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Abstract— This study examines the Dalian Tieyue Cold-Chain 

Logistics Center and, using the FlexSim platform, develops a 

cold-chain operations simulation model calibrated with actual 

loss data. The model jointly considers material flow, labor 

efficiency, equipment operating states, and fluctuations in the 

warehousing environment. By fitting to real operational 

records, it enables dynamic simulation and performance 

analysis of inbound, outbound, and material-handling 

processes. The results indicate that inbound operations are the 

primary source of losses, with equipment waiting and 

imbalanced workforce scheduling being key limiting factors. 

On this basis, three categories of measures are 

proposed—process optimization, improvements to workforce 

scheduling, and adjustments to warehouse layout—which, when 

validated via re-simulation, reduce the loss rate by 

approximately 12% 

 
Index Terms— cold-chain logistics; discrete-event 

simulation; loss control; FlexSim; process optimization 

 

I. INTRODUCTION 

  In recent years, as the seafood consumption market has 

expanded and quality requirements have risen, cold-chain 

logistics has assumed an increasingly important role in 

aquatic product supply chains. However, cold-chain systems 

are complex and comprise many stages; they are affected by 

uncertainties related to personnel, equipment, and the 

environment, which readily lead to higher losses and lower 

efficiency. Traditional qualitative approaches have difficulty 

revealing these dynamic relationships, making it urgent to 

adopt simulation techniques for systematic study. Liu Decai 

and Zhou Zhijie [1], using Jiangsu Province as a case, 

employed MATLAB for data processing and compared 

exponential smoothing, the grey forecasting model, and a 

combined model based on exponential smoothing and grey 

prediction to analyze demand for aquatic-product cold-chain 

logistics. Lv Jing and Chen Yushu [2] used an improved 

GM(1,1) model together with a backpropagation (BP) neural 

network to simulate and forecast demand for the cold-chain 

logistics of aquatic products in Dalian. Li Xiapei [3] applied 

the grey GM(1,1) model as the basic method to forecast 

logistics demand for agricultural products in Beijing during 

the 13th Five-Year Plan period. Yang Fang et al. [4] built a 

dynamic distribution-center model using AnyLogic 

simulation technology, analyzed indicators such as turnover, 
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operation time, and resource utilization, and proposed 

corresponding process and resource optimization schemes to 

inform practical operations management. Shen Li et al. [5] 

conducted a refined analysis of the sources of cargo loss and 

emissions, formulated a distribution-routing optimization 

model with total-cost minimization as the objective, and 

solved it using a genetic algorithm. Tuo Wancong [6] 

established a time-based exponential loss model to 

characterize the impact of temperature variation on the 

damage rate of goods. Mirzaei S. et al. [7] proposed a 

time-dependent linear loss model that directly computes 

losses in cold-chain transportation by specifying a spoilage 

rate that varies with time, providing a concise and effective 

method for evaluating transport-stage losses. Maria Cefola et 

al. [8] pointed out that cold-chain technology is a key 

determinant of preservation performance; modern advanced 

technologies can improve production and handling 

efficiency, shorten transportation cycles, and reduce 

spoilage, thereby moving logistics costs toward an optimal 

level. 

FlexSim, a three-dimensional discrete-event simulation 

platform, can accurately reproduce logistics operations in a 

virtual environment and enables visual analysis of resource 

allocation, workflow design, and system bottlenecks. Using 

empirical data from the Dalian Tieyue Cold-Chain Logistics 

Center, this paper develops a cold-chain operations 

simulation model that takes actual loss as a core performance 

indicator, with the aim of revealing interstage linkages and 

improvement pathways through data-driven analysis. Sun 

Chengwei [9] employed FlexSim to simulate a cold-chain 

distribution center, proposed reasonable measures, and 

verified them via simulation, thereby reducing both 

construction and operating costs. Liu Yuxiao [10] used the HL 

cold-chain distribution center as a case study and applied 

FlexSim to analyze and optimize operational workflows, 

increasing order-processing capacity while lowering 

operating costs. Zhu et al. [11] investigated a 

fruit-and-vegetable cold-chain distribution center; after 

collecting baseline data, they built an operational simulation 

model in FlexSim to identify system bottlenecks and idle 

resources, and proposed targeted improvements that 

effectively increased cargo turnover and enhanced the 

utilization of equipment and labor. 

II. SIMULATION MODEL DEVELOPMENT 

This section clarifies the research object and objectives, and 

then presents the overall framework of the simulation model, 

modeling assumptions, parameter settings, and model 
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validation methods, providing the technical foundation for 

subsequent experiments. 

A. Overall Model Structure 

The model adopts a modular design and consists of four 

components: an operations-process module, a resource 

module, a control module, and a data-collection module. The 

operations-process module defines the main stages that 

materials pass through—arrival, inspection, put-away, 

in-warehouse handling, picking, consolidation, loading, and 

outbound. The resource module includes dock workers, 

forklifts, racking and buffer areas. The control module 

schedules job sequences and task assignment. The 

data-collection module records key indicators such as task 

time, waiting time, and loss rate.FlexSim links modules 

through logic nodes and an event-driven mechanism, 

ensuring dynamic interactions as time advances so that the 

model can reflect the real operating cadence of the logistics 

center and the emergence of resource conflicts. 

B. Modeling Assumptions 

To facilitate subsequent implementation of the simulation 

logic and parameter calibration, this section—after clarifying 

the research subject and boundary conditions—first 

summarizes the key assumptions adopted for modeling. The 

table below lists the core assumptions in the format 

“ID—Assumption—Notes,” highlighting key points such as 

temperature control, equipment reliability, worker efficiency, 

and capacity constraints. 
ID Assumption Notes 

H1 Storage temperature 

remains within 

bounded 

fluctuations; once 

cargo leaves the 

optimal temperature 

range, it enters a loss 

stage. 

Simplifies 

environmental 

effects. 

H2 Forklifts and 

handling equipment 

experience random 

failures; time 

between failures 

follows an 

exponential 

distribution. 

Captures equipment 

reliability. 

H3 Worker efficiency 

follows a normal 

distribution N(μ = 
70%, σ = 10%) and 
decays with 

continuous working 

time. 

Reflects fatigue and 

shift differences. 

H4 Operations follow 

first‑in‑first‑out 

(FIFO); storage 

capacity is capped at 

90%. 

Matches real 

operating rules. 

 Table1. Modeling Assumptions 

C. Parameter Settings And Data Sources 

The parameters mainly come from the logistics center’s 

operating records and on-site surveys conducted from June to 

September 2024. After fitting, the goods’ interarrival times 

follow a Gamma distribution; the mean interarrival time for 

tuna is approximately 137.21 s, and for sweet shrimp and 

botan shrimp is 91.66 s and 109.77 s, respectively. Arrival 

batch sizes follow a lognormal or triangular distribution. The 

handling-related loss rate is set at 0.05%. Equipment speeds, 

worker movement rates, and operation delays are shown in 

Table 2. 
Type Parameter Value / 

Distribution 

Units Notes 

Labor Loading/unloading 

speed 

0.8 m/s Empirical 

measurement 

Equipment Pallet jack speed / 

delay 

1.0 / 10 s — Average 

operation 

Equipment High‑reach forklift 

speed / delay 

1.5 / 20 s — Calibrated 

with 

literature 

Equipment Time between 

failures / repair 

time 

Exp(480) / 

Exp(30) 

— Minutes as 

units 

System Arrival‑intensity 

surge 

+30% (peak 

hours) 

— 10:00–12:00, 

14:00–16:00 

                           Table 2. Parameter Settings 

D. Model Validation 

To ensure validity, simulation outputs were compared against 

monitored data for average processing time, equipment 

utilization, and loss rate. Deviations between simulated and 

observed values were all below 5%, indicating that the model 

captures the real system’s characteristics well. 

III. SIMULATION EXPERIMENTS AND RESULTS 

A. Experimental Design 

The simulation covers 15 days, with daily runs from 08:30 to 

17:30. Ten replications are performed and averaged to reduce 

stochastic error. A baseline scenario (S0) and four 

improvement scenarios (S1–S4) are designed to evaluate the 

impacts of resource allocation and operational strategies. 

S0: Current operating mode (baseline) 

S1: Increase forklift count by 10% 

S2: Worker rotation policy; any single continuous 

low‑temperature assignment ≤ 2 hours 

S3: Optimized task sequencing to reduce loading/unloading 

waits 

S4: Widen aisles by 0.3 m and adjust slotting/layout 

B. Simulation Results 

The overall loss rate is 3.25%, with inbound losses 

accounting for roughly 55% of total losses. Average 

processing time in inbound is 26% higher than in outbound. 

During peak periods, queue lengths in the dock area rise 

markedly and average waits exceed 20 minutes. 

Forklift utilization averages 63%, while handlers average 

72%. Some forklifts are underutilized, indicating imbalanced 

equipment allocation. Overall storage utilization rises from 

20% initially to 37% by day 15, suggesting a dynamically 

stable system over the simulated horizon. 

C. Loss And Processing‑Time Analysis 

http://www.ijerm.com/
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Loss rates differ significantly by commodity and stage. 

Tuna—sensitive to temperature and handled in larger 

batches—shows the highest loss rate (3.8%); sweet shrimp 

the lowest (2.7%); and botan shrimp about 3.1%. Inbound 

dwell time and loss rate exhibit a strong positive correlation 

(r = 0.82, p < 0.01), indicating that longer waits directly 

increase losses. 

D. Equipment And Labor Utilization Analysis 

Worker efficiency declines with time due to fatigue, and 

forklift utilization peaks around 10:00 and 15:00. Under the 

S2 rotation policy, average operating efficiency improves by 

6%, and working‑time distributions become more balanced. 

E. Bottlenecks And System‑Balance Analysis 
Bottlenecks are concentrated in the loading/unloading area 

and at the entrance to the freezer zone. Heat‑map analysis 
shows excessive task density in these regions during peaks, 

impeding overall flow. Widening main aisles and optimizing 

task sequences reduce flow time by about 9% and increase 

throughput by 7%. 

F. Summary 

The experiments highlight the central role of inbound 

operations in loss formation. Misaligned labor and equipment 

scheduling, queueing in dock areas, and aisle congestion are 

the main bottlenecks. Moderate adjustments to processes and 

resources effectively improve efficiency and reduce losses. 

IV. OPTIMIZATION ANALYSIS 

A. Problem Diagnosis 

① Low inbound efficiency and long cargo dwell times; 

② Uneven equipment allocation with large variations in 

forklift utilization; 

③ Worker fatigue disrupts overall cadence; 

④ Suboptimal aisle layout causes congestion. 

B. Optimization Measures ① Process optimization: adjust loading/unloading order, 

prioritize high‑risk items, and shorten dwell time; ② Workforce optimization: implement shifts and flexible 

task assignment, add staff during peaks; ③ Equipment optimization: add backup forklifts and refine 

dispatching rules; ④ Layout improvement: widen main aisles and re‑plan 
slotting. 

C. Re‑Simulation Evaluation 

After implementing the measures, average operating 

efficiency rises by 8.1%, and the loss rate drops from 3.25% 

to 2.85%. Average waiting time in the dock area decreases by 

22%, and equipment utilization surpasses 70%. The 

optimized system runs more smoothly with a more balanced 

resource load. 

D. Comprehensive Evaluation 

To provide an intuitive comparison of the overall 

effectiveness of the optimization schemes, this section 

summarizes the performance of each scenario in terms of loss 

and efficiency. The table below presents the average loss rate, 

efficiency gains, and primary improved indicator for S0–S4, 

which can be used to prioritize implementation and guide the 

optimization roadmap. 

Scenario Avg. Loss 

Rate (%) 

Efficiency 

Gain (%) 

Primary 

Improved 

Indicator 

S0 3.25 — Baseline state 

S1 3.10T 4.5 Equipment 

utilization 

S2 3.05 6.0 Labor 

efficiency 

S3 2.92 7.3 Process 

smoothness 

S4 2.85 8.1 Integrated 

optimization 

                            Table3. Results Analysis 

E. Summary 

With stable temperature control and cadence maintained, the 

optimized system achieves dual improvements in efficiency 

and quality. Simulation confirms that streamlining processes 

and balancing resources are key to reducing losses in 

cold‑chain logistics centers. 

V. CONCLUSIONS AND OUTLOOK 

Using FlexSim, this study builds a simulation model for 

operations in a seafood cold‑chain logistics center and 
reveals the mechanisms behind loss formation in the 

workflow. The inbound stage is identified as the critical 

influence point, with uneven equipment and labor scheduling 

and corridor congestion as the main bottlenecks. Optimizing 

processes, configuring resources rationally, and improving 

layout significantly reduce losses and improve efficiency. 

Future work can integrate temperature‑control monitoring 
and energy‑consumption analysis to provide a 
comprehensive performance evaluation of cold‑chain 
systems. 
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