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A NEW EIGENVALUE SOLVER FOR SOLVING
EIGENVALUE PROBLEMS IN STRUCTURAL
ENGINEERING

Ezeh J.C., Ibearugbulem O. M., Nwaokorie M. C., Njoku K.O.

Abstract— This paper presents a computer program
written with visual basic that is capable of handling
any n x n eigenvalue matrix problem that uses lump
mass matrix. The program outputs the
characteristic polynomial and eigenvalues of any n x
n matrix eigenvalue problem. The program is
written base on the application of Householder’s
technique and  Newton-Raphson iteration
technique. Householder’s technique was used to
generate the characteristics polynomial of an
eigenvalue problem while the eigenvalues of the
characteristics equation are generated using
Newton-Raphson’s procedure .The effectiveness of
this method was demonstrated by comparing the
eigenvalues and the characteristics polynomial
obtained in the present study with existing
eigenvalues obtained from previous works.

Index Terms— visual basic program, Eigenvalues,
Characteristic polynomial, Householder’s technique,
Newton-Raphsons iteration technique

INTRODUCTION

Eigenvalue problems arise when solving problems of
mathematical physics. Such problems give rise to
matrix eigenvalue problems which according to Yousef
(2011) are classified in three different categories. The
first category consists of problems related to the
analysis of vibrations, which typically generate
symmetric generalized eigenvalue problems. The
second is the class of problems related to stability
analysis and this second class of problems generates
non symmetric matrices. The third category comprises
physical applications related to quantum mechanical
systems. This means that the knowledge of eigenvalue
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is very important to Structural, Electrical and
Mechanical Engineers, who must solve such problems
in order to make headway in their work. It is because of
this that many researchers have spent most of their time
and energy in this area of research and by so doing;
many methods of solving such problems have been
developed. Gene and Henk (2000) studied on the main
research developments in the area of computational
methods for eigenvalue problems during the 20"
century. Klans and Edward (1973) surveyed on the
most efficient solution methods currently in use for
eigenvalue problems. The optimization method, called
deflation-accelerated conjugate gradient was used by
Luca et al (2000) to sequentially compute the smallest
eigenpairs of a symmetric, positive definite,
generalized eigen problem. Ibearugbulem et al (2013)
developed a  method known as  matrix
iterative-inversion that can solve all types of
generalized eigenvalue problems for all matrix sizes
which is efficient in convergence to exact solutions of
eigenvalues. Xiao and Tong (2013) proposed a simple
but yet effective solution to eigenvalue problems called
truncated power method that can approximately solve
non convex optimization problems. Other research
works in this area of study includes the works of
Edoardo and Mario (2003), Matthias et al (2013),
Yunkai et al (2006), Arbenz and Greus (2005), Quillen
and Ye (2010) and Bergamaschi et al (2000). The
different methods used by these researchers are the
Jacobi method, power iteration method, householder —
QR — inverse iteration method, polynomial method,
Lanczos method, Arnoldi method, Block inverse-free
preconditioned Krylov subspace method and
inner-outer iterative method. These methods can solve
problems that have lump mass matrices. Also problems
that have consistent mass matrix have been solved
using matrix iterative — inversion method. Computer
programs that can solve eigenvalue problems exit. Such
programs are written in order to simplify the use of all
these methods. To the best of the authors’ knowledge, it
is rare to find a program that solves problems of any n x
n matrix eigenvalue problem, which outputs the
characteristic polynomial and eigenvalues at the same
time. What are in existence are programs that either
outputs the eigenvalues or the characteristic
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polynomials. So it is important to develop a program
that can do this. In this present work, such a program is
presented and it is written based on the application of
Householder’s technique and Newton — Raphson
iteration technique. The Householder’s technique was
Use to generate the characteristics polynomial of any n
X n matrix eigenvalue problem and the roots of the
characteristics equation where generated using Newton
— Raphson’s procedure. The effectiveness of the
program was demonstrated by comparing the
eigenvalues obtained using this program with existing
eigenvalues obtained from previous works.

EIGENVALUE PROBLEMS IN STRUCTURAL
ENGINEERING

Eigenvalues that arise when studying vibration
problems are very important to structural engineers,
who must analyze such problems in other to obtain the
fundamental frequencies of vibration.

Ar +wBrt o (r=0-————————m o m o (1)

Equation (1) is a quadratic eigenvalue problem and it
represents the matrix equation form of a typical
structural dynamic problem. Where 4 is the stiffness
matrix, C is the mass matrix, B is the damping matrix,
o is vibration frequency and x is the eigenvector.

For the case of no damping, where B = 0 ,we have:
AT+ =0 —mm e - 2)
Equation (2) can be of this form shown as equation (3)

N (3)
Equation (3) is a generalized eigenvalue problem use
for finding the natural frequencies of free vibration
structural dynamic problems. Another generalized
eigenvalue problem in structural Engineering arises in
buckling analysis. The equation governing buckling of
an assemblage of structural element is given as
equation (4).

Where A is the small deflection stiffness matrix and A,
which is always banded, is the geometric stiffness
matrix of the element system. The eigenvalues give the
buckling loads and the eigenvectors represent the
corresponding buckling modes.

If the size of a square matrix is more than 3 x 3, it is
tedious to determine the eigenvalues of equations (3)
and (4). In other to overcome such difficulties, the used
of lump mass have been recommended by analysts and
according to them, would help facilitate condensation

of the structural matrix. Making C an identity matrix
reduces equation (3) to:

(A= AMx=0=———— - —mm (5)

The eigenvalues A (or ®”) and eigenvectors X are the
free vibration frequencies (rad/sec)” and corresponding
mode shape repectively.

HOUSEHOLDER’S CHARACTERISTIC
EQUATION

Householder’s technique of eigenvalue solving as given
by Szilard (2004) was used in this work. This eigen
value technique was wused to determine the
characteristic polynomial from the expression given as
equation (6) or equation (7):

[A-0*(]=[K]=0--------———-— - ———— (6)
[A-]=[K]=0---------——m - (7)

Where K is the matrix eigenvalue.

The characteristic polynomial representing equation (6)
or equation (7), according to Szilard (2004) is given as
equation (8):

/].R _I_Dcl /].,N-: 'I':X: /',N_" 'I'Ka ’;vﬁ-E n

Equation (8) is the Householder’s characteristic
equation of any n X n matrix eigenvalue problem.
In this expression, we have that;

o =-T, o =-% (T +T), o = - /5 (T +ouTs
+T3), o, = - l/n ((ln_l + o T2+ ............ oclTn_l + Tn)
Where T, = Trace [K], T, = Trace [K]?, T, = Trace [K]"

EVALUATING CHARACTERISTICS
POLYNOMIAL TO EIGENVALUES

In this work, Newton-Raphson’s iterative method as
given by Bird (2010) was use to evaluate the
characteristic polynomial to obtain the eigenvalues as:
()
170

f'(ay)
where a; is the approximate value of a real root of the
expression f(x ) =0

F (a)) is the function of a; and f (a;) is the first
derivative of function of a;.

VISUAL BASIC PROGRAM FOR THE METHOD
A visual basic program was written in order to simplify

the use of this method. This program outputs the
characteristic polynomial and also goes on to give the
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eigenvalues of any n x n matrix eigenvalue problem.
The program is as shown in appendix to this work and
for verification purposes; this program was used to test
the following problems.
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RESULTS, DISCUSSION, AND CONCLUSION

Visual basic program output data obtained for the
above four eigenvalue problems are shown on Table 1.

(2 1 -1 1 00 Also Table 1 shows the results obtained from previous
-3 2 -3 - 4 [ﬂ 1 0]/ (Alan, 2002) works of Alan (2002), Glyn (2011) and Michael (1998).
L3 1 -2 001 From the table, it can be seen that the solution of this
o ) study as obtained from the program are the same with
) 3 E _1 3 100 that given by Alan (2002) for problem 1,this means that
4 = 1 4101 0 (Glyn,2011) the eigenvalues and characteristics polynomial are the
2 2 4 00 1 same. For problems 2 and 4 the characteristics
10 1 10 U pqunomia! as obtained using the program are the' same
3t 1 o] —alo 1 ol| (Michacl,1998) with that given by Glyn (2011). The same is appl.lcable
0 0 1 00 1 to prqblem 3. Erom the above .results, it can be said that
the visual basic program written to solve any n x n
2 -1 1 2 100 0 matrix eig.envalv.e problem is recommeqded for users
A o 1 1 o] _ 1 010 0 (Glyn.2011 for . solymg eigenvalue problems in structural
-1 1 1 1 00 1 0 yn, ) engineering.
L1 1 10 0001
Table 1: Result of Eigenvalue problem
Problem 1 pnd 3 4 Characteristics
eigenvalue |eigenvalue [eigenvalue [eigenvalue [polynomial
1|V Basic -1 2 D207 A2
Program
present study)
Alan(2002) -1 2 D207 A+2
2|V Basic 1.38 3.62 7 D-1207+40 1-35
Program
present study)
Glyn(2011) D-1202+40 A-35
3|V Basic 1 1 Do-37+3 -1
Program
present study)
Michael(1998) 1 1
4V Basic 3.061 3.061 3.061 3.06 140 +20°+5 2+2
Program
present study)
Glyn(2011) W40 2075 A2
3 Wwww.ijerm.com
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APPENDIX (VISUAL BASIC PROGRAME)

Private Sub mnustart_Click()
Textl. Text=""
N = InputBox("WHAT IS THE SIZE OF MATRIX"): N=N * 1
ReDim A(N, N), B(N, N), A1(N, N), BI(N, N), C(N, N), Eig(N)
ReDim D(N + 1), T(N + 1), L(N)
Z=2:T(1)=0
For X=1ToN
ForY=1ToN
AX,Y)=0:CX,Y)=0
B(X,Y) = InputBox([Y], [X], "ENTER A"): A1(X, Y) =B(X, Y)
*1

Next Y
If F <0 Or Abs(F) <0.001 Then FF =0 Else FF =1
KH = FF

7000 If Z =100 Then L(X) = L(X - 1): GoTo 9000
LL=LL+0.1
ForY=1ToN+1
F=F+D(Y)*LL"M
M=M-1
Next' Y
Z=7Z+1
If F <0 Or Abs(F) <0.001 Then FF =0 Else FF =1
If Abs(F) < 0.001 Then GoTo 8000
M=N:F=0:FP=0
If FF = KH Then GoTo 7000

NextY 8000 L(X)=LL
CX X)=1 9000
Next X _ A _ 0. N7 —(- _
PP IF\I;X?.XFP—O. M=N:Z=0: LL=LL+0.1
Egﬁ L::IITTOOIL 1000 Textl.Text = Text]. Text + (" ") & vbCrLf: Text].Text =
Textl.Text + (" ") & vbCrLf
= *
Iél(el, tJI)( AL D +C(L K) *BK, J) Textl.Text = Textl.Text + (" ") & vbCrLf: Textl.Text =
Neth Textl.Text+ (" ") & vbCrLf
Next I M=N:F=0:FP=0
Fcer:IToN ForJ=1ToN
- For X =1 To 30
T@2)=TZ)+ AX, X) ForY=1ToN+1
IF\I;X;(:]T()N F=F+D(Y) *LJ)" M
ForY = 1 To N If Y =N+ 1 Then GoTo 20000
FP=FP +M *D(Y) * L(J)* (M - 1
CX, Y)=AX, Y): AKX, Y)=0 20000 M = M - 1 () * L)~ ( )
Next Y Next Y
Next X

If FP = 0 Then GoTo 30000
LJ)=L{J)-F/FP
30000M=N:F=0:FP=0
Next X
M=N:F=0:FP=0
Textl.Text=Textl.Text+ ("

If Z=N+ 1 Then GoTo 3000

Z=7+1:GoTo 2000
3000 Z=3:D(1)=1:D2)=-T(2):M=2: MM =M: X=2:D(Z)
=0
4000 D(Z)=D(Z) + D(M) * T(X)

IfX<Z-1Then X=X+ 1:M=M- [: GoTo 4000 R("& T &™) =" & L(1)) & vbCrLf

IfX =Z- 1 Then D(Z) = D(Z) + T(X + 1): D(Z) = D(Z) / ~(Z - é\:led’“sib
1
If Z=N+ 1 Then GoTo 5000
Z=7+1:M=MM + I: MM = M: D(Z) = 0: X = 2: GoTo REFERENCES
4000 1) Arbenz, P., and Geus, R. (2005). Multilevel
5000 Preconditioned Tteractive eigensolvers for maxwell
Z=N-1:X=2 eigenvalue  Problems. Applied  numerical

Textl.Text = Textl.Text + CStr("L" & N)
6000 ForX=2ToN

Textl.Text = Textl.Text+ ("+ (" & D(X) & "L"& Z & ")")

Z=7Z-1

Next X

Textl.Text = Textl.Text+ (" + (" & D(X) & ")")

Text]l.Text = Textl.Text + (" ") & vbCrLf: Textl.Text =
Textl.Text+ (" ") & vbCrLf

Textl.Text = Textl.Text + (" ") & vbCrLf: Textl.Text =
Textl.Text + (" ") & vbCrLf

ForJ=1ToN+1

Text]l.Text = Textl.Text + ("
vbCrLf

Next J

Text]l.Text = Textl.Text + (" ") & vbCrLf: Textl.Text =
Textl.Text + (" ") & vbCrLf

Text]l.Text = Textl.Text + (" ") & vbCrLf: Textl.Text =
Textl.Text+ (" ") & vbCrLf

'ROOT OF THE CHARACTERISTIC EQUATION BEGINS

Mathematics, vol.54, issue 2, Pp 107-121.
2) Alan. J. (2002). Advanced Engineering Mathematic.
San Diego: Harcourt/Academic press.

3) Bergamaschi, L., Pini, G. and Sartoretto, F. (2000).
Approximate inverse preconditioning in the parallel
solution of sparse eigen problems, Numer. Lin.
Appl. 7 (3) Pp 99-116.

4) Bird .J. (2010). Higher Engineering Mathematics:

D& J&™="&DU) & ) UK: Els(evier I{td. ¢ ¢ ¢

5) Edoardo. D.N and Mario .B. (2013). Block Iterative
Eigensolvers for Sequences of correlated Eigenvalue
Problems. Computer Physics Communications, Vol.
184, Issue 11, Pp 2478-2488.

HERE =~ 6) Gene, H.G. and Henk, A.V. (2000). Eigenvalue
g;g{ifl}g'ﬁL_'s'M_N'z_o' ce=1 Computation in the 20th Century. Journal of

Computational and Applied Mathematics, Vol.123,

ForY=1ToN+1
o ¢ Pp 35-65.

F=F+D(Y)*LL"M
M=M-1
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