Mechanism 

Based on Local Differential Privacy Protection 

1) Security Analysis  
The privacy level of local differential privacy (LDP) can 

be explored from the following aspects:   

Decentralization: Since LDP does not require a central 

server to store raw data, all privacy protection operations are 

completed on the user side. This avoids the risk of all data 

leakage caused by attacks or compromises on the central 

server.   

Noise Addition: By adding random noise (such as Laplace 

noise or Gaussian noise) on the user side, attackers are 

prevented from inferring individual sensitive information by 

observing the output results.   

Post-Processing Invariance: The output of LDP still 

satisfies differential privacy guarantees for any subsequent 

post-processing operations (such as aggregation or analysis), 

ensuring that privacy protection is maintained throughout the 

entire data processing flow. 

2) Experimental Analysis 
The following shows the relationship between ε and attack 

success rate obtained by varying ε. 

 

Figure 6  ε versus Attack Success Rate 

 

From the comparative experimental graph in Figure 6, it 

can be seen that CDP (Centralized Differential Privacy) 

provides better data utility when ε is small but relies on a 

trusted third party; LDP (Local Differential Privacy) does not 

require a trusted party but incurs greater utility loss; 

personalized LDP offers a compromise between flexibility 

and security. 

V. CONCLUSIONS 

The rapid development of the Internet of Medical Things 

(IoMT) has brought revolutionary changes to the healthcare 

field. Through device interconnection and data sharing, it has 

significantly improved diagnosis and treatment efficiency as 

well as service quality, enabling patients to enjoy 

technological benefits such as remote monitoring and 

personalized diagnosis and treatment. However, the high 

sensitivity of medical data (e.g., disease diagnosis records, 

genetic information, medication history, etc.) makes it a 

primary target for hacker attacks. Statistics show that in 2023, 

the average single loss caused by global medical data 

breaches reached $10.8 million, far exceeding other 

industries. Data breaches not only threaten patient privacy 

but also risk damaging the reputation of medical institutions, 

leading to legal disputes, and causing social trust crises. 
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Therefore, how to achieve efficient operation and 

cross-institutional collaboration of IoMT systems while 

ensuring data security and privacy compliance has become a 

core issue urgently needing resolution in both academia and 

industry.   

Aiming at the problem of effectively protecting user 

identity and data privacy security in IoMT, and combining 

the actual needs of medical scenarios, this paper constructs a 

privacy protection and security authentication system 

covering the entire process of "data 

collection-transmission-storage-sharing." It also proposes 

identity authentication and data privacy protection schemes 

for this application scenario:   

1) For the resource-constrained characteristics of edge 

terminals such as wearable devices and implantable sensors, 

as well as the integrity and security of sensor data, a 

lightweight identity authentication method based on Schnorr 

digital signature batch verification is proposed. This method 

accelerates identity verification between sensors and patients, 

saving resources and reducing consumption.   

2) To address the privacy leakage risks in medical data 

sharing, a data privacy protection mechanism based on local 

differential privacy protection is designed. By adding noise, 

it fulfills personalized privacy protection requirements.   

This paper proposes storage and access schemes for user 

data to solve the problems of identity authentication and 

privacy protection in IoMT, significantly improving the 

utilization of medical resources. 
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