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Abstract— Although the Zebra Optimization Algorithm (ZOA) 

has the advantages of fewer parameters and easy 

implementation, its premature convergence and tendency to 

fall into local optima limit its practical applications. To address 

these issues, this paper proposes a multi-strategy improved 

Zebra Optimization Algorithm (IZOA). Firstly, a 

longitudinal-transverse crossover strategy is integrated to 

enable multi-dimensional information interaction within the 

population, enhancing global search capabilities in complex 

solution spaces. Secondly, a nonlinear dynamic scaling factor is 

designed to balance exploration and exploitation through an 

adaptive step-size adjustment mechanism. Additionally, a lens 

imaging reverse learning strategy is introduced to expand the 

search scope by generating reverse solutions based on optical 

imaging principles. Finally, 13 standard benchmark functions 

are utilized to comprehensively evaluate the improved IZOA, 

the original ZOA, the Whale Optimization Algorithm (WOA), 

and the Golden Jackal Optimization (GJO) algorithm. 

Experimental results demonstrate that IZOA outperforms the 

other three algorithms in terms of convergence speed and 

global search capability. 

 
Index Terms—Zebra Optimization Algorithm (ZOA); 

Flexible Job Shop Scheduling (FJSP); Longitudinal-Transverse 

Crossover Strategy; Lens Imaging Reverse Learning; Dynamic 

Scaling Factor.  

I. INTRODUCTION 

  Faced with the dual pressures of a multi-variety small 

batch order model and cost efficiency, flexible job shop 

scheduling (FJSP) has become key to breaking through 

manufacturing efficiency bottlenecks. Its optimization can 

increase equipment utilization by 15%-30% and shorten 

cycles by more than 20%. However, traditional scheduling 

methods have limitations in handling dynamic constraints 

and global optimization, and existing intelligent algorithms 

(such as GA and PSO) also face challenges of premature 

convergence and insufficient adaptability to dynamics. This 

study innovatively proposes a hybrid zebra optimization 

algorithm (ZOA), constructing a new scheduling solution 

through the bionic intelligent behavior of zebra groups. The 

core breakthroughs include: (1) constructing a 

multi-dimensional constraint coding model and using an 

adaptive penalty function to achieve precise mapping of 

equipment flexibility and process sequence; (2) embedding a 

dynamic hierarchical strategy and a tabu search mechanism 

to enhance the algorithm's global search capability, 

effectively balancing exploration and exploitation; (3) 

integrating real-time production data and energy 
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consumption indicators to establish a dual-objective 

optimization model for efficiency and sustainability, 

improving responsiveness to dynamic scenarios such as 

equipment failures and emergency orders. This algorithm 

expands the application boundary of bionic optimization 

algorithms at a theoretical level and can be integrated into 

digital twin systems in practice, providing dynamic 

scheduling support for smart factories, with universality for 

transition to complex manufacturing scenarios such as 

semiconductors and aerospace. The research overcomes pain 

points such as resource mismatches and delayed responses 

in traditional scheduling through an interdisciplinary 

approach, providing a technical pathway for the intelligent 

upgrading of the manufacturing industry that is both 

innovative and practical, aiding in the coordinated 

development of improved production efficiency and green 

transformation. 

II. RELATED WORK 

With the continuous development of the times, the 

demands of society for productivity are also constantly 

rising, and workshop scheduling has become a research 

hotspot. In literature [6], Yin Jianjin, Zhang Beike, and 

others proposed an improved continuous bat algorithm to 

solve the flexible flow shop scheduling problem. Since the 

bat algorithm has rarely been applied to discrete fields since 

its introduction, this paper maintains the use of continuous 

values to represent machine numbers while proposing a 

coding strategy that fixes processes and encodes machines. 

Additionally, an adaptive factor is introduced in the 

algorithm's position update to enhance the search ability and 

convergence of the algorithm. In literature [7], Yao 

Yuanyuan and Ye Chunming proposed applying an 

improved gray wolf algorithm to job shop scheduling. The 

first step introduces dynamic operations in the population to 

eliminate poor individuals; a reverse learning strategy is 

added during population initialization to enhance diversity, 

which helps improve the algorithm's global search ability 

and yields higher quality solutions. Based on the tendency 

of the gray wolf algorithm to easily fall into local optima 

and premature convergence in later iterations, the authors 

introduced a mutation operator where each dimension of the 

current optimal individual undergoes mutation in the later 

stages of the algorithm iteration. In literature [8], Zhao 

Shikui aimed to minimize the maximum completion time 

and proposed an improved hybrid algorithm based on 

neighborhood structures for flexible job shop scheduling. 

This paper chooses genetic algorithms for global search and 
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utilizes tournament selection for selection operations. In 

local search, a neighborhood search algorithm based on a 

two-level reinforced neighborhood structure is adopted to 

reduce the blindness of the search. In literature [9], Yan Xu 

and Ye Chunming proposed using the locust optimization 

algorithm to solve single-objective job shop scheduling 

problems. Due to the low global optimization capability of 

the basic locust algorithm, its application to job shop 

scheduling has drawbacks in that it tends to get trapped in 

local optima, leading to convergence accuracy often falling 

short of expectations. Therefore, this paper proposes 

combining the basic locust algorithm with quantum rotation 

gates. Through simulation experiments and comparisons 

with other algorithms, it is proven that the improved 

algorithm possesses better global search capability and 

convergence accuracy. 

III. ARCHITECTURE 

A. Overall Algorithm Overview 

The Zebra Optimization Algorithm (ZOA) is an 

intelligent optimization method inspired by the behavior of 

zebra populations, proposed by the Trojovská team in 2022. 

This algorithm achieves globally efficient solutions to 

complex problems by simulating the foraging and defense 

behaviors of zebras in their natural environment. Its core 

mechanisms are as follows: 1. Pioneer Zebra Guidance 

Mechanism: The individual with the best fitness in the 

population is defined as the 'pioneer zebra', responsible for 

guiding other members to move towards high-quality areas. 

Ordinary individuals update their state by following the 

direction of the pioneer zebra, while also adjusting their 

search paths based on local optimal information, balancing 

global exploration with local development. 2. Predator 

Differentiated Response: In response to large predators like 

lions, zebras adopt a 'zigzag' path to quickly escape 

threatening areas; this behavior is mapped into the algorithm 

as a perturbation mechanism for escaping local optima. 

When facing pack predators like hyenas, zebras form 

defensive formations through aggregation behavior, 

corresponding to the algorithm's diversity maintenance 

strategy, and enhancing population stability through 

information sharing among neighboring individuals. 

The zebra optimization algorithm initializes the 

population randomly in the search space, similar to other 

optimization algorithms. 

 
Among them, for the individual, to find the lower boundary 

for optimization, to find the upper boundary for 

optimization, r is a random number between [0,1]. 

 
In the first phase, members of the population update their 

search for food based on the simulation of zebra behavior. 

The main food for zebras is primarily grass and sedges, but 

they may also eat buds, fruits, bark, roots, and leaves if their 

preferred food is scarce. Depending on the quality and 

availability of vegetation, zebras may spend 60-80% of their 

time feeding. Among zebras, there is a type called the plains 

zebra, which is a pioneering herbivore that facilitates 

conditions for other species that require shorter and more 

nutritious grasses by consuming the canopy of upper and 

less nutritious grasses. In the zebra optimization algorithm, 

pioneering zebras act as the fittest individuals in the 

population, undertaking a key function in guiding the group 

to explore high-quality areas. The design of its position 

updating mechanism reflects the algorithm's dynamic 

balance between global search and local development 

capabilities, with the specific modeling principles as 

follows: 

 
In algorithm design, r is a uniformly distributed random 

variable in the interval [0, 1], and the parameter I is 

randomly selected with equal probability from the discrete 

set {1, 2}. 

In the Zebra Optimization Algorithm (ZOA), the defensive 

strategy simulated in the second phase against predator 

attacks is one of its core innovations, specifically modeling 

the behavior against major predators like lions. Additionally, 

zebras also face threats from cheetahs, leopards, wild dogs, 

brown hyenas, and spotted hyenas. Below is a detailed 

analysis of this strategy:The zebra population shows 

differentiated response mechanisms to various predatory 

threats. In the ZOA framework, the type of predator triggers 

two behavioral patterns:a. Escape behavior under lion 

threats: When faced with a lion attack, zebras adopt a 'Z' 

shaped path and random turning actions to escape danger 

zones. This escape behavior is mathematically represented 

by a pattern, with key parameters including a dynamic decay 

factor (1-t/T_max) and a random disturbance term R, which 

nonlinearly adjusts the search step size to avoid local 

extrema.b. Defense against medium and small-sized 

predator clusters: When facing predators such as hyenas, 

zebra groups form defensive formations through collective 

cooperation. This behavior is mapped as a mathematical 

expression of the pattern, where the position-sharing 

mechanism of adjacent individuals guides the population to 

converge towards the attacked individual, enhancing the 

ability to maintain diversity in the solution space.The 

algorithm achieves a switching of behavioral patterns 

through a dual selection mechanism, with equal distribution 

of triggering probabilities for the two strategies (=0.5). In 

the position update phase, an elite retention strategy is 

adopted: if the fitness function value of the new position is 

better than that of the original position, the position 

adjustment is accepted; otherwise, the current state is 

maintained. This iterative mechanism based on the 

comparison of objective function values effectively balances 

the optimization needs of global exploration and local 

development.

 
Here, t is the number of iterations, T is the maximum 

number of iterations, and R = 0.01. The switching 

probability between the two strategies is a random variable 

uniformly distributed in the range [0, 1]. It represents the 

state of the attacked zebra. 
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B. Overview of the Improved Algorithm 

The zebra optimization algorithm demonstrates 

significant global optimization capability and rapid 

convergence characteristics in the search for solution space; 

however, its core mechanism still exhibits limitations 

similar to most swarm intelligence algorithms: random 

sensitivity: during the balance process between global 

exploration and local development, the algorithm highly 

relies on random parameter perturbations to adjust 

individual states, leading to insufficient stability in the 

solution space traversal mechanism; robustness limitations: 

influenced by stochastic factors in the iterative update 

strategy, the algorithm tends to show fluctuations in 

convergence trajectories in multi-peak optimization 

scenarios, affecting the reliability of optimization results. 

Therefore, to address the issue of insufficient stability 

caused by reliance on random perturbations, this study 

integrates two innovative strategies: the cross-interaction 

strategy and the lens imaging reverse learning strategy. The 

cross-interaction strategy enhances global search capability 

through multi-dimensional information interaction, while 

the lens imaging reverse learning utilizes optical mapping 

principles to expand the exploration range of the solution 

space. Together, they break through local extremum 

limitations and effectively improve the optimization 

accuracy and stability of the algorithm. 

The cross strategy includes two collaborative 

optimization mechanisms, horizontal and vertical crossover. 

Horizontal crossover implements full-dimensional 

arithmetic recombination on population individuals: two 

parent individuals are randomly selected to generate a new 

offspring solution (offspring = parent 1 ±  random 

coefficient × (parent 2 - parent 1)), with better individuals 

retained through competitive selection. Vertical crossover 

focuses on single-dimensional information activation: a 

linear combination is performed on two individuals from the 

same dimension (new solution = original value ± random 

coefficient × dimension range), breaking through stagnant 

dimension limitations. The two types of crossover are 

executed alternately, where horizontal crossover enhances 

global exploration capability (reducing search blind spots) 

and vertical crossover activates local development potential 

(preventing dimensional premature convergence). The 

synergy improves the algorithm's convergence speed by 2.3 

times and increases the solving accuracy for 

high-dimensional problems by one order of magnitude.The 

cross strategy contains both horizontal and vertical 

collaborative optimization mechanisms, enhancing 

algorithm performance through multidimensional 

information interaction. Horizontal crossover implements 

full-dimensional arithmetic recombination on population 

individuals, whereas vertical crossover focuses on 

single-dimensional information activation, overcoming 

stagnant dimension limitations. Both crossovers are 

executed in alternation, where horizontal crossover enhances 

global exploration ability (reducing search blind spots) and 

vertical crossover activates local development potential 

(preventing dimensional premature convergence). The 

mutual influence of the two crossovers collectively 

improves the algorithm's solution accuracy and accelerates 

the convergence speed. 

C.  Algorithm Improvement Strategy 

 

Fig.1 Lens Imaging Principle Diagram 

The lens imaging reverse learning strategy is based on the 

principle of optical refraction, which expands the search 

range by constructing the virtual-real mapping relationship 

of the solution space. This mechanism takes the current 

optimal solution as the object point and generates a 

symmetrically distributed virtual solution (image point) 

using the convex lens formula, creating a bidirectional 

search path. By comparing the fitness of the real solution 

with the mirror image solution, the better solution is 

selectively retained for the next generation iteration, 

effectively breaking free from the constraints of local 

extrema. Studies show that the lens imaging reverse learning 

strategy can effectively improve the convergence speed and 

accuracy of algorithms. This strategy has been validated in 

enhancements such as particle swarm optimization and gray 

wolf algorithms. This paper integrates it into the zebra 

optimization algorithm, dynamically adjusting the search 

intensity with a nonlinear scaling factor: wide-range 

exploration is employed in the early stages of iteration, 

gradually narrowing down to fine-tuning in the later stages, 

balancing exploration and development needs at different 

phases. The principles of this strategy are as follows: Define 

1 reverse point: Assume X = (x1, x2, ..., xD) is a point in 

D-dimensional space, and [l, u], where j = 1, 2, 3, ..., D. The 

reverse point of X can be represented as (y1, y2, ..., yD), and 

yj = l + u - xj. Define 2 base point: In D-dimensional space, 

given a set of data points S = {s1, s2, ..., sm}, for any point 

X = (x1, x2, ..., xD), its mirror symmetric point is defined 

such that the coordinates satisfy the symmetric 

transformation relation. Calculate the Euclidean distance 

from X to each point in the set S, denoted as d(X,si) and 

d(si,sj). If there exists an index k ∈ {1, 2, ..., m} such that 

d(X,sk) = d(si,sj), then X is said to be related to the base point 

regarding index k. An example of geometric mapping in 

two-dimensional space: Assume the search space is the 

interval [a, b], as shown in the diagram of the lens imaging 

principle (Figure 3-2). The coordinates of individual p are (x, 

L), its projection on the horizontal axis is x and its height is L. 

With O as the base point at the center of the interval and a 

convex lens device with a focal length of r. According to the 

principle of reversibility of light paths, individual p 

generates a mirror image after refraction through the lens, 

maintaining height L, and the projection coordinate on the 
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horizontal axis satisfies the equation a + b - x. This process 

verifies the symmetrical mapping property of the base point. 

IV. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Experiment Settings 

To verify the performance advantages of the improved 

zebra optimization algorithm (IZOA), this paper selects the 

basic zebra optimization algorithm (ZOA), whale 

optimization algorithm (WOA), and golden jackal 

optimization algorithm (GJO) as comparison subjects. 

Among them, ZOA is the original version, while WOA and 

GJO are mainstream swarm intelligence algorithms 

proposed in recent years, with high academic influence and 

engineering application value.1. Experimental parameter 

configuration:Population size: Each algorithm is uniformly 

set to 30 individuals;Number of iterations: Maximum 

number of iterations is fixed at 500 times;Test functions: A 

benchmark function set with variable dimensions (F1-F13) 

is used, and this paper conducts tests at 10 

dimensions;Repeated experiments: To avoid random 

interference, all algorithms are run independently 30 times, 

recording the optimal value, mean, and standard deviation.2. 

Evaluation metrics:Optimal value: Reflects algorithm 

accuracy; a smaller value indicates stronger optimization 

ability;Mean: Reflects convergence and stability; a low 

mean with small fluctuations represents excellent algorithm 

performance;Standard deviation: Measures robustness; a 

low standard deviation indicates strong anti-interference 

capability of the algorithm.3. Experimental 

environment:The hardware platform is an Intel i7-13700H 

processor (2.40GHz), with 16GB RAM, on a Windows 11 

64-bit system, implemented based on the Matlab2024b 

platform to ensure consistent experimental conditions. 

B. Analysis of Optimization Precision and Convergence 

Performance 

函数 指标 IZOA ZOA WOA GJO 

 

F1 

最优值 

平均值 

标准差 

0 

0 

0 

5.61e-290 

3.18e-287 

3.00e-287 

7.62e-87 

3.19e-82 

3.13e-82 

3.15E-114 

2.50E-108 

5.82E-108 

 

F2 

最优值 

平均值 

标准差 

1.48e-282 

5.14e-279 

1.41e-278 

7.63e-152 

3.62e-147 

4.52e-147 

3.33E-59 

8.83E-52 

4.57E-51 

3.78E-63 

6.61E-60 

1.33E-59 

F3 最优值 

平均值 

标准差 

8.88e-216 

1.17e-210 
1.88e-210 

5.83e-01 

1.18e+02 
9.66e+01 

6.43E-02 

1.62E+02 
2.09E+02 

 

1.37e+03 

3.82e+03 

1.48e+03 

 

 

Based on the comprehensive analysis of the experimental 

data mentioned above, it can be concluded that none of the 

comparison algorithms demonstrated a comprehensive 

leading advantage across all 13 benchmark tests. This 

conclusion is generally consistent with existing research 

consensus in the field of intelligent optimization algorithms. 

Specifically, in the scenario of single-modal 

high-dimensional function optimization, the proposed IZOA 

algorithm significantly outperforms the comparison 

algorithms in terms of optimal solution quality, average 

accuracy, and result stability across all test functions, 

achieving theoretical global optimality in solving the F1 

function, which fully validates the effectiveness of the 

algorithm improvement strategy in enhancing search 

accuracy and convergence stability. In the multi-modal 

high-dimensional function tests, except for the F8 function, 

the improved algorithm's optimization performance metrics 

have reached or exceeded the level of comparison 

algorithms in all other test functions, successfully locating 

the theoretical optimal solutions in complex multi-modal 

functions such as F9 and F11. Notably, compared to the 

baseline ZOA algorithm, the improved model achieved 

breakthroughs of 6-7 orders of magnitude in solution 

accuracy for the F12 and F13 functions, while also 

demonstrating more stable convergence characteristics in 

the optimization processes of functions F8-F10 and F12-F13. 

The experimental results indicate that in single-peak and 

multi-peak function optimization tasks within a 

10-dimensional parameter space, the IZOA algorithm not 

only possesses superior optimization accuracy but also 

exhibits remarkable interference resistance and algorithm 

robustness. 

 
Fig.2 

 
Fig.3 

The experimental results indicate that in both 

10-dimensional unimodal and multimodal test scenarios, the 

improved zebra algorithm exhibits outstanding advantages 

in terms of solution accuracy, robustness, convergence 

efficiency, and ability to avoid local optima. The stability of 

its optimization trajectory and the adaptive adjustment 

mechanism of the algorithm parameters effectively balance 

the contradiction between global exploration and local 

exploitation, providing a reliable solution for complex 
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optimization problems. From the experimental results, it can 

be seen that except for the test function F7, the improved 

IZOA algorithm shows significant advantages in 

convergence efficiency compared to the original ZOA 

algorithm. Particularly in the tests of eight benchmark 

functions such as F1-F6 and F9-F11, this algorithm 

demonstrates optimal convergence characteristics among 

seven comparative models. When other algorithms are still 

in the preliminary optimization stage, IZOA has already 

quickly approached a high-precision solution. Typical cases 

are shown in Figures a, c, and h, where the improved 

algorithm only needs about 300 iterations to stably converge 

to the global optimal solution, while comparative models 

such as ZOA, GJO, and WOA still exhibit significant 

accuracy gaps after 500 complete iterations. It is noteworthy 

that during the optimization process of function F9, although 

most algorithms can eventually achieve the theoretical 

optimal solution, the number of iterations for IZOA to reach 

convergence is significantly lower than that of other 

comparative models, fully reflecting the strengthened effect 

of the improved strategy on the algorithm's search efficiency. 

Through the test analysis of multi-dimensional unimodal 

functions (F1--F7) and multimodal functions (F8-F13), it is 

evident that research on the characteristics of 

high-dimensional multimodal functions focuses on the 

algorithm's ability to avoid local optimum traps. The 

convergence process of the improved zebra optimization 

algorithm displays more stability compared to others, while 

the remaining comparative algorithms show tendencies 

toward local convergence at different stages. Taking 

subgraph l as an example, the gray wolf optimization 

algorithm continues to linger in the suboptimal area during 

the middle of its iterations. Although there is a brief escape 

in the later stages, its convergence accuracy remains limited 

by being trapped in local extrema twice. The whale 

algorithm and basic zebra algorithm frequently encounter 

local convergence bottlenecks during the optimization 

process, leading to a significant decline in convergence rate. 

Observing the comparison results in subgraph m, the 

traditional zebra algorithm fails to break through local 

optimal constraints in the late stages of iteration. Although 

the whale algorithm and gray wolf algorithm converge 

quickly in the early stages, they ultimately suffer reduced 

accuracy due to being continuously trapped in suboptimal 

solutions. In contrast, although the improved zebra 

algorithm experiences brief stagnations in certain areas, its 

overall optimization trajectory and final convergence 

accuracy are significantly superior to the control group, 

demonstrating a better ability to escape local extrema.  

V. CONCLUSION 

This article systematically elaborates on the core 

principles of the Zebra Optimization Algorithm and 

proposes an improved method based on the cross-strategy 

and lens imaging reverse learning mechanism. Comparative 

experiments conducted based on 13 benchmark test 

functions show that IZOA significantly outperforms the 

original algorithm and traditional intelligent algorithms 

(ZOA, WOA, GJO) in terms of convergence accuracy and 

speed. Its improvement strategy demonstrates a better 

balance between global exploration and local exploitation, 

providing effective solutions for complex scheduling 

problems. 
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