Optimization in Industrial Steel Building by Using Different Section

Rengade Disha, Khaire Komal, Neharkar Priyanka, Shejwal Pranali

ABSTRACT- Buildings & houses are the oldest construction activities of human beings. The construction technology has advanced since the beginning of primitive construction technology to the present a concept of modern house buildings. The present construction methodology for buildings brought for the best aesthetic look, high quality & fast construction, cost effective & innovative appearance. Pre-Engineered Steel Buildings are manufactured or produced in the plant itself. The detailed structural members are designed for their respective location and are numbered, which cannot be altering because members are manufactured with respect to design features. An efficiently designed pre-engineered building can be lighter than the conventional steel buildings by till 30%. Lighter weight equates to less steel and potential cost savings in a structural framework.

This also covers the advantages of hollow sections in its effectiveness to reduce corrosion, minimizing the overall cost of the plant, and improvements in aesthetic value. The study involves the comparative analysis of industrial steel building using sections under the influence of usual loading values. It also covers a comparative study of sectional properties and its attributes and wide applications in architectural, industrial, infrastructural and general engineering.

KEYWORDS: IS1161, IS875, IS800-2007, IS806, IS2062

I. INTRODUCTION

How to meet the housing and infrastructural needs of society in a sustainable manner in unquestionably most important challenge confronting the steel industry today. This study about design components of the industrial building using open sections, tubular sections, and pre-engineering concept. These sections are designed by using most suitable cross sections according to dead load, live load, wind load, etc. As a result the structure will lose its weight up to 35% during the specified life span. In PEB construction is simple design easy to construct and light in weight both time and cost of erection are minimized. Outstanding architectural design can achieve at low cost using standard architectural features and interface details. In conventional steel building, special architectural design and features must be developed for each project which often required results and thus resulting in much higher cost. Future expansion would more difficult and more likely, costlier than tubular sections and open sections.

II. ANALYSIS AND DESIGN

Data required for analysis and design of Industrial Shed, Plan Area= 640mm²

Location= Pune; Roof Truss= Pratt

Geometry :- Span=16m ; φ =18.6º
8Panel point spacing of purlins=1.75m
Type of sheet= G.1; Length of sheet=3.05m
Sloping length=8.44m
Spacing of truss=4m; No. of trusses= 8

OPEN SECTION

Design of members

Member (Lₘ,Uₜ)
Force= 109.72 (C) KN
For grade of steel:
Fₛ = 410MPa
Fᵧ=250MPa
Yₒ=1.1
Yᵦ=1.25
Thickness of gusset plate= 12mm
Assume Fₑₑₘ= 110 N/mm²
Effective length of principle Rafter @z-z axis
=0.85L= 0.85x2.11=1.8m=1800mm
Cross sectional area required=\frac{1.25}{10.25} x 10³ = 997.45 mm²
Let us try 2ISA 60x60x5@4.51Kg/m
A= 2 x 527 =1150mm²
Yₐₘₐₚ= 18.2mm
Effective slenderness ratio= \frac{L_o}{r_{min}}
= 98.90 < 180..O.K.
Design Compressive Stresses(Fcd)
For λ=98.90
Using table 9(c) IS 800-2007
By Interpolation, Fcd = 108.54 N/mm²
Design Compressive Strength(Pd)
Pd=45.80 x Fcd= 1156 x 108.54 = 124.82 KN
> P..Safe
Checks
Design of Tensile Strength = x A = x 1150
261.36>88.30(T)
..Safe

TUBULAR SECTION
Design of members
Design of principal Rafter
L0L1 (2.11m)
Tension=88.30KKN
Compression=40.72KKN
Tube of Grade Y210
Fy =210MPa Fy =330MPa
Assume Safe Stress Fy=100N/mm²
Effective length=0.8L=0.8x2110=1688mm
Required Area= x x 10³= 1097.2mm²
From Table 1 IS1161:2014
Choose light gauge tube
Nominal Diameter=90mm
Outside Diameter=101.6mm
Thickness=3.6mm
Mass=8.7Kg/m
Area of C/S = 1108mm²
R = 34.7mm
= 48.64
From IS 1161
Ft =103.10 N/mm²
Load Capacity = Ft x A
= 103.10 x 1108 x 10⁻³
=114.24 KN > 109.72
KN..O.K

III. SUMMARY

Table 2: Summary of Sections in Structure

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Open Section</th>
<th>Tubular Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principal rafters</td>
<td>2 ISA 60x60x5</td>
<td>90mm N.D ; 101.6mm O.D of Light weight</td>
</tr>
<tr>
<td>2</td>
<td>Main Ties</td>
<td>2 ISA 50x50x6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Struts</td>
<td>ISA 50x50x6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Slings</td>
<td>ISA 50x50x6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Purlins</td>
<td>ISMC125</td>
<td>50mm N.D</td>
</tr>
<tr>
<td>6</td>
<td>Columns</td>
<td>ISLB250</td>
<td>ISLB 250</td>
</tr>
</tbody>
</table>

IV. RESULTS AND DISCUSSION

Table 3: Comparison of Sections

V. CONCLUSION

From analysis and design, it is proved that steel requirement for erecting steel a structure using hollow section is very low as compared to structure constructed using conventional section. Though, the cost of erection of hollow section is more than a conventional section, the material requirement is tremendously reduced in the structure using hollow section.

Hollow sections have excellent mechanical, geometrical, tensile, compressive and bending characteristics for exposed conditions and aggressive environments. Thus from estimation, we came to the conclusion that cost of erection and manufacturing in the case of hollow section is reduced by half of that of a conventional section.

The pre-engineering building has cost and times of erection are minimized as compare to conventional and hollow sections. It was found that there is saving of 35 to 50% in tubular sections and 35 to 45% in PEB in steel work and saving of cost in open sections and tubular sections are 30 to 50% and open sections and PEB 20 to 30%.

www.ijerm.com
REFERENCES

1. J. Wardenier CIDECT(Comité International pour le Développement et l'Etude de la Construction Tubulaire)HOLLOW SECTIONS IN STRUCTURAL APPLICATIONS

2. A.Jayaraman1, R Geethamani2, N Sathyakumar3, N Karthiga Shenbagam4 pISSN: 2321-7308 Volume: 03 Issue: 10 Oct-2014, DESIGN AND ECONOMICAL OF ROOF TRUSSES & PURLINS (COMPARISON OF LIMIT STATE AND WORKING STRESS METHOD)

5. IS : 875 (Part 2) - 1987 (Reaffirmed 1997) CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES PART 2 IMPOSED LOADS

6. Is875(Part3)-1987 CODE PF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES Part 3 WIND LOADS

7. IS : 806-1968 . (Reaffirmed 2008) Indian Standard CODE OF PRACTICE FOR USE OF STEEL TUBES IN GENERAL BUILDING CONSTRUCTION (First Revision)
