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Abstract— Image restoration in real-world scenarios, especially 

in professional fields such as footprint analysis that demand 

strict detail fidelity, poses significant challenges to the design of 

network architectures. Most existing methods are tailored for 

general natural images; when professional images with specific 

structural textures and complex noise are processed, an optimal 

balance between denoising and detail preservation is often 

difficult to achieve. To address this challenge, a novel 

architecture named Dual-Domain Interactive Fusion Network 

(DDIFNet) is proposed in this paper, which aims to solve image 

restoration problems in specific domains. 

The core of DDIFNet is a novel Dual-Domain Fusion Module 

(DDFM), which is designed to process features from the spatial 

domain and the frequency domain (obtained via Fast Fourier 

Transform) in parallel. A key design of DDFM is an interactive 

fusion mechanism: features in the spatial domain (e.g., textures, 

edges) can guide the filtering process in the frequency domain, 

while features in the frequency domain (e.g., the spectral 

distribution of noise) can inversely modulate the feature 

responses in the spatial domain. This bidirectional interaction 

mechanism allows the network to adaptively integrate 

cross-domain information based on local image content. 

To evaluate the effectiveness of DDIFNet, core experiments 

were conducted on a challenging self-constructed forensic 

footprint image dataset. Experimental results demonstrate that 

DDIFNet outperforms current state-of-the-art methods 

(including SwinIR) significantly in restoring key forensic 

features corrupted by severe noise. Furthermore, to verify its 

generalization capability, the network was tested on the general 

denoising benchmark SIDD, and competitive results are 

achieved. These results prove that the proposed architecture not 

only specializes in solving specific problems but also maintains 

good generality, which validates the advancement and practical 

value of its design. 

 
Index Terms—Image restoration, Footprint analysis, 

Dual-domain interactive fusion network, Fast Fourier 

trans-form, Denoising  

I. INTRODUCTION 

  Digital images have become ubiquitous in modern 

technology and daily life, yet their quality is often severely 

compromised by noise. Noise not only degrades the visual 

experience of images but also impairs the accuracy of 
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subsequent advanced visual analysis—a problem that is 

particularly prominent in professional fields requiring strict 

attention to image details, such as footprint analysis and 

industrial non-destructive testing [29]. For instance, in crime 

scene investigations, footprint images captured under 

low-light conditions or from non-ideal surfaces are often 

heavily contaminated by noise, which directly under-mines 

the effective identification of critical forensic features (e.g., 

sole wear patterns). Thus, image denoising, as a classic 

problem in the field of image processing, remains a research 

focus to date [30]. Recent review papers have noted that deep 

learning has achieved remarkable progress in efficient image 

denoising, and emphasize that future research directions 

include lightweight net-work design and few shot adaptation 

[1]. Additionally, another review focusing on spatial 

frequency domain integration strategies proposes a novel 

approach that combines the transform do-main with 

self-attention networks [2]. Meanwhile, in addressing 

periodic and real-world noise, neural network strategies 

based on frequency do-main transformation have also 

demonstrated excellent SSE performance [40]. 

In recent years, deep learning methods represent-ed by 

Convolutional Neural Networks (CNNs) have made 

significant advancements in the field of image de-noising 

[23]. Architectures such as DnCNN [35] and UNet [29] have 

demonstrated competitive perfor-mance in general natural 

image denoising tasks [31]. However, most CNN 

architectures primarily operate in the spatial domain, and 

their inherent local receptive fields may limit their ability to 

capture the global distribution characteristics of noise. 

Although Trans-former-based models [24] have introduced 

global dependencies via self-attention mechanisms, the 

uni-form processing strategies of these general-purpose 

models may still lead to over-smoothing of critical 

fine-grained features when handling images with highly 

specialized textures (e.g., shoe sole patterns) and specialized 

noise patterns. To address this issue, se-veral studies have 

attempted to fuse CNNs with Transformers—for example, 

hybrid architectures that integrate CNN features and 

Transformer attention me-chanisms have been developed for 

detail preservation [36], and networks combining 

self-attention with spatial-frequency fusion have also 

achieved breakthroughs [5]. 

An ideal denoising network should be cap-able of 

optimization for specific problem do-mains. The 

characteristics of real-world noise are the result of the 

combined effects of the spatial and frequency domains [27]. 

For images such as forensic footprints, their sole patterns 

often exhibit periodicity, while wear marks manifest as 

unstructured features—and this complexity exhibits distinct 

representations in the spatial and frequency domains. 
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Existing methods either focus on the spatial domain or treat 

frequency-domain process-ing as an auxiliary tool [15], and 

still lack deep, dyna-mic interaction mechanisms between the 

two domains to address such challenges. In response to this 

need, re-searchers have proposed frequency-domain hybrid 

Transformer architectures, which integrate convolution and 

global modeling at the spectral level [5]; addi-tionally, 

light-weight attention-fusion models have achieved 

significant improvements in handling Gauss-ian and 

real-world noise [6]. 

To fill this research gap, recent researchers have begun to 

explore deep fusion mechanisms be-tween the spatial and 

frequency domains. For example, the Multi-scale Adaptive 

Dual-domain Network (MADNet), proposed in 2025, enables 

dynamic interaction between spatial and frequency domain 

information by introducing Adaptive Spatial-Frequency 

Learning Units (ASFLUs) [7]. This architecture utilizes 

learned masks to separate high-frequency and low-frequency 

information, and combines the multi scale characte-ristics of 

image pyramids—effectively enhancing the ability to 

distinguish between global and local noise features and 

thereby significantly improving denoising performance [7]. 

Another study from 2024, focused on periodic noise in 

infrared scanning images, proposed a method that converts 

2D images into 1D signals—either applying neural networks 

to predict noise or directly modeling noise in the frequency 

domain—achieving excellent performance with PSNR≈41 
and SSIM≈0.9 [3]. Furthermore, in few-shot or even 

no-reference scenarios, the DeCompress algorithm en-ables 

denoising without relying on real clean images—using only a 

single noisy image—and has achieved remarkable results in 

combating over-fitting and zero-shot supervision scenarios 

[8]. Another 2024 work proposed a strategy that uses noise 

translation—mapping complex real-world noise to Gaussian 

noise—followed by denoising via Gaussian pretrained 

models, thereby improving generalization ability for noise far 

from the training distribution [9]. 

Against this backdrop, this study proposes a novel network 

architecture—the Dual-Domain Interactive Fusion Network 

(DDIFNet). This network is designed to address restoration 

challenges in specific domains, rather than merely pursuing 

performance metrics on general datasets. Its design 

philosophy involves constructing parallel processing 

pathways for the spatial and frequency do-mains across 

multiple network scales, along with introducing an 

innovative interactive fusion mechanism. This mechanism 

aims to facilitate information exchange and complementarity 

between feature maps of the two domains, with the goal of 

enabling the network to better balance the preservation of 

periodic patterns in forensic footprints (benefiting from 

frequency-domain analysis) and the restoration of random 

wear details (aided by spatial-domain processing). The main 

contributions of this study are summarized as follows: 

1. Proposing DDIFNet, a network architecture 

synergistically processing spatial and frequency domain 

features in a unified framework, is pro-posed to offer a new 

approach for tackling image restoration challenges in 

professional domains. 

2. Designing the core Dual-Domain Fusion Module (DDFM) 

and its interactive fusion mechanism, which facilitates 

bidirectional guidance of cross-domain information and 

demonstrates application potential in separating and restoring 

mixed structured and unstructured image details. 

3. Conducting extensive experiments on a self-constructed 

forensic footprint dataset, which show that—compared with 

several mainstream comparative methods—DDIFNet 

achieves compe-titive performance in restoring critical 

evidential details and exhibits strong generalization ability on 

general benchmarks.  

II. RELATED WORK 

A. Denoising Methods Based on CNN 

Since DnCNN [35] successfully applied residual learning to 

image denoising, a series of CNN-based methods have been 

proposed successively. UNet [29] and its variants utilize the 

encoder-decoder structure and skip connections to achieve 

effective fusion of multi-scale features, and have been widely 

used in various image restoration tasks. To handle more 

complex real-world noise, CBDNet [16] designed a noise 

estimation sub-network to solve the blind de-noising problem. 

In addition, methods such as RIDNet [11] have improved the 

network's ability to focus on key feature regions by 

introducing attention mecha-nisms [20]. In 2023, a 

feature-enhanced denoising network (FEDNet) that 

combines CNN and Trans-former architectures was proposed, 

which improves denoising performance by fusing the 

advantages of the two types of networks [36]. Although these 

methods have achieved remarkable performance on general 

natural image datasets, their architectural designs are usually 

not specifically optimized for the preservation of tiny 

detail-ed textures in industrial or forensic applications [4].  

B. Denoising Methods Based on Transformer 

Drawing on its success in the field of natural language 

processing [32], the Transformer architecture has also been 

introduced into computer vision [14]. By adopting a 

window-based self-attention mechanism, SwinIR [24] 

effectively models global dependencies in image restoration 

tasks and achieves state-of-the-art performance, making it an 

influential benchmark mo-del in this field. Taking this further, 

SwinIA [37] applies the Swin Transformer architecture to 

self-supervised blind-spot image denoising, emerging as the 

first end-to-end self-supervised denoising model fully based 

on Transformer. Additionally, studies have validated the 

advantages of SwinIR in multi-delay 3D ASL image 

denoising tasks within medical imaging scenarios [38]. 

However, the powerful modeling ca-pabilities of such 

models are primarily designed for general applicability; for 

domains requiring highly specialized knowledge (e.g., 

distinguishing shoe print wear features from background 

noise), their general inductive biases may not be the optimal 

choice. 

C. Methods Incorporating Frequency-Domain 

Information 

Several studies have attempted to integrate 

frequency-domain information into denoising networks. For 

instance, Fast Fourier Convolution [12] proposes replacing 

part of spatial-domain convolutions with frequency-domain 

convolutions to obtain a global receptive field. However, 

existing methods usually treat frequency-domain processing 

as an independent preprocessing/post-processing module or a 
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one-way auxiliary information stream. Some studies have 

explored attention mechanisms in the frequency domain 

using Complex-Valued CNNs (CV-CNNs) to enhance 

spectral detail preservation and super-resolution 

reconstruction performance [39]. Another study focusing on 

infrared scanning image processing achieves denoising by 

predicting Fourier coefficients of periodic noise in the 

frequency domain [40]. Additionally, for remote sensing 

image enhancement, the Dual-Domain Feature Fusion 

Net-work (DFFN) enables collaborative spatial-frequency 

denoising through phased learning and fusion of amplitude 

and phase information [41]. 

Notably, these methods rarely involve dynamic, 

bidirectional interactive fusion mechanisms at deep network 

layers and across multiple scales. Yet such mechanisms may 

be crucial for adaptively handling mixed periodic and 

random features—such as those in forensic footprint images. 

Against this backdrop, DDIFNet is proposed to explore 

deeper synergy between the spatial and frequency domains, 

aiming to address such domain-specific challenges. 

III. METHODOLOGY 

IDDIFNet adopts a well-established encoder-decoder 

architecture [29] to leverage multi-scale information. Its core 

innovation lies in the designed Dual-Domain Fusion Module 

(DDFM), which is embedded into each layer of the encoder 

to replace standard convolutional blocks

 

 

Fig.1 Overall Architecture Diagram of DDIFNet

A. Dual-Domain Fusion Module(DDFM) 

As the core component of DDIFNet, the Dual-Domain 

Fusion Module (DDFM) aims to achieve effective extraction 

and interaction of spatial-domain and frequency-domain 

features. As illustrated in Figure 2, the input feature map Fin 

of the DDFM is fed into two parallel branches: the 

spatial-domain branch and the frequency-domain branch.  

 

Fig.2 Detailed Structural Diagram of the Dual-Domain Fusion Module (DDFM) 

Spatial-domain branch: Composed of a series of standard 

residual convolutional blocks [17], this branch focuses on 

extracting local structural and texture information. It aims to 

capture fine image details, edge contours, and unstructured 

features such as footprint wear marks. Its output is the spatial 

feature map Fsp. 

Frequency-domain branch: This branch first transforms 

the input feature Fin into the frequency domain via 2D Fast 

Fourier Transform [13]. It then processes the real and 

imaginary parts of the frequency spectrum separately, 

utilizing a small CNN to learn how to filter and enhance 

features in the frequency domain. After processing, the 

features are transformed back to the spatial domain through 

inverse Fast Fourier Transform. This branch excels at 

identifying and handling global or periodic patterns, such as 

regular sole patterns and periodic noise introduced by certain 

sensors. 

B. Interactive Fusion Mechanism 

The essence of the DDFM lies in the fact that its two 

branches do not operate independently; instead, they 

exchange information through the designed interactive fusion 

mechanism, which is inspired by the attention concept [34]. 

The fusion process consists of two steps: 
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1. Spatial-guided frequency: The feature Fsp extracted by the 

spatial branch is used to generate a dynamic channel attention 

mask [20]. This mask is applied to the frequency-domain 

processed feature Ffp to reweight its channels. This enables 

the network to learn strategies similar to: "If the current 

region is a random wear area (determined by Fsp, then reduce 

the suppression of high frequencies in the frequency domain 

to preserve details." 

 
2. Frequency-guided spatial: Similarly, we utilize the 

frequency-domain processed feature Ffp to generate a spatial 

attention map, which acts on the feature Fsp of the spatial 

branch. This enables the network to achieve a function 

similar to: "If clear periodicity of sole patterns is detected 

(determined by Ffp), then enhance the sharpening of 

corresponding structural edges in the spatial domain." 

 
Finally, the two bidirectionally enhanced feature maps Fsp 

and Ffp are concatenated and fused via a 1×1 convolution, 

yielding the final output Fout of the DDFM module. 

C. Loss Function 

The Charbonnier loss function is employed to optimize the 

network. As a smooth approximation of the L1 loss, it helps 

generate high-quality images with fewer visual artifacts [22]. 

 

Here,  denotes a very small constant. 

IV. EXPERIMENTS 

A. Experimental Setup 

Primary Dataset: Forensic Footprint Denoising Dataset 

(FFDD): To verify the model’s capability in address-ing the 

specific problem, we constructed a Footprint Denoising 

Dataset (FDD). Based on the dataset used in the study by 

Khokher et al. [21], we selected high-quality footprint images 

with clear textures as clean references. Subsequently, we 

added complex noises that simulate real-world conditions to 

these images, including a mixture of Poisson noise 

(signal-depen-dent) and Gaussian noise. This mixture is 

designed to mimic low-light conditions and inherent 

electronic noi-se from sensors, making the dataset highly 

challenging and imposing strict requirements on the model’s 

detail preservation ability. 

Dataset for Generalization Test: To evaluate the model’s 

generality, we also conducted tests on the validation set of the 

widely used Smartphone Image Denoising Dataset (SIDD) 

[10]. 

Evaluation Metrics: We adopted Peak Signal-to-Noise 

Ratio (PSNR) [19] and Structural Similarity Index Measure 

(SSIM) [33] as the main quantitative evalu-ation metrics. For 

the FDD dataset, we placed greater emphasis on SSIM, as it 

better reflects the recovery quality of structures and textures. 

Implementation Details: The model was implemented 

based on the PyTorch framework [28]. The AdamW 

optimizer [26] was used for training, and a cosine annealing 

strategy [25] was employed to adjust the learning rate. 

B. Performance on the Self-Constructed Dataset 

Table.1 Quantitative Comparison Results on the FDD Test Set 

Methods PSNR (dB) ↑ SSIM ↑ 

UNet[29] 28.15 0.832 

RIDNet[11] 29.33 0.881 

CBDNet[16] 29.51 0.889 

SwinIR[24] 30.12 0.903 

DDIFNet (this work) 30.86 0.925 
 

As can be seen from the quantitative results in Table 1, 

DDIFNet outperforms all comparative methods 

comprehensively on the challenging FFDD dataset. Notably, 

DDIFNet achieves a particularly significant lead in the SSIM 

metric—surpassing the second-best method (SwinIR) by 

more than 0.02. This strongly demonstrates the unique 

advantage of our dual-domain interaction design in 

preserving critical structural and texture information. 

Although general-purpose models like SwinIR exhibit strong 

performance, they still suffer from noticeable detail loss in 

their restored results when dealing with such task-specific 

textures. 

Qualitative Analysis: As shown in Figure 3, the qualitative 

comparison results intuitively demonstrate the overwhelming 

superiority of DDIFNet in restoration capability. The rich 

skin textures and fine wrinkles in the original high-definition 

footprints (GT) almost completely disappear after the 

addition of severe noise (noisy images), rendering the images 

devoid of any forensic value. Baseline methods such as UNet, 

RIDNet, and CBDNet can remove part of the noise, but at the 

cost of severe image blurring and detail loss—their restored 

results are overly smooth and lack usable texture information. 

As a powerful general-purpose model, SwinIR successfully 

eliminates most noise and restores the main contour of the 

foot. However, its key limitation lies in over-smoothing: in 

pursuit of image purity, it erases a large number of shallow 

skin textures and tiny wear marks that are crucial for forensic 

comparison, giving the sole an unnatural "plastic-like 

appearance". In sharp contrast, the restoration effect of 

DDIFNet is visually surprisingly close to the original 

high-definition image. It not only removes noise perfectly but 

also reconstructs the finest texture network of the sole, the 

sharp edges of every wrinkle, and the unique wear features in 

a convincing manner. 

http://www.ijerm.com/
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Fig.3 Comparison of Restoration Effects on the Self-Constructed Footprint Dataset 

 

C. Generalization Ability Analysis 

While DDIFNet is designed to address a specific challenge, 

evaluating its performance in general scenarios is equally 

important. We conducted tests on the validation set of SIDD 

(Smartphone Image De-noising Dataset).

Table.2 Comparison of Generalization Performance on the SIDD Validation Set 

 

As shown in Table 2, DDIFNet also achieves highly 

competitive performance on the general SIDD benchmark. 

Its results are slightly lower than those of SwinIR (which is 

optimized for general datasets) but outperform strong 

baselines such as RIDNet and CBDNet. This is a remarkably 

reasonable and positive outcome: it indicates that while our 

architecture prioritizes performance in the specific domain 

(forensic footprint denoising), it does not come at the cost of 

sacrificing generalization ability. This balance between 

"specialization" and "generalization" precisely demonstrates 

the robustness and effectiveness of our dual-domain fusion 

design. 

D. Ablation Study 

To verify the effectiveness of the DDFM (Dual-Domain 

Fusion Module) and its interactive fusion mechanism, we 

conducted ablation experiments on the FFDD dataset—this 

setting best aligns with the original intention of our design. 

For verifying the effectiveness of the frequency-domain 

branch, we removed all frequency-domain branches from 

DDIFNet, degrading it into a pure spatial-domain CNN. This 

operation helps confirm whether the introduction of the 

frequency-domain branch contributes to the model’s ability 

to preserve structural and texture information in forensic 

footprint images. 

To evaluate the effectiveness of the interactive fusion 

mechanism, we retained both the spatial-domain and 

frequency-domain branches of DDIFNet but elimi-nated the 

interactive fusion mechanism between them. Instead, we only 

performed simple concatenation of the two branches at the 

final stage, followed by fusion via a 1×1 convolution. This 

scheme is intended to test whether the bidirectional 

interactive guidance between domains is necessary for 

improving the model’s denoising and detail recovery 

performance. 

Table.3 Ablation Study Results of DDIFNet on the FDD Dataset 

The results of the ablation experiments demonstrate that 

removing the frequency-domain branch leads to a significant 

performance degradation, particularly in terms of the SSIM 

metric. This indicates that frequency-domain analysis is 

crucial for capturing the structured patterns of footprints. 

Similarly, eliminating the interactive fusion mechanism also 

results in a noticeable performance loss, which strongly 

confirms that the bidirectional guidance mechanism we 

designed is the key to performance improvement—it enables 

the synergistic enhancement of the two domains rather than a 

mere simple feature superposition. 

V. DISCUSSION 

A. Core Findings 

This study proposes and validates a network 

architecture—DDIFNet—designed to address specific 

high-difficulty image restoration tasks. Experimental results 

demonstrate that through parallel processing and deep 

interactive fusion in the spatial and frequency domains, 

Methods PSNR (dB) ↑ SSIM ↑ 

RIDNet[11] 39.25 0.954 

CBDNet[16] 39.36 0.955 

SwinIR[24] 39.51 0.957 

DDIFNet (this work) 39.42 0.956 

Model Configurations PSNR (dB)  SSIM  

Spatial-Domain-Only Branch 29.28 0.879 

Dual-Domain with No Interactive Fusion 30.05 0.901 

Full DDIFNet 30.86 0.925 
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DDIFNet: A Dual-Domain Interactive Fusion Network for Image Restoration 

                                                                                              26                                                                                  www.ijerm.com  

DDIFNet exhibits effectiveness in restoring images severely 

contaminated by noise and containing complex textures. In 

particular, in its target application (forensic footprint 

analysis), its performance has achieved significant 

improvements compared to several general-purpose SOTA 

models  

B. Interpretation and Analysis of Results 

The excellent performance of DDIFNet on the FFDD 

dataset is attributable to the high alignment between its 

architectural design and the characteristics of the task. The 

difficulty in forensic footprint image restoration lies in 

distinguishing between noise and two signals with distinctly 

different properties: periodic sole patterns and unstructured 

wear marks. The frequency-domain branch of the network is 

inherently suitable for capturing and enhancing periodic 

signals, while the spatial-domain branch can finely 

characterize local unstructured details. More critically, the 

designed interactive fusion mechanism functions as a 

dynamic information regulator—it enables the network to 

adaptively balance and fuse dual-domain information based 

on local image content, thereby achieving the collaborative 

preservation of the two key forensic features. In contrast, 

although general-purpose models such as SwinIR exhibit 

strong performance, their unified self-attention mechanism 

may face challenges in making such fine-grained distinctions, 

or lead to improper handling of certain subtle yet critical 

details. 

C. Comparison with Existing Studies 

Compared with pure CNN methods like RIDNet, DDIFNet 

overcomes the locality limitation of convolutional operations 

to a certain extent by introducing a global perspective in the 

frequency domain. In contrast to SwinIR, DDIFNet’s design 

incorporates stronger task priors and decouples the task via a 

dual-domain parallel approach, endowing it with greater 

competitiveness in the specific task of forensic footprint 

restoration. Notably, DDIFNet’s performance on the general 

benchmark SIDD is slightly lower than that of SwinIR. This 

result is not a design flaw but rather highlights its design 

philosophy: balancing the pursuit of extreme professional 

performance and the maintenance of sound generalization 

ability. 

D. Limitations and Future Outlook 

Despite the promising performance exhibited by 

DDIFNet, the FFT/iFFT operations it incorporates and its 

dual-branch design undoubtedly increase the model’s 

computational complexity. Future research may explore 

more lightweight dual-domain fusion modules or leverage 

techniques such as model distillation [18] to reduce its 

deployment costs. Additionally, extending this design 

paradigm to other restoration tasks with unique physical 

characteristics—such as removing specific artifacts in 

microscopic images—will be a valuable research 

direction. 

VI. CONCLUSION 

This study proposes a dual-domain interactive fusion 

network (DDIFNet) for real-world image restoration, whose 

design aims to address high-difficulty restoration challenges 

in specific professional fields. By virtue of a core module that 

enables parallel feature processing in the spatial and 

frequency domains and realizes bidirectional information 

guidance, the network can effectively separate and restore 

complex image details mixed with noise. On a 

self-constructed and highly challenging forensic footprint 

dataset, DDIFNet achieves significant performance 

advantages over several mainstream methods including 

SwinIR, while also demonstrating competitive generalization 

ability on general benchmarks. This work indicates that the 

multi-domain deep interactive fusion network designed for 

specific problems is an effective approach to promoting 

image restoration technology in solving bottlenecks in key 

fields and advancing toward broader practical applications. 
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