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DDIFNet: A Dual-Domain Interactive Fusion Network for
Image Restoration
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Abstract— Image restoration in real-world scenarios, especially
in professional fields such as footprint analysis that demand
strict detail fidelity, poses significant challenges to the design of
network architectures. Most existing methods are tailored for
general natural images; when professional images with specific
structural textures and complex noise are processed, an optimal
balance between denoising and detail preservation is often
difficult to achieve. To address this challenge, a novel
architecture named Dual-Domain Interactive Fusion Network
(DDIFNet) is proposed in this paper, which aims to solve image
restoration problems in specific domains.

The core of DDIFNet is a novel Dual-Domain Fusion Module
(DDFM), which is designed to process features from the spatial
domain and the frequency domain (obtained via Fast Fourier
Transform) in parallel. A key design of DDFM is an interactive
fusion mechanism: features in the spatial domain (e.g., textures,
edges) can guide the filtering process in the frequency domain,
while features in the frequency domain (e.g., the spectral
distribution of noise) can inversely modulate the feature
responses in the spatial domain. This bidirectional interaction
mechanism allows the network to adaptively integrate
cross-domain information based on local image content.

To evaluate the effectiveness of DDIFNet, core experiments
were conducted on a challenging self-constructed forensic
footprint image dataset. Experimental results demonstrate that
DDIFNet outperforms current state-of-the-art methods
(including SwinIR) significantly in restoring key forensic
features corrupted by severe noise. Furthermore, to verify its
generalization capability, the network was tested on the general
denoising benchmark SIDD, and competitive results are
achieved. These results prove that the proposed architecture not
only specializes in solving specific problems but also maintains
good generality, which validates the advancement and practical
value of its design.
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I. INTRODUCTION

Digital images have become ubiquitous in modern
technology and daily life, yet their quality is often severely
compromised by noise. Noise not only degrades the visual
experience of images but also impairs the accuracy of
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subsequent advanced visual analysis—a problem that is
particularly prominent in professional fields requiring strict
attention to image details, such as footprint analysis and
industrial non-destructive testing [29]. For instance, in crime
scene investigations, footprint images captured under
low-light conditions or from non-ideal surfaces are often
heavily contaminated by noise, which directly under-mines
the effective identification of critical forensic features (e.g.,
sole wear patterns). Thus, image denoising, as a classic
problem in the field of image processing, remains a research
focus to date [30]. Recent review papers have noted that deep
learning has achieved remarkable progress in efficient image
denoising, and emphasize that future research directions
include lightweight net-work design and few shot adaptation
[1]. Additionally, another review focusing on spatial
frequency domain integration strategies proposes a novel
approach that combines the transform do-main with
self-attention networks [2]. Meanwhile, in addressing
periodic and real-world noise, neural network strategies
based on frequency do-main transformation have also
demonstrated excellent SSE performance [40].

In recent years, deep learning methods represent-ed by
Convolutional Neural Networks (CNNs) have made
significant advancements in the field of image de-noising
[23]. Architectures such as DnCNN [35] and UNet [29] have
demonstrated competitive perfor-mance in general natural
image denoising tasks [31]. However, most CNN
architectures primarily operate in the spatial domain, and
their inherent local receptive fields may limit their ability to
capture the global distribution characteristics of noise.
Although Trans-former-based models [24] have introduced
global dependencies via self-attention mechanisms, the
uni-form processing strategies of these general-purpose
models may still lead to over-smoothing of critical
fine-grained features when handling images with highly
specialized textures (e.g., shoe sole patterns) and specialized
noise patterns. To address this issue, se-veral studies have
attempted to fuse CNNs with Transformers—for example,
hybrid architectures that integrate CNN features and
Transformer attention me-chanisms have been developed for
detail preservation [36], and networks combining
self-attention with spatial-frequency fusion have also
achieved breakthroughs [5].

An ideal denoising network should be cap-able of
optimization for specific problem do-mains. The
characteristics of real-world noise are the result of the
combined effects of the spatial and frequency domains [27].
For images such as forensic footprints, their sole patterns
often exhibit periodicity, while wear marks manifest as
unstructured features—and this complexity exhibits distinct
representations in the spatial and frequency domains.
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Existing methods either focus on the spatial domain or treat
frequency-domain process-ing as an auxiliary tool [15], and
still lack deep, dyna-mic interaction mechanisms between the
two domains to address such challenges. In response to this
need, re-searchers have proposed frequency-domain hybrid
Transformer architectures, which integrate convolution and
global modeling at the spectral level [5]; addi-tionally,
light-weight attention-fusion models have achieved
significant improvements in handling Gauss-ian and
real-world noise [6].

To fill this research gap, recent researchers have begun to
explore deep fusion mechanisms be-tween the spatial and
frequency domains. For example, the Multi-scale Adaptive
Dual-domain Network (MADNet), proposed in 2025, enables
dynamic interaction between spatial and frequency domain
information by introducing Adaptive Spatial-Frequency
Learning Units (ASFLUs) [7]. This architecture utilizes
learned masks to separate high-frequency and low-frequency
information, and combines the multi scale characte-ristics of
image pyramids—effectively enhancing the ability to
distinguish between global and local noise features and
thereby significantly improving denoising performance [7].
Another study from 2024, focused on periodic noise in
infrared scanning images, proposed a method that converts
2D images into 1D signals—either applying neural networks
to predict noise or directly modeling noise in the frequency
domain—achieving excellent performance with PSNR~=41
and SSIM~0.9 [3]. Furthermore, in few-shot or even
no-reference scenarios, the DeCompress algorithm en-ables
denoising without relying on real clean images—using only a
single noisy image—and has achieved remarkable results in
combating over-fitting and zero-shot supervision scenarios
[8]. Another 2024 work proposed a strategy that uses noise
translation—mapping complex real-world noise to Gaussian
noise—followed by denoising via Gaussian pretrained
models, thereby improving generalization ability for noise far
from the training distribution [9].

Against this backdrop, this study proposes a novel network
architecture—the Dual-Domain Interactive Fusion Network
(DDIFNet). This network is designed to address restoration
challenges in specific domains, rather than merely pursuing
performance metrics on general datasets. Its design
philosophy involves constructing parallel processing
pathways for the spatial and frequency do-mains across
multiple network scales, along with introducing an
innovative interactive fusion mechanism. This mechanism
aims to facilitate information exchange and complementarity
between feature maps of the two domains, with the goal of
enabling the network to better balance the preservation of
periodic patterns in forensic footprints (benefiting from
frequency-domain analysis) and the restoration of random
wear details (aided by spatial-domain processing). The main
contributions of this study are summarized as follows:

1. Proposing ~ DDIFNet, a  network  architecture
synergistically processing spatial and frequency domain
features in a unified framework, is pro-posed to offer a new
approach for tackling image restoration challenges in
professional domains.

2. Designing the core Dual-Domain Fusion Module (DDFM)
and its interactive fusion mechanism, which facilitates
bidirectional guidance of cross-domain information and
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demonstrates application potential in separating and restoring
mixed structured and unstructured image details.

3. Conducting extensive experiments on a self-constructed
forensic footprint dataset, which show that—compared with
several mainstream comparative methods—DDIFNet
achieves compe-titive performance in restoring critical
evidential details and exhibits strong generalization ability on
general benchmarks.

II. RELATED WORK

A. Denoising Methods Based on CNN

Since DnCNN [35] successfully applied residual learning to
image denoising, a series of CNN-based methods have been
proposed successively. UNet [29] and its variants utilize the
encoder-decoder structure and skip connections to achieve
effective fusion of multi-scale features, and have been widely
used in various image restoration tasks. To handle more
complex real-world noise, CBDNet [16] designed a noise
estimation sub-network to solve the blind de-noising problem.
In addition, methods such as RIDNet [11] have improved the
network's ability to focus on key feature regions by
introducing attention mecha-nisms [20]. In 2023, a
feature-enhanced denoising network (FEDNet) that
combines CNN and Trans-former architectures was proposed,
which improves denoising performance by fusing the
advantages of the two types of networks [36]. Although these
methods have achieved remarkable performance on general
natural image datasets, their architectural designs are usually
not specifically optimized for the preservation of tiny
detail-ed textures in industrial or forensic applications [4].

B. Denoising Methods Based on Transformer

Drawing on its success in the field of natural language
processing [32], the Transformer architecture has also been
introduced into computer vision [14]. By adopting a
window-based self-attention mechanism, SwinIR [24]
effectively models global dependencies in image restoration
tasks and achieves state-of-the-art performance, making it an
influential benchmark mo-del in this field. Taking this further,
SwinlA [37] applies the Swin Transformer architecture to
self-supervised blind-spot image denoising, emerging as the
first end-to-end self-supervised denoising model fully based
on Transformer. Additionally, studies have validated the
advantages of SwinlR in multi-delay 3D ASL image
denoising tasks within medical imaging scenarios [38].
However, the powerful modeling ca-pabilities of such
models are primarily designed for general applicability; for
domains requiring highly specialized knowledge (e.g.,
distinguishing shoe print wear features from background
noise), their general inductive biases may not be the optimal
choice.

C. Methods Incorporating Frequency-Domain
Information

Several studies have attempted to  integrate
frequency-domain information into denoising networks. For
instance, Fast Fourier Convolution [12] proposes replacing
part of spatial-domain convolutions with frequency-domain
convolutions to obtain a global receptive field. However,
existing methods usually treat frequency-domain processing
as an independent preprocessing/post-processing module or a
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one-way auxiliary information stream. Some studies have
explored attention mechanisms in the frequency domain
using Complex-Valued CNNs (CV-CNNs) to enhance
spectral  detail  preservation and  super-resolution
reconstruction performance [39]. Another study focusing on
infrared scanning image processing achieves denoising by
predicting Fourier coefficients of periodic noise in the
frequency domain [40]. Additionally, for remote sensing
image enhancement, the Dual-Domain Feature Fusion
Net-work (DFFN) enables collaborative spatial-frequency
denoising through phased learning and fusion of amplitude
and phase information [41].

layers and across multiple scales. Yet such mechanisms may
be crucial for adaptively handling mixed periodic and
random features—such as those in forensic footprint images.
Against this backdrop, DDIFNet is proposed to explore
deeper synergy between the spatial and frequency domains,
aiming to address such domain-specific challenges.

III. METHODOLOGY

IDDIFNet adopts a well-established encoder-decoder
architecture [29] to leverage multi-scale information. Its core
innovation lies in the designed Dual-Domain Fusion Module
(DDFM), which is embedded into each layer of the encoder

Notably, these methods rarely involve dynamic, replace standard convolutional blocks
bidirectional interactive fusion mechanisms at deep network
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Fig.1 Overall Architecture Diagram of DDIFNet

A. Dual-Domain Fusion Module(DDFM)

As the core component of DDIFNet, the Dual-Domain
Fusion Module (DDFM) aims to achieve effective extraction
and interaction of spatial-domain and frequency-domain

features. As illustrated in Figure 2, the input feature map Fin
of the DDFM is fed into two parallel branches: the
spatial-domain branch and the frequency-domain branch.

= =4 : I’ ® >
S g P Interactive sp o =
Fin ‘o —10 - Vi quion - , - g 8 Fout
r:?d) a] Masp—fp Ffp O
— ()
3 =8 2= F
™ © a = Mppsp

Fig.2 Detailed Structural Diagram of the Dual-Domain Fusion Module (DDFM)

Spatial-domain branch: Composed of a series of standard
residual convolutional blocks [17], this branch focuses on
extracting local structural and texture information. It aims to
capture fine image details, edge contours, and unstructured
features such as footprint wear marks. Its output is the spatial
feature map Fsp.

Frequency-domain branch: This branch first transforms
the input feature Fin into the frequency domain via 2D Fast
Fourier Transform [13]. It then processes the real and
imaginary parts of the frequency spectrum separately,
utilizing a small CNN to learn how to filter and enhance
features in the frequency domain. After processing, the
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features are transformed back to the spatial domain through
inverse Fast Fourier Transform. This branch excels at
identifying and handling global or periodic patterns, such as
regular sole patterns and periodic noise introduced by certain
Sensors.

B. Interactive Fusion Mechanism

The essence of the DDFM lies in the fact that its two
branches do not operate independently; instead, they
exchange information through the designed interactive fusion
mechanism, which is inspired by the attention concept [34].
The fusion process consists of two steps:
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1. Spatial-guided frequency: The feature Fsp extracted by the
spatial branch is used to generate a dynamic channel attention
mask [20]. This mask is applied to the frequency-domain
processed feature Ffp to reweight its channels. This enables
the network to learn strategies similar to: "If the current
region is a random wear area (determined by Fsp, then reduce
the suppression of high frequencies in the frequency domain
to preserve details."
F'rp = Msppp(Fsp) O Frp

2. Frequency-guided spatial: Similarly, we utilize the
frequency-domain processed feature Ffp to generate a spatial
attention map, which acts on the feature Fsp of the spatial
branch. This enables the network to achieve a function
similar to: "If clear periodicity of sole patterns is detected
(determined by Ffp), then enhance the sharpening of
corresponding structural edges in the spatial domain."

F'sp = Mppsp(Fp) O Fyp
Finally, the two bidirectionally enhanced feature maps Fsp

and Ffp are concatenated and fused via a 1x1 convolution,
yielding the final output Fout of the DDFM module.

C. Loss Function

The Charbonnier loss function is employed to optimize the
network. As a smooth approximation of the L1 loss, it helps
generate high-quality images with fewer visual artifacts [22].

L= \/HIrestcred - Iclean| |2 + €2

Here, € denotes a very small constant.

IV. EXPERIMENTS

A. Experimental Setup

Primary Dataset: Forensic Footprint Denoising Dataset
(FFDD): To verify the model’s capability in address-ing the
specific problem, we constructed a Footprint Denoising
Dataset (FDD). Based on the dataset used in the study by
Khokher et al. [21], we selected high-quality footprint images
with clear textures as clean references. Subsequently, we
added complex noises that simulate real-world conditions to
these images, including a mixture of Poisson noise
(signal-depen-dent) and Gaussian noise. This mixture is
designed to mimic low-light conditions and inherent
electronic noi-se from sensors, making the dataset highly
challenging and imposing strict requirements on the model’s
detail preservation ability.

Dataset for Generalization Test: To evaluate the model’s
generality, we also conducted tests on the validation set of the
widely used Smartphone Image Denoising Dataset (SIDD)
[10].

Evaluation Metrics: We adopted Peak Signal-to-Noise
Ratio (PSNR) [19] and Structural Similarity Index Measure
(SSIM) [33] as the main quantitative evalu-ation metrics. For
the FDD dataset, we placed greater emphasis on SSIM, as it
better reflects the recovery quality of structures and textures.

Implementation Details: The model was implemented
based on the PyTorch framework [28]. The AdamW
optimizer [26] was used for training, and a cosine annealing
strategy [25] was employed to adjust the learning rate.

B. Performance on the Self-Constructed Dataset

Table.1 Quantitative Comparison Results on the FDD Test Set

Methods PSNR (dB) 1 SSIM 1
UNet!??! 28.15 0.832
RIDNet!!! 29.33 0.881
CBDNet!!%] 29.51 0.889
SwinIR24I 30.12 0.903
DDIFNet (this work) 30.86 0.925

As can be seen from the quantitative results in Table 1,
DDIFNet  outperforms all  comparative  methods
comprehensively on the challenging FFDD dataset. Notably,
DDIFNet achieves a particularly significant lead in the SSIM
metric—surpassing the second-best method (SwinlR) by
more than 0.02. This strongly demonstrates the unique
advantage of our dual-domain interaction design in
preserving critical structural and texture information.
Although general-purpose models like SwinlIR exhibit strong
performance, they still suffer from noticeable detail loss in
their restored results when dealing with such task-specific
textures.

Qualitative Analysis: As shown in Figure 3, the qualitative
comparison results intuitively demonstrate the overwhelming
superiority of DDIFNet in restoration capability. The rich
skin textures and fine wrinkles in the original high-definition
footprints (GT) almost completely disappear after the
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addition of severe noise (noisy images), rendering the images
devoid of any forensic value. Baseline methods such as UNet,
RIDNet, and CBDNet can remove part of the noise, but at the
cost of severe image blurring and detail loss—their restored
results are overly smooth and lack usable texture information.
As a powerful general-purpose model, SwinIR successfully
eliminates most noise and restores the main contour of the
foot. However, its key limitation lies in over-smoothing: in
pursuit of image purity, it erases a large number of shallow
skin textures and tiny wear marks that are crucial for forensic
comparison, giving the sole an unnatural "plastic-like
appearance”. In sharp contrast, the restoration effect of
DDIFNet is visually surprisingly close to the original
high-definition image. It not only removes noise perfectly but
also reconstructs the finest texture network of the sole, the
sharp edges of every wrinkle, and the unique wear features in
a convincing manner.
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Fig.3 Comparison of Restoration Effects on the Self-Constructed Footprint Dataset

C. Generalization Ability Analysis

RIDNet

CBDNet SwinIR DDIF-Net

important. We conducted tests on the validation set of SIDD

) i ) ) (Smartphone Image De-noising Dataset).
While DDIFNet is designed to address a specific challenge,
evaluating its performance in general scenarios is equally
Methods PSNR (dB) 1 SSIM 1

RIDNet[11] 39.25 0.954

CBDNet[16] 39.36 0.955

SwinlR[24] 39.51 0.957

DDIFNet (this work) 39.42 0.956

Table.2 Comparison of Generalization Performance on the SIDD Validation Set

As shown in Table 2, DDIFNet also achieves highly
competitive performance on the general SIDD benchmark.
Its results are slightly lower than those of SwinIR (which is
optimized for general datasets) but outperform strong
baselines such as RIDNet and CBDNet. This is a remarkably
reasonable and positive outcome: it indicates that while our
architecture prioritizes performance in the specific domain
(forensic footprint denoising), it does not come at the cost of
sacrificing generalization ability. This balance between
"specialization" and "generalization" precisely demonstrates
the robustness and effectiveness of our dual-domain fusion
design.

D. Ablation Study

To verify the effectiveness of the DDFM (Dual-Domain
Fusion Module) and its interactive fusion mechanism, we
conducted ablation experiments on the FFDD dataset—this
setting best aligns with the original intention of our design.

For verifying the effectiveness of the frequency-domain
branch, we removed all frequency-domain branches from
DDIFNet, degrading it into a pure spatial-domain CNN. This
operation helps confirm whether the introduction of the
frequency-domain branch contributes to the model’s ability
to preserve structural and texture information in forensic
footprint images.

To evaluate the effectiveness of the interactive fusion
mechanism, we retained both the spatial-domain and
frequency-domain branches of DDIFNet but elimi-nated the
interactive fusion mechanism between them. Instead, we only
performed simple concatenation of the two branches at the
final stage, followed by fusion via a 1x1 convolution. This
scheme is intended to test whether the bidirectional
interactive guidance between domains is necessary for
improving the model’s denoising and detail recovery
performance.

Table.3 Ablation Study Results of DDIFNet on the FDD Dataset

Model Configurations PSNR (dB) SSIM
Spatial-Domain-Only Branch 29.28 0.879
Dual-Domain with No Interactive Fusion 30.05 0.901
Full DDIFNet 30.86 0.925

The results of the ablation experiments demonstrate that
removing the frequency-domain branch leads to a significant
performance degradation, particularly in terms of the SSIM
metric. This indicates that frequency-domain analysis is
crucial for capturing the structured patterns of footprints.
Similarly, eliminating the interactive fusion mechanism also
results in a noticeable performance loss, which strongly
confirms that the bidirectional guidance mechanism we
designed is the key to performance improvement—it enables
the synergistic enhancement of the two domains rather than a
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mere simple feature superposition.

V. DISCUSSION

A. Core Findings

This study proposes and validates a network
architecture—DDIFNet—designed to address specific
high-difficulty image restoration tasks. Experimental results
demonstrate that through parallel processing and deep
interactive fusion in the spatial and frequency domains,
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DDIFNet exhibits effectiveness in restoring images severely
contaminated by noise and containing complex textures. In
particular, in its target application (forensic footprint
analysis), its performance has achieved significant
improvements compared to several general-purpose SOTA
models

B. Interpretation and Analysis of Results

The excellent performance of DDIFNet on the FFDD
dataset is attributable to the high alignment between its
architectural design and the characteristics of the task. The
difficulty in forensic footprint image restoration lies in
distinguishing between noise and two signals with distinctly
different properties: periodic sole patterns and unstructured
wear marks. The frequency-domain branch of the network is
inherently suitable for capturing and enhancing periodic
signals, while the spatial-domain branch can finely
characterize local unstructured details. More critically, the
designed interactive fusion mechanism functions as a
dynamic information regulator—it enables the network to
adaptively balance and fuse dual-domain information based
on local image content, thereby achieving the collaborative
preservation of the two key forensic features. In contrast,
although general-purpose models such as SwinIR exhibit
strong performance, their unified self-attention mechanism
may face challenges in making such fine-grained distinctions,
or lead to improper handling of certain subtle yet critical
details.

C. Comparison with Existing Studies

Compared with pure CNN methods like RIDNet, DDIFNet
overcomes the locality limitation of convolutional operations
to a certain extent by introducing a global perspective in the
frequency domain. In contrast to SwinlR, DDIFNet’s design
incorporates stronger task priors and decouples the task via a
dual-domain parallel approach, endowing it with greater
competitiveness in the specific task of forensic footprint
restoration. Notably, DDIFNet’s performance on the general
benchmark SIDD is slightly lower than that of SwinIR. This
result is not a design flaw but rather highlights its design
philosophy: balancing the pursuit of extreme professional
performance and the maintenance of sound generalization
ability.

D. Limitations and Future Outlook

Despite the promising performance exhibited by
DDIFNet, the FFT/AFFT operations it incorporates and its
dual-branch design undoubtedly increase the model’s
computational complexity. Future research may explore
more lightweight dual-domain fusion modules or leverage
techniques such as model distillation [18] to reduce its
deployment costs. Additionally, extending this design
paradigm to other restoration tasks with unique physical
characteristics—such as removing specific artifacts in
microscopic images—will be a valuable research
direction.

VI. CONCLUSION

This study proposes a dual-domain interactive fusion
network (DDIFNet) for real-world image restoration, whose
design aims to address high-difficulty restoration challenges
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in specific professional fields. By virtue of a core module that
enables parallel feature processing in the spatial and
frequency domains and realizes bidirectional information
guidance, the network can effectively separate and restore
complex image details mixed with noise. On a
self-constructed and highly challenging forensic footprint
dataset, DDIFNet achieves significant performance
advantages over several mainstream methods including
SwinlR, while also demonstrating competitive generalization
ability on general benchmarks. This work indicates that the
multi-domain deep interactive fusion network designed for
specific problems is an effective approach to promoting
image restoration technology in solving bottlenecks in key
fields and advancing toward broader practical applications.
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