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Abstract—The rise of cloud computing has completely transfor

med the architecture and operation mode of traditional IT infra

structure, and task scheduling algorithms play a crucial role in 

this process. An excellent task scheduling algorithm can ensure 

the efficient and stable operation of cloud computing systems, e

nhance user experience, and maximize the economic benefits of 

service providers. This paper addresses the issues of uneven het

erogeneous resource load and insufficient resource utilization i

n cloud task scheduling. By taking task completion time, load b

alance degree, and resource waste as optimization objectives, th

is paper improves the recently proposed Nutcracker Optimizati

on Algorithm (NOA) and creatively applies it to the cloud task s

cheduling scenario to improve the scheduling efficiency of cloud

 computing systems. 

This paper proposes an Improved Nutcracker Optimization Al

gorithm with Adaptive Chaotic Strategy (INOACS). By introdu

cing random reverse learning, elite pool selection, and non-excl

usive local search strategies, the quality of solutions is improved,

 and the local exploitation and global search capabilities are enh

anced, avoiding the algorithm falling into local optima. To addr

ess the problems of uneven initial population distribution and t

he difficulty in balancing global search and local exploitation, c

haotic mapping initialization and an adaptive α parameter base
d on population diversity are introduced, further improving the

 convergence speed and optimization ability of the algorithm. 

A scheduling model with task completion time, load balance deg

ree, and resource waste as optimization objectives is constructe

d based on INOACS. Simulation experiments verify the good pe

rformance of the INOACS algorithm under different task scales

and numbers of virtual machines. 

Index Terms—Nutcracker Optimization Algorithm; Swarm I

ntelligence Algorithm; Cloud Computing; Task Scheduling 

I. INTRODUCTION 

Cloud computing leverages network-based resource 

sharing to enhance IT operational efficiency, reduce costs, 

and foster innovation, without requiring users to purchase 

and maintain expensive servers. It enables customers to 

deploy applications more rapidly, scale their businesses, 

adopt a pay-as-you-go model, and enhance their 

competitiveness. 

As a vital pillar of next-generation information technology, 

cloud computing is profoundly transforming the architectural 

model and operational methods of traditional IT 

infrastructure. In a cloud computing environment, an 

excellent cloud task scheduling algorithm is of great 

significance in improving system performance, reducing 

operational costs, and ensuring service quality. With the 

continuous development of cloud computing technology and 

the expansion of application scenarios, the research and 

optimization of cloud task scheduling algorithms will remain 

a long-term and important topic, with significant theoretical 

and practical value for advancing the progress and industrial 

development of cloud computing. 

Traditional scheduling algorithms often have large time 

overheads and low reliability, and they do not consider 

practical issues such as load balancing and multi-tenant 

environments. These limitations make them unsuitable for 

complex cloud environments and not conducive to the 

long-term use of cloud systems. In recent years, swarm 

intelligence algorithms have been increasingly applied in 

cloud computing task scheduling. 

The Nutcracker Optimization Algorithm (NOA), proposed 

recently, is an excellent metaheuristic optimization algorithm 

that has been proven to perform exceptionally well in various 

optimization problems and has attracted widespread attention. 

In this study, we explore the application of NOA in cloud 

computing to address scheduling challenges in complex 

cloud environments and provide an efficient and feasible 

solution. 

An Improved Nutcracker Optimization Algorithm with 

Adaptive Chaotic Strategy (INOACS) has been developed, 

establishing a mathematical model aimed at reducing task 

completion time, balancing virtual machine load, and 

minimizing resource waste in cloud task scheduling 

algorithms. The specific improvements include: 

•    Elite Pool Selection Strategy: This strategy fully utilizes 

high-quality individuals to enhance local exploitation 

capabilities. 

•    Non-Exclusive Local Search and Random Reverse 

Learning: These strategies are combined to expand the 

solution space and improve solution quality. 

•    Chaotic Mapping Initialization: This strategy increases 

the diversity and uniformity of the initial population, 

avoiding clustering issues that may arise from random 

initialization and improving the algorithm's convergence 

speed. 

•    Adaptive α Parameter: This parameter balances the 
search and exploitation processes of the algorithm, 

enhancing its stability and solution quality. 

II. RELATED WORKS  

In the field of cloud computing task scheduling, several 

researchers have proposed improvements to optimization 

algorithms: Said Nabi et al.[1] proposed an Adaptive Particle 

Swarm Optimization (AdPSO) algorithm, introducing a 

Linearly Decreasing Adaptive Inertia Weight (LDAIW) 

strategy. This strategy combines the benefits of Linearly 

Decreasing Inertia Weight (LDIW) and Adaptive Inertia 

Weight (AIW) to achieve a better balance between global and 

local search capabilities. Mohamed Abd Elaziz[2] proposed 

an improved Henry Gas Solubility Optimization (HGSO) 

algorithm. By integrating the Whale Optimization Algorithm 

(WOA) to enhance search capability and using Combined 
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Opposition-Based Learning (COBL) to update the worst 

solutions, the algorithm's convergence speed and solution 

quality are improved. Chirag Chandrashekar et al. 

[3]proposed an improved Ant Colony Optimization 

algorithm, HM-SMACA, to address the large search space, 

slow convergence, and difficulty in finding optimal solutions 

in traditional ACO algorithms. The algorithm introduces a 

weighting concept to optimize pheromone updating and path 

selection. Xueliang Fu et al.[4] proposed a hybrid Particle 

Swarm Optimization and Genetic Algorithm (PSO_PGA). 

By introducing a predation mechanism and 

crossover-mutation operations, and segmenting the particle 

swarm to process subpopulations, the algorithm expands its 

search range in the solution space. Su Hongbin[5] proposed 

an improved Grey Wolf Optimizer (PARGWO). Inspired by 

Particle Swarm Optimization (PSO), the algorithm modifies 

the grey wolf hierarchy, allowing wolves of different ranks to 

adopt different update methods to enhance global optimal 

search capability. 

Due to its excellent performance, NOA has been widely 

applied to various optimization problems.Wang Bo et al. [6] 

proposed an improved NOA. The algorithm initializes the 

population using a generating set to enhance population 

uniformity and diversity, improving global search capability. 

A random inertia weight is introduced to balance exploration 

and exploitation, while a lens imaging reverse learning 

strategy is used to expand the search interval for the optimal 

solution, avoiding local optima and improving convergence 

precision and speed.Daqing Wu et al. [7] proposed an 

Adaptive Hybrid Nutcracker Optimization Algorithm 

(AH-NOA) to address the original algorithm's tendency to 

fall into local optima and slow convergence. The algorithm 

uses the Clarke-Wright (CW) algorithm to initialize part of 

the solution, making the initial population distribution more 

uniform. Genetic operators and local search operators are 

introduced to expand the solution space and optimize 

solution quality. An adaptive parameter adjustment 

mechanism balances exploration and exploitation, enhancing 

convergence speed.Mohamed Abdel-Baset et al. [8] proposed 

an improved NOA to enhance global search capability and 

prevent local optima. A Convergence Improvement Strategy 

(CIS) is introduced, along with dynamic parameter 

adjustment to optimize exploration and exploitation, 

improving convergence speed. For discrete optimization 

problems, discretization and reference point mechanisms 

further enhance solution precision and search 

efficiency.Jiangrong Zhao et al. [9] proposed a 

Multi-Strategy Adaptive Nutcracker Optimization Algorithm 

(MANOA) to address sensitivity to initial conditions and 

slow convergence. The algorithm introduces a population 

initialization strategy to generate a more diverse initial 

population and a simplified path node strategy to reduce path 

complexity. A dynamic inertia weight factor combined with 

chaotic perturbation balances global exploration and local 

optimization, improving performance at different stages.Yu 

Li et al. [10] proposed a Reinforcement Learning-based 

Dual-Population Nutcracker Optimization Algorithm 

(RLNOA). The algorithm divides the original population into 

exploration and exploitation subpopulations based on fitness 

values. The exploration subpopulation uses Random 

Opposition-Based Learning (ROBL) to enhance diversity, 

while the exploitation subpopulation employs Q-Learning to 

adaptively select between caching and recovery strategies, 

accelerating convergence and improving generalization 

ability.Ahmed F. Mohamed et al. [11] proposed an improved 

NOA (NOCG) for feature selection and global optimization. 

The algorithm uses the Chaotic Game Optimization (CGO) 

algorithm to update part of the solution, enhancing 

exploration and making the initial population distribution 

more uniform. A CrossViT (Cross-Attention Multi-Scale 

Vision Transformer) is introduced for feature extraction, 

improving feature diversity and quality. An adaptive 

parameter adjustment mechanism balances exploration and 

exploitation, while a feature selection strategy reduces 

dimensionality, improving classification efficiency and 

accuracy.Chang Xiao et al. [12] proposed an improved NOA 

for multi-UAV path planning. The algorithm integrates an 

improved sine-cosine search strategy to balance global 

exploration and local exploitation, focusing on global 

exploration in early stages and local exploitation in later 

stages. A lens imaging reverse learning strategy further 

enhances the diversity of the initial solution, improving 

convergence speed and precision. 

III. MATH 

The random reverse learning strategy is a further 

optimization of the traditional reverse learning strategy. Its 

core idea is to break the limitations of traditional reverse 

learning through randomness by combining random factors 

with the upper and lower bounds of the search space. This 

results in a richer set of reverse solutions that can cover a 

larger search space. The specific formula is as follows： 

 
ro t

i ix lb ub rand x= + −   

 

The Elite Pool Selection Strategy is a method that 

maintains a pool containing multiple elite individuals to 

increase population diversity and guide the search direction 

of the algorithm. The elite individuals include those with 

higher fitness values in the current population and their 

crossover combinations. 

( )4 1 2 / 2ep ep epx x x= +  

( )5 1 2 3 / 3ep ep ep epx x x x= + +  

6 1 2 3ep ep ep epx rand x rand x rand x=  +  +   

 1 2 3 4 5 6, , , , ,ep ep ep ep ep ep epx x x x x x x=  

The quality of the optimal solution has a significant impact 

on the overall performance of the algorithm. If the optimal 

solution falls into a local optimum, it may cause other 

follower individuals to also fall into local optima. The core of 

the Non-Exclusive Local Search (NELS) strategy is to 

expand the search range and improve the quality of solutions 

by not only focusing on the neighborhood of the current 

optimal solution during the local search process, but also 

searching for multiple potential solutions. Unlike other local 

search strategies, NELS modifies each dimension of the 

current solution space along the search space. Due to the 

incorporation of random operations, this strategy has the 
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ability to escape from suboptimal solutions. 

( ) ( )b

newx j rand x RS=   

( ) ( ) ( )( ) ( )( )b b b

newx j x j x RS rand eps x j NO= −   − −
 

Chaotic maps possess properties of ergodicity and 

unpredictability. Commonly used chaotic maps include the 

Logistic map, Tent map, and Chebyshev map, each with its 

unique mathematical characteristics and application 

scenarios. The Tent map is characterized by its uniformly 

distributed outputs. In this paper, the Tent map is employed 

to initialize the population to enhance the diversity and 

uniformity of the initial population. The Tent map is a simple 

yet effective chaotic system, and its iterative formula is as 

follows: 

( )1

· , 0 0.5

· 1 , 0.5 1

n n

n

n n

a x x
x

a x x+

 
=  −  

 

To better balance the exploration and exploitation 

capabilities of the algorithm, this paper introduces an 

adaptive α parameter adjustment strategy based on 
population diversity. The α parameter is used to control the 
probability of avoiding local optima, and dynamically 

adjusting this parameter can effectively improve the 

performance of the algorithm. The specific implementation is 

as follows: 

( ), 1 t

max min max min

t
min e

T

     −  = + − −  
  

 

 

2

, 1min max

t
max

T
  

  = −     
 

 

The execution process of INOACS is as follows: 
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否
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Fig.1. Flowchart of INOACS 

 

This section compares the improved Nutcracker 

Optimization Algorithm with Adaptive Chaotic Strategy 

(INOACS) with the original Nutcracker Optimization 

Algorithm (NOA) and Grey Wolf Optimizer (GWO) on eight 

benchmark functions. The maximum number of iterations is 

set to 500, and each algorithm is run independently 20 times. 

The performance of each algorithm is tested with a 

population size D of 100. 

Table Ⅰ 
Test results on benchmark functions 

函数 值 GWO NOA INOACS 

F1 

Best 1.35708E-35 0 0 

Mean 8.87741E-33 6.08E-218 0 

Std 2.02239E-32 0 0 

F2 

Best 1.59957E-20 3.62E-194 0 

Mean 1.3174E-19 8.227E-84 2.98E-152 

Std 1.98952E-19 2.602E-83 8.83E-152 

F3 

Best 1.09305E-18 3.11E-307 0 

Mean 4.96064E-16 6.57E-189 5.44E-252 

Std 9.76012E-16 0 0 

F4 

Best 3.55457E-12 6.88E-167 5.44E-149 

Mean 1.82608E-11 5.62E-107 2.22E-129 

Std 1.48749E-11 1.78E-106 7.01E-129 

F5 

Best 5.263631892 5.70034 0.0221883 

Mean 6.037421663 6.1373097 1.9469794 

 Std 0.544787096 0.7264894 0.3534995 

F6 

Best 1.91313E-06 2.349E-06 3.269E-06 

Mean 3.69443E-06 1.536E-05 8.992E-06 

Std 1.11128E-06 1.537E-05 4.244E-06 

F7 

Best 0.000204376 0.000779 4.512E-06 

Mean 0.001035056 0.0015516 5.44E-05 

Std 0.001014728 0.0005679 4.478E-05 

F8 

Best 3376.030981 4189.8284 -4189.767 

Mean 2921.285829 4189.8192 4188.0807 

Std 290.086666 0.0112751 3.685028 

The primary objectives of the cloud task scheduling 

algorithm in this paper are to minimize the makespan, 

achieve load balancing, and reduce resource wastage. This 

requires the scheduling algorithm to ensure that tasks 

submitted by users are completed as quickly as possible, 

while also ensuring the rational distribution of tasks among 

response nodes and maximizing the utilization of 

computational power on each node. 

Task execution time: 

1

max , 1,2, ,
n

ij ij

i

ML x t j m
=

 
= =  

 
  

Define Lmin as the minimum completion time under ideal 

conditions, where all tasks have the same length, and all 

virtual machines have the same processing performance, 

which is also the maximum value. 

Normalize ML to obtain the objective function f1 for 

minimizing task completion time: 

1
min

max min

ML L
f

L L

−
=

−
 

Load balancing degree: 

1

m

jj

avg

L
L

m

==


 

Define   as the standard deviation of the load conditions 

of the virtual machines under the current scheduling scheme: 
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( )2

1

/
m

j avg

j

L L m
=

= −  

Normalize   to obtain the objective function f2 for 

minimizing task completion time: 

2
min

max min

f
 
 

−
=

−
 

Resource waste: 

1 1

n n

j j ij ij ij i ij

i i

W C x t x rt
= =

= −   

Normalize W to obtain the objective function f3 for 

minimizing task completion time: 

3
min

max min

W W
f

W W

−
=

−
 

In summary, the final fitness function F is a weighted sum 

of the three sub-objectives. 

1 1 2 2 3 3F w f w f w f= + +  

1 2 3 1/ 3w w w= = =  

IV. EXPERIMENTATION 

To fully validate the effectiveness of the algorithm 

improvements, this chapter conducts simulations of the cloud 

environment using MATLAB to test the performance of the 

algorithm under various conditions. 

 

Firstly, the improved INOACS is compared with the 

standard Nutcracker Optimization Algorithm (NOA), Grey 

Wolf Optimizer (GWO), and Whale Optimization Algorithm 

(WOA) under the same conditions. The population size is set 

to 100, the maximum number of iterations is 200, the number 

of virtual machines is 8, and the number of tasks is 800. 

The specific attributes of the tasks are randomly generated 

using a normal distribution. The minimum task length is 300, 

the maximum task length is 1000, and the average task length 

generated is 644.37. The minimum computational power 

requirement for tasks is 1, the maximum is 10, and the 

average computational power requirement generated is 5.57. 

The virtual machine configurations are also randomly 

generated. The randomly generated virtual machine 

configurations are as follows: 4 low-performance virtual 

machines with computational capacity and processing speed 

of 8 and 1, respectively; 2 medium-performance virtual 

machines with computational capacity and processing speed 

of 16 and 2, respectively; and 2 high-performance virtual 

machines with computational capacity and processing speed 

of 32 and 4, respectively. 

 
Fig.2. Comparison of Convergence Curves for INOACS, 

NOA, GWO, and WOA 

The comparison of convergence curves is shown in Figure 

2. It can be seen that INOACS has a significant advantage in 

convergence speed compared to NOA, GWO, and WOA, 

which proves the effectiveness of the chaotic mapping 

strategy in enhancing the algorithm's early exploration 

capability of the solution space. The steady decline of the 

convergence curve demonstrates the effectiveness of the 

adaptive α parameter in balancing global search and local 
exploitation. The fitness value of INOACS eventually 

stabilizes at a lower level, indicating that the improved 

algorithm's optimization ability has also been enhanced. 

To comprehensively evaluate the performance of the 

INOACS algorithm in cloud task scheduling scenarios, four 

evaluation indicators—total objective function value, task 

completion time, resource wastage, and load balancing 

degree—are used to assess the algorithm's performance. To 

ensure the authenticity, fairness, and applicability of the 

experiments, the subsequent experimental settings are as 

follows: population size is set to 100, the maximum number 

of iterations is 200, the number of virtual machines is 4 and 8, 

and the number of tasks is 200, 400, 600, and 800. Under the 

same conditions, experiments are conducted independently to 

simulate different practical application scenarios and to 

evaluate the algorithm's performance under varying task 

complexities. 

Table 2 

Test results on benchmark functions 

虚拟机数量 算法 
任务数 

200 400 600 800 

4 

INOACS 0.072112 0.067844 0.067769 0.071452 

NOA 0.079993 0.075579 0.075297 0.07928 

GWO 0.081887 0.115872 0.170325 0.079378 

WOA 0.08273 0.075794 0.075673 0.080421 

8 

INOACS 0.060424 0.060765 0.059692 0.060731 

NOA 0.070953 0.072271 0.073826 0.069267 

GWO 0.079441 0.093752 0.096524 0.090756 

WOA 0.088142 0.076081 0.078387 0.07858 

  
Table 2 shows the fitness values of the algorithms under 

different task scales when the number of virtual machines is 4. 

INOACS outperforms the other four comparison algorithms 

in all cases, demonstrating that INOACS can balance 

multiple optimization objectives and find the optimal 

scheduling strategy. 

Figure 3 shows the bar chart of fitness values for each 

algorithm under different task scales. It can be more 

intuitively seen that as the number of virtual machines 

increases from 4 to 8, the advantage of INOACS becomes 

more pronounced, proving that the improved algorithm can 

still maintain good stability in high-complexity scheduling 
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scenarios. 

 

 
Fig.3. Comparison of Fitness Values for INOACS, NOA, 

GWO, and WOA 

 

V. CONCLUSION  

In summary, the INOACS algorithm can effectively 

balance multiple optimization objectives, including task 

completion time, load balancing, and resource wastage, 

under the same experimental conditions. In various scenarios, 

the standard NOA algorithm outperformed GWO and WOA, 

demonstrating its applicability in cloud computing task 

scheduling. INOACS consistently outperformed NOA across 

all evaluation metrics, which not only proves the 

effectiveness of the improvements but also highlights 

INOACS's excellent cloud task scheduling capability. 

INOACS can serve as a scheduling algorithm for cloud 

computing systems, meeting scheduling demands of varying 

complexities and enhancing the performance of cloud 

computing systems. 

This chapter has conducted an in-depth study on cloud task 

scheduling based on the Improved Nutcracker Optimization 

Algorithm with Adaptive Chaotic Strategy (INOACS). 

Firstly, a scheduling model was constructed with task 

completion time, load balancing degree, and resource 

wastage as optimization objectives, and the design concept of 

the fitness function was elaborated in detail. 

Through simulation experiments, the INOACS algorithm 

was compared with the standard Nutcracker Optimization 

Algorithm (NOA), Grey Wolf Optimizer (GWO), and Whale 

Optimization Algorithm (WOA). The experimental results 

show that under the same conditions, the INOACS algorithm 

significantly outperformed the other comparison algorithms 

in multiple evaluation metrics, including task completion 

time, resource wastage, and load balancing degree. INOACS 

maintained stable high-performance across different task 

scales and numbers of virtual machines, demonstrating its 

applicability and superiority in complex cloud environments. 

This provides valuable references for the design and 

optimization of task scheduling algorithms in practical cloud 

computing systems. 
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