International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-1, Issue-2, May 2014

Error Detection in Majority Logic Decoding of
Euclidean Geometry Low Density Parity Check
(EG-LDPC) Codes

S Sufia Anjum, S Nazneen Shagufa, K Vali Babu

Abstract— In a recent paper, a method was
proposed to accelerate the majority logic decoding
of difference set low density parity check codes.
This is useful as majority logic decoding can be
implemented serially with simple hardware but
requires a large decoding time. For memory
applications, this increases the memory access
time. The method detects whether a word has
errors in the first iterations of majority logic
decoding, and when there are no errors the
decoding ends without completing the rest of the
iterations. Since most words in a memory will be
error-free, the average decoding time is greatly
reduced. In this brief, we study the application of a
similar technique to a class of Euclidean geometry
low density parity check (EG-LDPC) codes that are
one step majority logic decodable. The results
obtained show that the method is also effective for
EG-LDPC codes. Extensive simulation results are
given to accurately estimate the probability of
error detection for different code sizes and
numbers of errors.

Index Terms— Error correction codes, Euclidean
geometry low-density parity check (EG-LDPC) codes,
majority logic decoding, memory.

I. INTRODUCTION

Error correction codes are commonly used to protect
memories from so-called soft errors, which change the
logical value of memory cells without damaging the
circuit [1]. As technology scales, memory devices
become larger and more powerful error correction
codes are needed [2], [3]. To this end, the use of more
advanced codes has been recently proposed [4]-[8].

Manuscript received May 14, 2014.

S Sufia Anjum, E.C.EE Dept.,, Dr.K.V.Subba Reddy
College Of Engineering For Women, India.

S Nazneen Shagufa, E.C.E Dept., Dr.K.V.Subba Reddy
College Of Engineering For Women, India

K Vali Babu, E.C.E Dept., Dr.K.V.Subba Reddy
College Of Engineering For Women, India

These codes can correct a larger number of errors, but
generally require complex decoders. To avoid a high
decoding complexity, the use of one step majority logic
decodable codes was first proposed in [4] for memory
applications. Further work on this topic was then
presented in [5], [6], [8]. One step majority logic
decoding can be implemented serially with very simple
circuitry [9], but requires long decoding times. In a
memory, this would increase the access time which is
an important system parameter. Only a few classes of
codes can be decoded using one step majority logic
decoding [9]. Among those are some Euclidean
geometry low density parity check (EG-LDPC) codes
which were used in [4], and difference set low density
parity check (DS-LDPC) codes [9].

A method was recently proposed in [10] to
accelerate a serial implementation of majority logic
decoding of DS-LDPC codes. The idea behind the
method is to use the first iterations of majority logic
decoding to detect if the word being decoded contains
errors. If there are no er- rors, then decoding can be
stopped without completing the remaining iterations,
therefore greatly reducing the decoding time.

For a code with block length N, majority logic
decoding (when implemented serially) requires
iterations, so that as the code size grows, so does the
decoding time. In the proposed approach, only the first
three iterations are used to detect errors, thereby
achieving a large speed in- crease when s large. In
[10] it was shown that for DS-LDPC codes, all error
combinations of up to five errors can be detected in
the first

TABLE |
ONE STEP MLD EG-LDPC CODES
N K J ML
15 7 4
63 37 8
255 175 16 8
1023 781 32 16

www.ijerm.com

Error Detection in Majority Logic Decoding of EuclideanGeometry Low Density Parity Check
(EG-LDPC) Codes

gb_.[Co | C1 102 I Cs[C4| Cs I Ce| C7 I Cs I Co |C1oIC11lC121C13|C14}J

Correction

N NG AN NG o

equations

Fig. 1. Serial one-step majority logic decoder for the (15,7)
EG-LPDC code

three iterations. Also, errors affecting more than five
bits were detected with a probability very close to one.
The probability of undetected errors was also found to
decrease as the code block length increased. For a
billion error patterns only a few errors (or sometimes
none) were un- detected. This may be sufficient for
some applications.

Another advantage of the proposed method is
that it requires very little additional circuitry as the
decoding circuitry is also used for error detection. For
example, it was shown in [10] that the additional area
required to implement the scheme was only around 1%

for large word sizes.

The method proposed in [10] relies on the
properties of DS-LDPC codes and therefore it is not
directly applicable to other code classes In the
followmg, a similar approach for EG-LDPC codes is
presente

The rest of this brief is divided into the
following sections. Section Il provides preliminaries
on EG-LDPC codes, majority logic decoding and the
method proposed in [10]. Section III presents the
results of applying the method to EG-LDPC codes,
comprising simulation results and a hypothesis based
on those results. This is complemented by a theoretical
proof for the cases of one and two errors that is
provided in an Appendix.

II. PRELIMINARIES

Finite geometries have been used to derive
many error-correcting codes [9], [11]. One example are
EG-LDPC codes which are based on the structure of
Euclidean geometries over a Galois field. Among
EG-LDPC codes there is a subclass of codes that is one
step majority logic decodable (MLD) [9]. Codes in this
subclass are also cyclic. The parameters for some of
these codes are given in Table I, where N is the block
size, K the number of information bits, J the number
of MLD check equations and t,, the number of errors
that the code can correct using one step MLD.

One step MLD can be implemented serially using
the scheme in Fig. 1 which corresponds to the decoder
for the EG-LDPC code with N=1.5. First the data block
is loaded into the registers. Then the check equations are
computed and if a majority of them has a value of one,
the last bit is inverted. Then all bits are cyclically

shifted. This set of operations constitutes a single
iteration: after iterations, the bits are in the same
position in which they were loaded. In the process, each
bit may be corrected only once. As can be seen, the
decoding circuitry is simple, but it requires a long
decoding time if N is large.

The check equations must have the following
properties (see [9] for more details).

TABLE II
UNDETECTED ERRORS IN
EXHAUSTIVE CHECKING

N I error 2 errors 3 errors 4 errors
15 0 0 0 0
63 0 0 0 0
255 0 0 0 -
1023 0 0 - -

1) All equations include the variable whose value is
stored in the last register (the one marked as c4).

2) The rest of the registers are included in at most one
of the check equations

If errors can be detected in the first few
iterations of MLD, then whenever no errors are
detected in those iterations, the decoding can be
stopped without completing the rest of the iterations.
In the first iteration, errors will be detected when at
least one of the check equations is affected by an odd
number of bits in error. In the second iteration, as bits
are cyclically shifted by one position, errors will affect
other equations such that some errors undetected in the
first iteration will be detected. As iterations advance,
all detectable errors will eventually be detected.

In [10] it was shown that for DS-LDPC codes
most errors can be detected in the first three iterations
of MLD. Based on simulation results and on a
theoretical proof for the case of two errors, the
following hypothesis was made.

“Given a word read from a memory protected
with DS-LDPC codes, and affected by up to five
bit-flips, all errors can be detected in only three

decoding cycles”.

Then the proposed technique was
implemented in VHDL and synthesized, showing that
for codes with large block sizes the overhead is low.
This is because the existing majority logic decoding
circuitry is reused to perform error detection and only
some extra control logic is needed.

III. RESULTS

The method proposed in [10] has been applied to
the class of one step MLD EG-LDPC codes. To present
the results, the conclusions are presented first in terms
of a hypothesis that is then validated by simulation and
also partially by a theoretical analysis presented in the

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

Appendix. The results obtained can be summarized in
the following hypothesis

“Given a word read from a memory protected with one
step MLD EG-LDPC codes, and affected by up to four
bit-flips, all errors can be detected in only three
decoding cycles”.

Note that this hypothesis is different from
the one made for DS-LDPCs codes in [10] as in that
case errors affecting up to five bits were always
detected. This is due to structural differences between
DS-LDPC and EG-LDPC codes, which will be
detailed in the Appendix. To validate the above
hypothesis, the EG-LDPC codes considered have been
implemented and tested. For codes with small words
and affected by a small number of bit flips, it is
practical to generate and check all possible error
combina- tions. As the code size grows and the number
of bit flips increases, it is no longer feasible to exhaustively
test all possible combinations .Therefore the
simulations are done in two ways, by exhaustively
checking all error combinations when it is feasible and
by checking randomly generated combinations in the
rest of the cases.

The results for the exhaustive checks are shown in
Table II. These results prove the hypothesis for the
codes with smaller word size (15 and 63). For N=255
up to three errors have been exhaustively tested while
for N=1023 only single and double error
combinations have been exhaustively tested.

TABLE III
UNDETECTED ERRORS WITH ONE BILLION
RANDOM ERROR COMBINATIONS

bold
f

f
L

Yems llems | Lems
By w
A
[A

bimn
I

berony | e
(17

—
=
=

r= | =
=) =3

>

_—
— | =

To complement the results of the exhaustive checks
for larger codes and number of errors, simulations
using random error patterns have been used. In all the
experiments, one billion error combinations are tested.
The results for errors affecting more than four bits are
shown in Table III, since for errors affecting up to four
bits there were no undetected errors. It can be observed
that for errors affecting more than four bits there is a
small number of error combinations that will not be
detected in the first three iterations. This number

ISSN : 2349- 2058, Volume-1, Issue-2, May 2014

decreases with word size and also with the number of
errors. The decrease with the word size can be
explained as follows: the larger the word size, the
larger the number of MLD check equations (see Table
I) and therefore it is more unlikely that errors occur in
the same equation. As for the number of errors, a
similar reasoning applies: the more errors occur, the
larger the probability that an odd number of errors
occurs in at least one equation. Finally it must be noted
that the probabilities of undetected errors are different
for an even and an odd number of errors as in the latter
case, one of the errors must occur in a bit which is not
checked by any equation.

The simulation results presented suggest that
all errors affecting three and four bits would be
detected in the first three iterations. For errors
affecting a larger number of bits, there is a small
probability of not being detected in those iterations.
For large word sizes, the probabilities are sufficiently
small to be acceptable in many applications.

In summary, the first three iterations will detect
all errors affecting four or fewer bits, and almost
every other detectable error affecting more bits. This is
a slightly worse performance than in the case of
DS-LDPC codes [10] where errors affecting five bits
were addition- ally always detected. However, the
majority logic circuitry is simpler for EG-LDPC
codes, as the number of equations is a power of two
and an approach based on sorting networks proposed
in [8] can be used to reduce the cost of the majority
logic voting. In addition, EG-LDPC codes have block
lengths close to a power of two, thus fitting well to the
requirements of modern memory systems. This may
mean that in some cases it may be more convenient to
use an EG-LDPC code and keep a word size
compatible with existing designs (power of two) than
using a DS-LDPC code requiring a different word size
or a shortened version of that code. When using word
size which is a power of two, there would be a bit
which is not used by the EG-LDPC code (see Table I).
This bit can be used for a parity covering all bits in the
word that would detect all errors affecting an odd
number of bits. In that case, the design using the
EG-LDPC would also detect all errors affecting five or
fewer bits.

IV. CONCLUSION

In this brief, the detection of errors during the
first iterations of serial one step Majority Logic
Decoding of EG-LDPC codes has been studied. The
objective was to reduce the decoding time by stopping
the decoding process when no errors are detected. The
simulation results show that all tested combinations of

www.ijerm.com

Error Detection in Majority Logic Decoding of EuclideanGeometry Low Density Parity Check
(EG-LDPC) Codes

errors affecting up to four bits are detected in the first
three iterations of decoding. These results extend the
ones recently presented for DS-LDPC codes, making
the modified one step majority logic decoding more
attractive for memory applications. The designer now
has a larger choice of word lengths and error
correction capabilities.

Future work includes extending the theoretical
analysis to the cases of three and four errors. More
generally, determining the required number of
iterations to detect errors affecting a given number of
bits seems to be an interesting problem. A general
solution to that problem would enable a fine-grained
tradeoff between decoding time and error detection
capability.

APPENDIX

In this Appendix, a theoretical proof is presented
for the case of errors affecting one or two bits. We
begin by introducing the necessary background
information about EG-LDPC codes.

Euclidean Geometry Low Density Parity Check Codes:
An -dimensional Euclidean Geometry over the
Galois FieldGF(2%) denoted by EG(m,2°). is
formed by the 2™ m-tuples over by defining
vector addition and scalar multiplication as follows

[9]:

(ao,al, am_1)+(b0,b1, bm 1)—
(a0+b04a1+b1,, Am-1+ bm—l)
B(ag,aty.evenennnne am1)=(B-aoP-aj.eeeneenne B.an
-------------------- (1)

Each m-tuple is called a point in EG(m,2°), with the
all zero m-tuplr being called the origin.” A line in
EG(m,2°) is formed by 2* points and can be eXEressed as
(a+ cj where a and c are points in EG(m,2°).

EG-LDPC codes are derived from these Euclidean

Geometries. The EG-LDPC codes which are one step
majority logic decodable are those derived from
geometries EG(2,2%) with block length
N=2%-1. For these codes, the MLD check equations
are taken from the incidence vectors of the lines which
do not pass through the origin in EG(2,2°)
. Each of those vectors has 2° points that correspond to
the ones in the check equations. For each point there
are 2° such lines, and for each line there is an
incidence vector [9]. But since each line passes
through 2° points, there are in reality only 2*-1 (the
number of points different than the origin) different
lines (and incidence vectors) as the same line is
counted in each of its points. Another useful property
of the EG-LDPC codes is that every cyclic shift of an

incidence vector is also an incidence vector [9].

.. Next we consider the number of bits that
participate in an MLD equatign at each
iteration. Each equation has 2°equations [9].
As every equation checks the final bit, this means that

255-2S+1 bits are checked by the equations. This leaves
2°-2 bits which are not chécked by any equation at a
given iteration. Those positions are precisely the ones
which correspond to the line that fasses through the
(2>Sr1§1n [9] and are the form of k.(2°+1) with k=1,2,.....

_This is in contrast to DS-LDPC codes where
every bit is checked by all of the MLD check equations
at every 1teration.

A. Theoretical Proof for Single and Double
Errors

Single errors will not be detected in the first iteration
when they occur in one of the positions not checked by
any equation. As these positions are spaced 2°+1 apart,
the error will be always detected in the second

iteration.
For double errors, we begin the proof with the
following lemmas.

Lemma 1: The MLD check equations in a one step
MLD EG-LDPCcode are all cyclic shifts of one
another.

Proof: Since there are 2-1 different incidence
vectors and there are 2-1 cyclic shifts of one vector
also (since), we can conclude that all the
vectors are made from the cyclic shift of a single vector
which defines the code. Therefore the equations for
MLD may all be obtained from cyclically shifting this
single vector. This property is also found in DS-LDPC
codes [9].In addition, to meet the conditions required
for one step MLD (see Section IT), the 2*-1 remaining
equations are obtained from the first equation by
cyclically shifting the previous equation by the
smallest amount such that the last bit is checked.

.. Lemma 2: There is no MLD check equation
which has_two ones at a distance k.(2'+1) with

—l,4,.....

Proof: Suppose there are two such ones in an
equation, then as equations are shifted to obtain the rest
of the equations, at some point there will be an equation
with a one on position which
would contradict one of the properties of the EG-LDPC
codes (see previous subsection).

Lemma 3: Every pair of ones in a check equation
is at a different distance.

Proof: Suppose that there is another pair of ones at the
same distance in the check equation. é)ince every check
equation corresponds to a line in the Euclidean
geometry, and any cyclic shift of such a line necessarily
yields another line, then it may be seen that shifting the
check equation yields a line which shares two Foints
with the first one. This is not possible as in a Euclidean
geometry; two distinct lines cannot share the same two
points.

Theorem: Given a block protected with a one
step MLD EG-LDPC code, and affected by two
bit-flips, these can be detected in only three decoding
cycles.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

Proof: Let us consider the different situations that
can occur for errors affecting two bits. An error will be
detected in the first iteration unless a) they occur in bits
which are not checked by any equation, or b) both
errors occur in bits which are checked by the same
MLD equation in the first iteration.

For case a), the properties of the code force the bits in
error to be at a distance k.(2°+1) . Therefore, the error
will be detected in the second iteration unless there are
two ones in the MLD vector at a distance k.(2°+1).
This cannot be the case due to Lemma 2.Therefore the
error must be detected in the second iteration. For case
b), the separation of the bits which are not checked by
any equation means that it is not possible in the second
and third iteration for the two errors not to be checked
by any equation.

Also, using Lemma 3 for case b), in the second
iteration the bits will be checked by a single equation
again only if this second equation is simply the
previous one shifted by one position. The same applies
to the rest of the iterations: if the bits are checked by
one equation then it must be the one in the previous
iteration shifted by one position. Finally there cannot
be three MLD equations that are consecutive shifts as
that would mean that there are three consecutive ones
in the equations. This would mean that at least one
register apart from the last one is checked by more than
one equation and therefore the code would not be one
step MLD. Therefore the errors will always be detected
in the first three iterations.

REFERENCES

1] R. C. Baumann, “Radiation-induced soft errors in
advanced semicon- ductor technologies,” IEEE Trans.
gevi%eo(j)\g[ater. Reliab., vol. 5, no.” 3, pp. 301-316,

ep. .

[2] I\I/)I A. BeRura Y. Boulghassoul, R. Naseer, S.
DasGupta, A. F. Witulski, J. ondeen, S. D.
Stansberry, J. Draper, L. W. Massengill, and J. N.
Damoulakis, “Models and algorithmic limits_for an
ECC-based ap- proach to hardening sub-100-nm
SRAMS,” IEEE Trans. Nucl. Sci., vol.
54, no. 4, pp. 935-945, Aug. 2007.)

[3] R. Naseer and J. Draper, “DEC ECC design to
improve memory reli- ability in sub-100 nm
technologies,” Proc. IEEE ICECS, pp. 586-589,
2008.

[4] S. Ghosh and P. D. Lincoln, “Dynamic low-density

parity check codes

[5] S. Ghosh and P. D. Lincoln, “Low-density parity
check codes for error correction in nanoscale
memog,” SRI Computer Science Lab., Menlo
Park, CA, Tech. Rep. CSL-0703, 2007.

[6] H. Naeimi and A. DeHon, “Fault secure encoder and
decoder for memory agplications,” in Proc. IEEE
Int. Symp. Defect Fault Toler.

VLSI Syst., 2007, pp. 409-417.

[7] B. Vasic and S. K. Chilappagari, “An information
theoretical frame- work for analysis and design of
nanoscale fault-tolerant memories

ISSN : 2349- 2058, Volume-1, Issue-2, May 2014

based on low-densit)/ Ig)arit -check codes,” IEEE
Trans. Circuits ‘S]éfSt' , . Papers, vol. 54, no. 11,
pp- 2438-2446, Nov. 2007.

[8] H. Naeimi and A. DeHon, “Fault secure encoder and
decoder for nanomemory agfllcatlons,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 4,

pé'). 473486, Apr. 2009.
[9]°S. Lin and D. J. Costello, Error Control Coding, 2nd
ed. Elr\lﬁlewood
Cliffs, NJ: Prentice-Hall, 2004. .
[10] S. Liu, P. Reviriego, and J. Maestro, “Efficient
majority logic fault detection_with difference-set
codes for memory applications,” [EEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no.
Ipr. 148=156, Jan. 2012.
[11] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-Ghaffar,
“Codes on finite
geometries,” IEEE Trans. Inf. Theory, vol. 51, no. 2,
pp- 572-596, Feb.2005.

www.ijerm.com

